Julien Melleray Joint work with Itaï Ben Yaacov and Alexander Berenstein

Institut Camille Jordan Université de Lyon

ESI, Vienna, June 23rd, 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

 \square Automorphism groups as closed subgroups of S_{∞}

Polish groups

Definition.

A *Polish group* is a topological group (G, τ) such that τ is separable and completely metrisable.

Example.

Consider the permutation group of the integers, denoted by $\mathcal{S}_\infty.$ If $\sigma,\tau\in\mathcal{S}_\infty,$ let

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \sigma_{|n} = \tau_{|n}\} \ .$$

This is a left invariant separable (ultra)metric. It is not complete; however the following metric is:

$$\widetilde{d}(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1}) \; .$$

- Introduction

 \square Automorphism groups as closed subgroups of S_{∞}

First-order logic and subgroups of \mathcal{S}_∞

Definition.

A first-order (relational) structure $\mathcal{M} = (M, (R_i)_{i \in I})$ is a set M along with a family of finitary relations $R_i \subseteq M^{k_i}$ $(k_i \in \mathbb{N})$. We always assume that equality is included in our list of relations; we say that \mathcal{M} is *countable* if M is.

Observation.

Let \mathcal{M} be a countable first-order structure; endow its automorphism group $Aut(\mathcal{M})$ with the topology induced by the product topology on $\mathcal{M}^{\mathcal{M}}$. Then $Aut(\mathcal{M})$ is a Polish group and is isomorphic to a closed subgroup of \mathcal{S}_{∞} .

 \square Closed subgroups of S_{∞} as automorphism groups

Ultrahomogeneity

Definition.

Let \mathcal{M} be a countable first-order structure.

Two tuples $\overline{a} = (a_1, \ldots, a_n)$ and $\overline{b} = (b_1, \ldots, b_n)$ in M^n have the same quantifier-free type if, whenever $k_i = k \leq n$ and $j_1, \ldots, j_k \in \{1, \ldots, n\}$,

$$R_i(a_{j_1},\ldots,a_{j_k}) \Leftrightarrow R_i(b_{j_1},\ldots,b_{j_k})$$
.

 \mathcal{M} is *ultrahomogeneous* if whenever \overline{a} and \overline{b} have the same quantifier-free type there is some $g \in Aut(\mathcal{M})$ such that $g(\overline{a}) = \overline{b}$.

Theorem (folklore)

Any closed subgroup of S_{∞} is (isomorphic to) the automorphism group of some countable ultrahomogeneous first-order structure.

Polish groups and metric structures

Automorphism groups of Polish metric structures as Polish groups

Metric structures

Definition.

A (relational) metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I})$ where :

- (M, d) is a complete metric space of diameter less than 1.
- each P_i is a uniformly continuous function from some M^{k_i}, endowed with the sup-metric, to [0, 1].

 \mathcal{M} is *Polish* if (M, d) is a Polish metric space; we extend the notion of quantifier-free type in the obvious way.

Examples.

Countable first-order structures, Polish metric spaces.

Polish groups and metric structures

Automorphism groups of Polish metric structures as Polish groups

Automorphism groups of metric structures

Observation.

 $Aut(\mathcal{M})$ is closed in Iso(M, d). Thus $G = Aut(\mathcal{M})$, endowed with the pointwise convergence topology, is a Polish group. It is also natural to endow G with the uniform metric.

$$d_u(g,h) = \sup\{d(g(x),h(x)) \colon x \in M\}$$

This metric is complete, biinvariant, and refines the topology of G. It is in general nonseparable.

Polish groups and metric structures

Polish groups as automorphisms of Polish metric structures

Polish groups as automorphism groups

Definition.

A Polish metric structure \mathcal{M} is approximately ultrahomogeneous if for any tuples \overline{a} , \overline{b} with the same quantifier-free type and any $\varepsilon > 0$ there exists $g \in Aut(\mathcal{M})$ such that

$$d(g(\overline{a}),\overline{b}) \leq arepsilon$$
 .

Observation.

Any Polish group G is (isomorphic to) the automorphism group of some Polish approximately ultrahomogeneous metric structure. The associated uniform distance d_u generates the coarsest bi-invariant uniformity which extends the topology of G.

Example: bounded Urysohn spaces

The *Urysohn space of diameter* 1 is the unique Polish metric space of diameter 1 which is both:

- ultrahomogeneous
- universal for all separable metric spaces of diameter 1.

Its isometry group $Iso(\mathbb{U}_1)$ is as above endowed with the pointwise convergence topology, which turns it into a universal Polish group, while the uniform metric is both non separable and non discrete.

Example: automorphisms of a standard probability space

Denote by $Aut(X, \mu)$ the automorphism group of a standard probability space (X, μ) .

Recall that the following distance on the measure algebra \textit{MALG}_{μ} is Polish:

$$d(A,B)=\mu(A\Delta B).$$

Then $Aut(X, \mu)$ is the automorphism group of $(MALG_{\mu}, d, d(., \emptyset))$. The associated topology is the usual Polish topology on $Aut(X, \mu)$, while the uniform metric is Lipschitz-equivalent to

$$d_u(S,t) = \mu(\{x \colon S(x) \neq T(x)\}) .$$

Again the uniform metric is non separable (any two rotations with different angles are at distance 1) and non discrete.

Example: the unitary group

Denote by $\mathcal{U}(\ell_2)$ the unitary group of the separable Hilbert space ℓ_2 . It is naturally identified with the set of isometries of the unit ball; consider the corresponding action.

The associated Polish topology is the so-called *strong operator topology*, while the uniform metric is just the usual operator norm

$$d(S,T) = ||S - T|| = \sup\{||(S - T)(x)|| : ||x|| = 1\}$$

Yet again this group, with the uniform metric, is non separable and non discrete.

Ample generics

Definition.

Let a Polish group G act on itself by conjugacy (denote the action by .), and then let G act on Gⁿ by the diagonal product of this action. Then G has *ample generics* if for any n there is a comeager orbit in Gⁿ. The only known examples are subgroups of S_{∞} and their coarsest biinvariant uniformity is discrete.

In the three examples previously discussed, each conjugacy class is meager so the groups don't have ample generics.

Question.

If G has ample generics, is its coarsest biinvariant uniformity necessarily discrete? Does G embed into S_{∞} ?

Metric structures and applications to the theory of topological groups
Ample generics: examples, definitions, and questions
Definitions

Topometric groups

Definition.

A Polish topometric group is a triple (G, τ, d) such that

- (G, τ) is a Polish group;
- *d* is a complete biinvariant distance that refines *τ*;
- d is τ-lower semicontinuous (i.e {(g, h): d(g, h) ≤ r} is τ-closed for any r).

Example.

Any Polish group (G, τ) endowed with either the coarsest biinvariant metric d_u which refines τ , or the discrete metric.

Metric structures and applications to the theory of topological groups Apple generics: examples, definitions, and questions

Ample metric generics

Ample metric generics

Definition.

If (G, τ, d) is a topometric group, $U \subseteq G$ and $\varepsilon > 0$, we let

$$(U)_{\varepsilon} = \{g \in G : d(g, U) < \varepsilon\}$$
.

We again let G act on G^n by the diagonal product of the conjugacy action.

We say that (G, τ, d) has ample generics if for any n there exists some $\overline{g} \in G^n$ such that, for any $\varepsilon > 0$, $(G,\overline{g})_{\varepsilon}$ is τ -comeager in G. We say that a Polish group (G, τ) has ample metric generics if (G, τ, d_u) has ample generics.

Metric structures and applications to the theory of topological groups
Ample generics: examples, definitions, and questions
Ample metric generics

Examples

Consequence of work of Kechris, Rosendal.

Aut (X, μ) , Iso (\mathbb{U}_1) and $\mathcal{U}(\ell_2)$ all have ample metric generics.

Proof.

Based on a lemma that says that these groups are "uniformly approximated" by automorphism groups of countable first order structures with ample generics.

Ample metric generics

From ample generics to ample metric generics

Lemma.

Assume that \mathcal{M} is a Polish metric structure, $N \subseteq M$ is countable, dense, and there is a first-order structure \mathcal{N} with universe N such that any automorphism of \mathcal{N} extends to an automorphism of \mathcal{M} .

Assume also that for any $\varepsilon > 0$, any $n_1, \ldots, n_k \in N$ there exists $\delta > 0$ such that :

Whenever $\varphi \in Aut(\mathcal{M})$ satisfies $d(\varphi(n_i), n_i) \leq \delta$ for all *i*, there exists some $\psi \in Aut(\mathcal{N})$ with

- $\psi(n_i) = n_i$ for all i and
- $\forall m \in M \ d(\psi(m), \varphi(m)) < \varepsilon$.

Finally, assume that $Aut(\mathcal{N})$ has ample generics. Then $Aut(\mathcal{M})$ has ample metric generics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ample generics: examples, definitions, and questions

Ample metric generics

Are there other examples?

We now have a new (and weaker than the usual one) notion of "generic" element: an element is generic if and only if the uniform closure of its conjugacy class is comeager.

If G satisfies the assumptions of our lemma, then this set of generic elements is dense G_{δ} .

Also, if G has ample metric generics then any element of G is the product of two generic elements.

Questions.

Is the set of generic elements always Borel ? G_{δ} ? Are there examples of groups with ample generics that cannot be obtained from our lemma?

Applications of ample metric generics: automatic continuity

Theorem.

Let (G, τ, d) be a Polish topometric group with ample generics, H a separable topological group, and $\varphi \colon G \to H$ a morphism. Assume that $\varphi \colon (G, d) \to H$ is continuous; then $\varphi \colon (G, \tau) \to H$ is continuous.

Corollary (of this and work of Tsankov, Kittrell)

Any automorphism from $Aut(X, \mu)$, with its usual Polish topology, into a separable group is necessarily continuous.

Question.

What about $Iso(\mathbb{U}_1)$ and $\mathcal{U}(\ell_2)$? The same result seems likely to hold (?).

Applications of ample metric generics: bounded orbits

Definition.

Let \mathcal{M} be a Polish metric structure and $G = Aut(\mathcal{M})$. Say that \mathcal{M} is approximately oligomorphic if for any n and any $\varepsilon > 0$ there is a finite set A such that G.A is ε -dense in \mathcal{M}^n .

Theorem.

Assume that $(Aut(\mathcal{M}), \tau, d_u)$ has ample generics, and that \mathcal{M} is approximately oligomorphic.

Consider now an action by isometries of $G = Aut(\mathcal{M})$ on a metric space X, and suppose that for any x the map $g \mapsto g.x$ is continuous from (G, d_u) to X. Then all G-orbits are bounded.

- Applications

Back to our examples

Observation.

 $Aut(X, \mu)$, $Iso(\mathbb{U}_1)$ and $\mathcal{U}(\ell_2)$ are approximately oligomorphic.

Known results.

B. Miller proved that $Aut(X, \mu)$ has the Bergman property; for $U(\ell_2)$ this is a theorem of E. Ricard and C. Rosendal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Question.

Is it true that $Iso(\mathbb{U}_1)$ also has the Bergman property?