Proper Translation

Heike Mildenberger, Saharon Shelah

ESI Workshop on Large Cardinals and Descriptive Set Theory Ernst Schrödinger Institute, Vienna June 14 – 27, 2009

Weak diamonds and Ostaszewski's club

Weak Diamonds The club principle

Technique of proof

- Translating a forcing to a simpler one
- Computing generic conditions over guessed countable models in
- a coherent manner
- Playing with the variable argument of the Borel function giving
- a generic condition

Definition, Moore, Hrušák, Džamonja

Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in \mathbb{R}^2 . $\diamondsuit(A, B, E)$ is the following principle:

$$(\forall \text{ Borel } F: 2^{<\omega_1} \to A)(\exists g_F: \omega_1 \to B)(\forall f: \omega_1 \to 2) \\ \{\alpha \in \omega_1 \, : \, F(f \upharpoonright \alpha) Eg_F(\alpha)\} \text{ is stationary.}$$

Begin proof

Guessing countable models

The end

Definition

 \clubsuit is the abbreviation of the following statement:

$$\begin{array}{l} (\exists \langle A_{\alpha} \, : \, \alpha \in \omega_{1}, \lim(\alpha) \rangle) \\ & (A_{\alpha} \text{ is cofinal in } \alpha \text{ and} \\ \\ \forall X \subseteq_{\mathrm{unc}} \omega_{1} \{ \alpha \in \omega_{1} \, : \, A_{\alpha} \subseteq X \} \text{ is stationary}). \end{array}$$

Theorem, Devlin

 $\clubsuit + \mathrm{CH} \leftrightarrow \diamondsuit.$

Question, Juhász

Does & imply the existence of a Souslin tree?

Stronger version of the question if heading for a negative answer

Is **&** together with "all Aronszajn trees are special" consistent relative to ZFC?

A version of Cichoń's diagramme

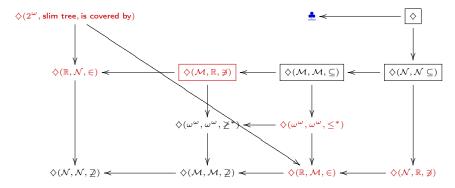


Figure: Just the framed weak diamonds imply the existence of a Souslin tree.

Large continuum and weak diamond and all Aronszajn trees special

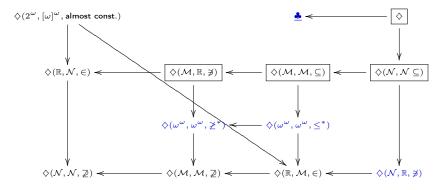


Figure: The blue weak diamonds allow c large and all Aronszajn trees special.

Large continuum and weak diamond and all Aronszajn trees special II

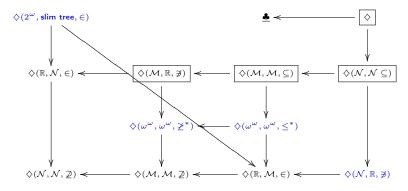


Figure: The blue weak diamonds allow c large and all Aronszajn trees special.

Theorem

Let $r: \omega \to \omega$ such that $\lim \frac{r(n)}{2^n} = 0$. Then the conjunction of the following weak diamonds together with $2^{\omega} = \aleph_2$ and with "all Aronszajn trees are special" is consistent relative to ZFC:

- $(2^{\omega}, \{\lim(T) : T \subseteq 2^{\omega} \text{ perfect } \land (\forall n) | \{\eta \upharpoonright n : \eta \in \lim(T)\} | \leq r(n)\}, \in),$
- $\Diamond(\mathbb{R}, F_{\sigma} \text{ null sets}, \in)$,
- $\Diamond(\mathbb{R}, G_{\delta} \text{ meagre sets}, \in).$

Assume that the ground model fulfils $2^{\omega_1} = \omega_2$ and \diamondsuit . We take a countable support iteration

$$\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$$

of the following proper iterands:

 $\mathbb{Q}_{2\alpha}$ specialises an Aronszajn tree without adding reals (a forcing of size 2^{\aleph_1} with uncountable conditions)

 $\mathbb{Q}_{2\alpha+1}$ is just the Sacks forcing (for the weak diamond) or any ω^{ω} -bounding $< \omega_1$ -proper forcing $\subseteq \omega^{\omega}$ such that being a condition and \leq are Σ_1^1 (if we want only proper translation).

Since the evenly indexed iterands do not add reals and since the oddly indexed iterands are Σ_1 -definable subsets of the reals, we could have that

$$\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$$

is equivalent to a forcing in which $\mathbb{Q}_{2\alpha+1}$ has a

$$\mathbb{P}_{*,2\alpha+1} = \langle \mathbb{Q}_{2\beta+1} \, : \, \beta < \alpha \rangle \text{-name}.$$

We show that below $(M,\mathbb{P})\text{-}\mathsf{generic}$ conditions have names in the simpler iteration

$$\mathbb{P}_* = \langle \mathbb{P}_{*,2\alpha+1}, \mathbb{Q}_{2\beta+1} : \alpha \le \omega_2, \beta < \omega_2 \rangle$$

and that the (M, \mathbb{P}) -generic conditions force that conditions in $M \cap \mathbb{P}$ can be translated to $M \cap \mathbb{P}_*$.

Definition, Moore, Hrušák, Džamonja Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in \mathbb{R}^2 .

 $\Diamond(A, B, E)$ is the following principle:

$$\begin{array}{l} (\forall \text{ Borel } F \colon 2^{<\omega_1} \to A)(\exists g_F \colon \omega_1 \to B)(\forall f \colon \omega_1 \to 2) \\ \\ \{\alpha \in \omega_1 \, : \, F(f \upharpoonright \alpha) Eg_F(\alpha)\} \text{ is stationary.} \end{array}$$

Which branches of T have continuation on the level $\mu = M \cap \omega_1 ?$

We let η stand for functions from ω to ω .

We assume that every level of the Aronszajn tree is identified with ω . For $y \in T_{\mu}$ we set $h_{y,\overline{\beta}}(n)$ be the $x \in T_{\beta_n}$ such that $x <_T y$.

Lemma

There is a Borel function $\mathbf{B}_1: \omega^{\omega} \times \mathcal{P}(\omega) \to \mathcal{P}(\omega)$, such that if $p \in Q_{\mathbf{T}} \cap M$, $\mu = \operatorname{otp}(M \cap \omega_1) = \sup \langle \beta_n : n < \omega \rangle$, $\beta_{n+1} > \beta_n$, and $c: \omega \to M$ is a bijection with $c(0) = Q_{\mathbf{T}}$, c(1) = p, $c(2n+2) = \beta_n$, and

$$U = U(M, Q_{\mathbf{T}}, p) = \{ 2e(n_1, n_2) : c(n_1) \in c(n_2) \}$$
$$\cup \{ 2e(n_1, n_2) + 1 : c(n_1) <^*_{\chi} c(n_2) \}$$

is a description of the isomorphism type then and if

$$(\forall y \in T_{\mu})(h_{y,\bar{\beta}} \leq^* \eta),$$

Continuation of the Lemma

then for

$$G = \{c(n) : n \in \mathbf{B}_1(\eta, U)\}$$

the following holds: G is (M, Q_T) -generic and $p \in G$ and there is an upper bound r of G.

Theorem

Let $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$ be a countable support iteration of iterands of the form $Q_{\mathbf{T}}$. Let χ be sufficiently large. There is a sequence of Borel functions $\langle \mathbf{B}_{\alpha} : \alpha < \omega_1 \rangle$ such that $\mathbf{B}_{\alpha} : (\omega^{\omega})^{\alpha} \times \mathcal{P}(\omega) \to \mathcal{P}(\omega)$, such that the following conditions hold

(a) ℙ ∈ M,
(b) p ∈ ℙ ∩ M,
(c) α = otp(M₀ ∩ ω₂),
(d) Let β̄ be cofinal in M ∩ ω₁. Let c: ω → M be a bijection with c(0) = ℙ, c(1) = p, c(2n + 2) = β_n, and set

Continuation

$$U = U(M, \mathbb{P}, p) = \{ 2e(n_1, n_2) : c(n_1) \in c(n_2) \}$$
$$\cup \{ 2e(n_1, n_2) + 1 : c(n_1) <^*_{\chi} c(n_2) \}.$$

Then in the following games $\Im_{(\bar{M},\mathbb{P},p)}$ the generic player has a winning strategy σ , which depends only on the isomorphism type of $(\bar{M}, \in, <^*_{\chi}, \mathbb{P}, p, \bar{\beta})$:

Continuation

- (α) a play lasts α moves,
- (β) in the ε -th move the generic player chooses some real ν_{ε} and the antigeneric player chooses some $\eta_{\varepsilon} \in \omega^{\omega}$, such that $\eta_{\varepsilon} \geq^* \nu_{\varepsilon}$,
- $\left(\gamma\right)$ in the end the generic player wins iff the following is true:

 $G_{\alpha} = \{c(n) : n \in \mathbf{B}_{\alpha}(\langle \eta_{\varepsilon} : \varepsilon < \alpha \rangle, U)\}$ is an (M, \mathbb{P}) -generic filter and $p \in G_{\alpha}$ and there is a \mathbb{P}_{*} -name for G_{α} .

Theorem

Let $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$ be a countable support iteration of iterands of the form $Q_{\mathbf{T}}$ and of ω^{ω} -bounding $< \omega_1$ -proper iterands that are Σ_1^1 -subsets of ω^{ω} . Let χ is sufficiently large and regular.

There is a coherent sequence $\langle \mathbf{B}_{\alpha} : \alpha < \omega_1 \rangle$ of Borel functions $\mathbf{B}_{\alpha} : (\omega^{\omega})^{\alpha} \times \mathcal{P}(\omega) \to \mathcal{P}(\omega)$, such that the following conditions hold:

- (a) $\bar{M} \prec (H(\chi), \in, <^*_{\chi})$ is a tower of countable elementary submodels,
- (b) $\mathbb{P} \in M_0$, $\gamma \leq \omega_2$, (c) $p \in \mathbb{P} \cap M_0$,

Continuation

Continuation

(d)
$$\alpha = \operatorname{otp}(M_0 \cap \omega_2)$$
,

(e)
$$\bar{\beta}$$
 is cofinal in $M_0 \cap \omega_1$. Let $c: \omega \to M_\alpha$ be a bijection with $c(0) = \mathbb{P}, c(1) = p, c(3n+2) = \beta_n, c(3n+1) = M\alpha_n, \alpha = \{\alpha_n : n \in \omega\}$ and set

$$U = U(M, P_{\gamma}, p) = \{ 2e(n_1, n_2) : c(n_1) \in c(n_2) \}$$
$$\cup \{ 2e(n_1, n_2) + 1 : c(n_1) <^*_{\chi} c(n_2) \}.$$

Then in the following game $\Im_{(\bar{M},\mathbb{P},p)}$ the generic player has a winning strategy σ , which depends only on the isomorphism type of $(\bar{M}, \in, <^*_{\chi}, P_{\gamma}, p, \bar{\beta})$:

Continuation

- (α) a play lasts α moves,
- (β) in the ε -th move the generic player chooses some real ν_{ε} and the antigeneric player chooses some $\eta_{\varepsilon} \in \omega^{\omega}$, such that $\eta_{\varepsilon} \geq^{*} \nu_{\varepsilon}$,
- (γ) in the end the generic player wins iff the following is true: $p \leq q_{\alpha} = \{c(n) : n \in \mathbf{B}_{\alpha}(\langle \eta_{\varepsilon} : \varepsilon < \alpha \rangle, U)\}$ is a α -Sacks name for a (M_0, \mathbb{P}) -generic condition.

Choosing a suitable argument $\bar{\eta}$

A lemma from the ancient paradise.

Lemma

Suppose that

(α) $\gamma < \omega_1$, and

(β) **B**' is a Borel function from $(\omega^{\omega})^{\gamma}$ to 2^{ω} .

Then we can find some $S = S_{\mathbf{B}'}$ such that

(a) S is a small slalom,

(b) in the following game $\mathbb{D}_{(\gamma, \mathbf{B}')}$ between two players, IN and OUT, the player IN has a winning strategy, the play lasts γ moves and in the ε -th move OUT chooses $\nu_{\varepsilon} \in \omega^{\omega}$ and then IN chooses $\eta_{\varepsilon} \geq^* \nu_{\varepsilon}$. In the end IN wins iff $\mathbf{B}'(\langle \eta_{\varepsilon} : \varepsilon < \gamma \rangle)$ is covered by S.

Lemma

Suppose that

(α) $\gamma < \omega_1$, and

(β) **B**' is a Borel function from $(\omega^{\omega})^{\gamma}$ to γ -Sacks names for elements of 2^{ω} .

Then we can find some $S = S_{\mathbf{B}'}$ such that

(a) S is a small slalom,

(b) in the following game $\partial_{(\gamma, \mathbf{B}')}$ between two players, IN and OUT, the player IN has a winning strategy, the play lasts γ moves and in the ε -th move OUT chooses $\nu_{\varepsilon} \in \omega^{\omega}$ and then IN chooses $\eta_{\varepsilon} \geq^* \nu_{\varepsilon}$. In the end IN wins iff γ -Sacks forcing forces that $\mathbf{B}'(\langle \eta_{\varepsilon} : \varepsilon < \gamma \rangle)$ is covered by S.

Let G be P_{ω_2} -generic over V. We use the \diamondsuit_S -sequence $\langle A_\delta : \delta \in S \rangle$ in the following manner:

Definition, Moore, Hrušák, Džamonja Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in \mathbb{R}^2 .

 $\Diamond(A, B, E)$ is the following principle:

$$\begin{aligned} (\forall \text{ Borel } F \colon 2^{<\omega_1} \to A)(\exists g_F \colon \omega_1 \to B)(\forall f \colon \omega_1 \to 2) \\ & \{\alpha \in \omega_1 \, : \, F(f \upharpoonright \alpha) Eg_F(\alpha)\} \text{ is stationary.} \end{aligned}$$

Guessing the countable situation and choosing a suitable $ar\eta$

We have $\langle (N^{\delta},\bar{\beta}^{\delta},\underline{f}^{\delta},\underline{f}^{\delta},\underline{f}^{\delta},\underline{C}^{\delta},P_{\omega_{2}}^{\delta},\,p^{\delta},<^{\delta})\,:\,\delta\in S\rangle$ such that

- (a) \bar{N}^{δ} is a transitive collapse of a tower $\bar{M} \prec H(\chi, \in, <^*_{\chi})$, $<^{\delta}$ is a well-ordering of $\bigcup \bar{N}^{\delta}$, U^{δ} codes the isomorphism type of $(\bar{N}^{\delta}, P^{\delta}_{\omega_2}, p^{\delta}, \bar{\beta}^{\delta})$.
- (b) $N_0^{\delta} \models P_{\omega_2}^{\delta} = \langle P_{\alpha}^{\delta}, Q_{\beta}^{\delta} : \alpha \leq \omega_2^{N^{\delta}}, \beta < \omega_2^{N^{\delta}} \rangle$ is our chosen forcing iteration,
- (c) $N_0^{\delta} \models (p^{\delta} \in P_{\omega_2}^{\delta}, f^{\delta} \text{ is a } P_{\omega_2}^{\delta}\text{-name of a member of } \omega_1 2$ $f^{\delta} \colon 2^{<\omega_1} \to 2^{\omega}).$

Continuation of the list

(d) If $p \in P_{\omega_2}$,

 $p \Vdash_{P_{\omega_2}} \underbrace{f}_{\cdot} \in 2^{\omega_1} \land \underbrace{F}_{\cdot} : 2^{<\omega_1} \to 2^{\omega} \text{ is Borel}, \underbrace{C} \subseteq \omega_1 \text{ is club},$

and $p,~P_{\omega_2},~\tilde{F},~\tilde{f},~\tilde{C}\in H(\chi),$ then

$$\begin{split} S(p, \underline{\mathcal{F}}, \underline{f}) &:= \{\delta \in S \ : \text{there is a tower } \bar{M} \prec (H(\chi), \in, <^*_{\chi}) \\ & \text{ such that } \underline{f}, \underline{\mathcal{F}}, \underline{\mathcal{C}}, P_{\omega_2}, p \in M \text{ and} \\ & \text{ there is an isomorphism } h^{\delta} \text{ from } \bar{N}^{\delta} \text{ onto } \bar{M} \\ & \text{ mapping } P^{\delta}_{\omega_2} \text{ to } P_{\omega_2}, \underline{f}^{\delta} \text{ to } \underline{f}, \\ & \underline{\mathcal{F}}^{\delta} \text{ to } \underline{\mathcal{F}}, \underline{\mathcal{C}}^{\delta} \text{ to } \underline{\mathcal{C}}, p^{\delta} \text{ to } p, <^{\delta} \text{ to } <^*_{\chi} \upharpoonright M_{\delta} \} \end{split}$$

is a stationary subset of ω_1 .

(e) Choose $\langle \mathbf{B}_{\gamma(\delta)} : \delta \in S \rangle$ such that $\gamma(\delta) = \operatorname{otp}(N_0^{\delta} \cap \omega_2)$ and $\mathbf{B}_{\gamma(\delta)} : (\omega^{\omega})^{\gamma(\delta)} \times \mathcal{P}(\omega) \rightarrow$ $\gamma(\delta)$ -Sacks names for (N^{δ}, \mathbb{P}) -generic conditions with $U^{\delta} = U(\bar{N}^{\delta}, P_{\omega \alpha}^{\delta}, p^{\delta}, \bar{\beta}^{\delta}).$ We assume that $N_0^{\delta} \cap \omega_1 = \delta$. Since this holds on a club set of $\delta \in \omega_1$, this is no restriction.

Now assume the $p \in G$ and \tilde{F} , f, \tilde{C} are as in (d). We define a function $\mathbf{B}'_{\delta,U_{\delta}}$ with domain $(\omega^{\omega})^{\gamma(\delta)}$.

 $\mathbf{B}_{\delta,U^{\delta}}'(\langle \eta_{\varepsilon} \, : \, \varepsilon < \gamma(\delta) \rangle) = \begin{cases} \ \tilde{E}^{\delta}(\underline{f}^{\delta} \upharpoonright \delta)[\mathbf{B}_{\gamma(\delta)}(\langle \eta_{\varepsilon} \, : \, \varepsilon < \gamma(\delta) \rangle, U^{\delta})], \\ \text{ if the argument } \bar{\eta} \text{ is sufficiently large;} \\ \langle 0, 0, \dots, \rangle \in 2^{\omega}, \\ \text{ otherwise.} \end{cases}$

Applying the second game to the value of the Borel function at the guessed argument

$$\mathbf{B}_{\delta,U_{\delta}}'(\langle \eta_{\varepsilon}^{\delta} : \varepsilon < \gamma(\delta) \rangle) \in S_{\mathbf{B}_{\delta,U^{\delta}}'}.$$
(3.1)

Note that $S_{\mathbf{B}_{\delta,U^{\delta}}}$ does not depend on $\langle \eta_{\varepsilon}^{\delta} : \varepsilon < \gamma(\delta) \rangle$. So (3.1) also holds for $\langle \eta_{\varepsilon}^{\delta} : \varepsilon < \gamma(\delta) \rangle$ that are the answers of player IN in the game $\partial_{(\gamma(\delta),\mathbf{B}_{\delta,U^{\delta}})}$ to any winning sequence $\langle \nu_{\varepsilon}^{\delta} : \varepsilon < \gamma(\delta) \rangle$ given by the generic player in the first game that is so fast growing $\nu_{\varepsilon}^{\delta}$ that $\mathbf{B}_{\delta,U_{\delta}}(\langle \nu_{\varepsilon}^{\delta} : \varepsilon < \gamma(\delta) \rangle)$ computes a Sacks name for a generic filter over M_0 . This is important, since the isomorphism h^{δ} does not preserve the knowledge (that is which branches are continued and what are the values of the promises in these continuations) about the level $\omega_1 \cap M^{\delta}_{\gamma(\delta)}$ for the Aronszajn trees in $P \cap M^{\delta}_{\gamma(\delta)}$.

The diamond function giving a small slalom

We set

$$S_{\mathbf{B}_{\delta,U^{\delta}}'} =: g(\delta).$$

Definition, Moore, Hrušák, Džamonja Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in \mathbb{R}^2 . $\Diamond(A, B, E)$ is the following principle:

$$\begin{array}{l} (\forall \text{ Borel } F \colon 2^{<\omega_1} \to A)(\exists g_F \colon \omega_1 \to B)(\forall f \colon \omega_1 \to 2) \\ \\ \{\alpha \in \omega_1 \, : \, F(f \upharpoonright \alpha) Eg_F(\alpha)\} \text{ is stationary.} \end{array}$$