## Proper Translation

Heike Mildenberger, Saharon Shelah

ESI Workshop on Large Cardinals and Descriptive Set Theory
Ernst Schrödinger Institute, Vienna
June 14 - 27, 2009

## Outline

Weak diamonds and Ostaszewski's club
Weak Diamonds
The club principle

Technique of proof
Translating a forcing to a simpler one
Computing generic conditions over guessed countable models in
a coherent manner
Playing with the variable argument of the Borel function giving
a generic condition

## Weak diamonds

Definition, Moore, Hrušák, Džamonja
Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in $\mathbb{R}^{2}$.
$\diamond(A, B, E)$ is the following principle:

$$
\begin{aligned}
\left(\forall \text { Borel } F: 2^{<\omega_{1}} \rightarrow\right. & A)\left(\exists g_{F}: \omega_{1} \rightarrow B\right)\left(\forall f: \omega_{1} \rightarrow 2\right) \\
& \left\{\alpha \in \omega_{1}: F(f \upharpoonright \alpha) E g_{F}(\alpha)\right\} \text { is stationary. }
\end{aligned}
$$

## Ostaszewski's guessing principle \&

## Definition

$\boldsymbol{\$}$ is the abbreviation of the following statement:

$$
\left(\exists\left\langle A_{\alpha}: \alpha \in \omega_{1}, \lim (\alpha)\right\rangle\right)
$$

$$
\begin{aligned}
& \quad\left(A_{\alpha} \text { is cofinal in } \alpha\right. \text { and } \\
& \forall X \subseteq \subseteq_{\text {unc }} \omega_{1}\left\{\alpha \in \omega_{1}: A_{\alpha} \subseteq X\right\} \text { is stationary). }
\end{aligned}
$$

Theorem, Devlin
$\boldsymbol{\&}+\mathrm{CH} \leftrightarrow \diamond$.

## Juhász' question

Question, Juhász
Does $\boldsymbol{\&}$ imply the existence of a Souslin tree?
Stronger version of the question if heading for a negative answer
Is together with "all Aronszajn trees are special" consistent relative to ZFC?

## A version of Cichoń's diagramme



Figure: Just the framed weak diamonds imply the existence of a Souslin tree.

## Large continuum and weak diamond and all Aronszajn trees

## special



Figure: The blue weak diamonds allow $\mathfrak{c}$ large and all Aronszajn trees special.

## Large continuum and weak diamond and all Aronszajn trees

 special II

Figure: The blue weak diamonds allow $\mathfrak{c}$ large and all Aronszajn trees special.

## A new theorem

Theorem
Let $r: \omega \rightarrow \omega$ such that $\lim \frac{r(n)}{2^{n}}=0$. Then the conjunction of the following weak diamonds together with $2^{\omega}=\aleph_{2}$ and with "all Aronszajn trees are special" is consistent relative to ZFC:

- $\diamond\left(2^{\omega},\left\{\lim (T): T \subseteq 2^{\omega}\right.\right.$ perfect $\wedge(\forall n) \mid\{\eta \upharpoonright n: \eta \in$ $\lim (T)\} \mid \leq r(n)\}, \in)$,
- $\diamond\left(\mathbb{R}, F_{\sigma}\right.$ null sets, $\left.\in\right)$,
- $\diamond\left(\mathbb{R}, G_{\delta}\right.$ meagre sets, $\left.\in\right)$.


## The forcing

Assume that the ground model fulfils $2^{\omega_{1}}=\omega_{2}$ and $\diamond$.
We take a countable support iteration

$$
\mathbb{P}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle
$$

of the following proper iterands:
$\mathbb{Q}_{2 \alpha}$ specialises an Aronszajn tree without adding reals (a forcing of size $2^{\aleph_{1}}$ with uncountable conditions)
$\mathbb{Q}_{2 \alpha+1}$ is just the Sacks forcing (for the weak diamond) or any
$\omega^{\omega}$-bounding $<\omega_{1}$-proper forcing $\subseteq \omega^{\omega}$ such that being a condition and $\leq$ are $\Sigma_{1}^{1}$ (if we want only proper translation).

## Towards the weak diamond in the extension

Since the evenly indexed iterands do not add reals and since the oddly indexed iterands are $\Sigma_{1}$-definable subsets of the reals, we could have that

$$
\mathbb{P}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\sim} ; \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle
$$

is equivalent to a forcing in which $\mathbb{Q}_{2 \alpha+1}$ has a

$$
\mathbb{P}_{*, 2 \alpha+1}=\left\langle\mathbb{Q}_{2 \beta+1}: \beta<\alpha\right\rangle \text {-name. }
$$

## Handling the large NNR iterands

We show that below $(M, \mathbb{P})$-generic conditions have names in the simpler iteration

$$
\mathbb{P}_{*}=\left\langle\mathbb{P}_{*, 2 \alpha+1}, \mathbb{Q}_{2 \beta+1}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle
$$

and that the $(M, \mathbb{P})$-generic conditions force that conditions in $M \cap \mathbb{P}$ can be translated to $M \cap \mathbb{P}_{*}$.

## We recall: Weak diamonds

Definition, Moore, Hrušák, Džamonja
Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in $\mathbb{R}^{2}$.
$\diamond(A, B, E)$ is the following principle:
$\left(\forall\right.$ Borel $\left.F: 2^{<\omega_{1}} \rightarrow A\right)\left(\exists g_{F}: \omega_{1} \rightarrow B\right)\left(\forall f: \omega_{1} \rightarrow 2\right)$

$$
\left\{\alpha \in \omega_{1}: F(f \upharpoonright \alpha) E g_{F}(\alpha)\right\} \text { is stationary. }
$$

## Which branches of $T$ have continuation on the level

$$
\mu=M \cap \omega_{1} ?
$$

We let $\eta$ stand for functions from $\omega$ to $\omega$.
We assume that every level of the Aronszajn tree is identified with $\omega$. For $y \in T_{\mu}$ we set $h_{y, \bar{\beta}}(n)$ be the $x \in T_{\beta_{n}}$ such that $x<_{T} y$.

## Computing bounded generic filters by Borel functions

## Lemma

There is a Borel function $\mathbf{B}_{1}: \omega^{\omega} \times \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$, such that if $p \in Q_{\mathbf{T}} \cap M, \mu=\operatorname{otp}\left(M \cap \omega_{1}\right)=\sup \left\langle\beta_{n}: n<\omega\right\rangle, \beta_{n+1}>\beta_{n}$, and $c: \omega \rightarrow M$ is a bijection with $c(0)=Q_{\mathbf{T}}, c(1)=p$, $c(2 n+2)=\beta_{n}$, and

$$
\begin{aligned}
& U=U\left(M, Q_{\mathbf{T}}, p\right)=\left\{2 e\left(n_{1}, n_{2}\right): c\left(n_{1}\right) \in c\left(n_{2}\right)\right\} \\
& \cup\left\{2 e\left(n_{1}, n_{2}\right)+1: c\left(n_{1}\right)<_{\chi}^{*} c\left(n_{2}\right)\right\}
\end{aligned}
$$

is a description of the isomorphism type then and if

$$
\left(\forall y \in T_{\mu}\right)\left(h_{y, \bar{\beta}} \leq^{*} \eta\right)
$$

## Computing bounded generic filters II

Continuation of the Lemma
then for

$$
G=\left\{c(n): n \in \mathbf{B}_{1}(\eta, U)\right\}
$$

the following holds: $G$ is $\left(M, Q_{\mathbf{T}}\right)$-generic and $p \in G$ and there is an upper bound $r$ of $G$.

## Version of the previous lemma for iterated forcing

Theorem
Let $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$ be a countable support iteration of iterands of the form $Q_{\mathbf{T}}$. Let $\chi$ be sufficiently large. There is a sequence of Borel functions $\left\langle\mathbf{B}_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that $\mathbf{B}_{\alpha}:\left(\omega^{\omega}\right)^{\alpha} \times \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$, such that the following conditions hold
(a) $\mathbb{P} \in M$,
(b) $p \in \mathbb{P} \cap M$,
(c) $\alpha=\operatorname{otp}\left(M_{0} \cap \omega_{2}\right)$,
(d) Let $\bar{\beta}$ be cofinal in $M \cap \omega_{1}$. Let $c: \omega \rightarrow M$ be a bijection with $c(0)=\mathbb{P}, c(1)=p, c(2 n+2)=\beta_{n}$, and set

## Continuation

## Continuation

$$
\begin{aligned}
U=U(M, \mathbb{P}, p)=\left\{2 e\left(n_{1}, n_{2}\right): c\left(n_{1}\right)\right. & \left.\in c\left(n_{2}\right)\right\} \\
& \cup\left\{2 e\left(n_{1}, n_{2}\right)+1: c\left(n_{1}\right)<_{\chi}^{*} c\left(n_{2}\right)\right\} .
\end{aligned}
$$

Then in the following games $\partial_{(\bar{M}, \mathbb{P}, p)}$ the generic player has a winning strategy $\sigma$, which depends only on the isomorphism type of $\left(\bar{M}, \in,<_{\chi}^{*}, \mathbb{P}, p, \bar{\beta}\right)$ :

## Continuation

## Continuation

$(\alpha)$ a play lasts $\alpha$ moves,
$(\beta)$ in the $\varepsilon$-th move the generic player chooses some real $\nu_{\varepsilon}$ and the antigeneric player chooses some $\eta_{\varepsilon} \in \omega^{\omega}$, such that

$$
\eta_{\varepsilon} \geq^{*} \nu_{\varepsilon}
$$

$(\gamma)$ in the end the generic player wins iff the following is true:

$$
\begin{aligned}
& G_{\alpha}=\left\{c(n): n \in \mathbf{B}_{\alpha}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\alpha\right\rangle, U\right)\right\} \\
& \text { is an }(M, \mathbb{P}) \text {-generic filter and } \\
& p \in G_{\alpha} \text { and }
\end{aligned}
$$

there is a $\mathbb{P}_{*}$-name for $G_{\alpha}$.

## Version of the previous theorem for the iteration adding reals

Theorem
Let $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$ be a countable support iteration of iterands of the form $Q_{\mathbf{T}}$ and of $\omega^{\omega}$-bounding $<\omega_{1}$-proper iterands that are $\Sigma_{1}^{1}$-subsets of $\omega^{\omega}$. Let $\chi$ is sufficiently large and regular.
There is a coherent sequence $\left\langle\mathbf{B}_{\alpha}: \alpha<\omega_{1}\right\rangle$ of Borel functions $\mathbf{B}_{\alpha}:\left(\omega^{\omega}\right)^{\alpha} \times \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$, such that the following conditions hold:
(a) $\bar{M} \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ is a tower of countable elementary submodels,
(b) $\mathbb{P} \in M_{0}, \gamma \leq \omega_{2}$,
(c) $p \in \mathbb{P} \cap M_{0}$,

## Continuation

## Continuation

(d) $\alpha=\operatorname{otp}\left(M_{0} \cap \omega_{2}\right)$,
(e) $\bar{\beta}$ is cofinal in $M_{0} \cap \omega_{1}$. Let $c: \omega \rightarrow M_{\alpha}$ be a bijection with $c(0)=\mathbb{P}, c(1)=p, c(3 n+2)=\beta_{n}, c(3 n+1)=M \alpha_{n}$, $\alpha=\left\{\alpha_{n}: n \in \omega\right\}$ and set

$$
\begin{aligned}
& U=U\left(M, P_{\gamma}, p\right)=\left\{2 e\left(n_{1}, n_{2}\right): c\left(n_{1}\right) \in c\left(n_{2}\right)\right\} \\
& \cup\left\{2 e\left(n_{1}, n_{2}\right)+1: c\left(n_{1}\right)<_{\chi}^{*} c\left(n_{2}\right)\right\} .
\end{aligned}
$$

Then in the following game $\partial_{(\bar{M}, \mathbb{P}, p)}$ the generic player has a winning strategy $\sigma$, which depends only on the isomorphism type of $\left(\bar{M}, \in,<_{\chi}^{*}, P_{\gamma}, p, \bar{\beta}\right)$ :

## Continuation

## Continuation

$(\alpha)$ a play lasts $\alpha$ moves,
$(\beta)$ in the $\varepsilon$-th move the generic player chooses some real $\nu_{\varepsilon}$ and the antigeneric player chooses some $\eta_{\varepsilon} \in \omega^{\omega}$, such that $\eta_{\varepsilon} \geq^{*} \nu_{\varepsilon}$,
$(\gamma)$ in the end the generic player wins iff the following is true: $p \leq q_{\alpha}=\left\{c(n): n \in \mathbf{B}_{\alpha}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\alpha\right\rangle, U\right)\right\}$ is a $\alpha$-Sacks name for a $\left(M_{0}, \mathbb{P}\right)$-generic condition.

## Choosing a suitable argument $\bar{\eta}$

A lemma from the ancient paradise.

## Lemma

Suppose that
( $\alpha$ ) $\gamma<\omega_{1}$, and
$(\beta) \mathbf{B}^{\prime}$ is a Borel function from $\left(\omega^{\omega}\right)^{\gamma}$ to $2^{\omega}$.
Then we can find some $S=S_{\mathrm{B}^{\prime}}$ such that
(a) $S$ is a small slalom,
(b) in the following game $\partial_{\left(\gamma, \mathbf{B}^{\prime}\right)}$ between two players, IN and OUT, the player IN has a winning strategy, the play lasts $\gamma$ moves and in the $\varepsilon$-th move OUT chooses $\nu_{\varepsilon} \in \omega^{\omega}$ and then IN chooses $\eta_{\varepsilon} \geq^{*} \nu_{\varepsilon}$. In the end IN wins iff $\mathbf{B}^{\prime}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\gamma\right\rangle\right)$ is covered by $S$.

## Choosing a suitable argument $\bar{\eta}$ when there are new reals

## Lemma

Suppose that
(a) $\gamma<\omega_{1}$, and
$(\beta) \mathbf{B}^{\prime}$ is a Borel function from $\left(\omega^{\omega}\right)^{\gamma}$ to $\gamma$-Sacks names for elements of $2^{\omega}$.

Then we can find some $S=S_{\mathbf{B}^{\prime}}$, such that
(a) $S$ is a small slalom,
(b) in the following game $\partial_{\left(\gamma, \mathbf{B}^{\prime}\right)}$ between two players, IN and OUT, the player IN has a winning strategy, the play lasts $\gamma$ moves and in the $\varepsilon$-th move OUT chooses $\nu_{\varepsilon} \in \omega^{\omega}$ and then IN chooses $\eta_{\varepsilon} \geq^{*} \nu_{\varepsilon}$. In the end IN wins iff $\gamma$-Sacks forcing forces that $\mathbf{B}^{\prime}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\gamma\right\rangle\right)$ is covered by $S$.

## Guessing the countable situation and choosing a suitable $\bar{\eta}$

Let $G$ be $P_{\omega_{2}}$-generic over $\mathbf{V}$. We use the $\diamond_{S}$-sequence $\left\langle A_{\delta}: \delta \in S\right\rangle$ in the following manner:

## We recall again: Weak diamonds

Definition, Moore, Hrušák, Džamonja
Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in $\mathbb{R}^{2}$.
$\diamond(A, B, E)$ is the following principle:
$\left(\forall\right.$ Borel $\left.F: 2^{<\omega_{1}} \rightarrow A\right)\left(\exists g_{F}: \omega_{1} \rightarrow B\right)\left(\forall f: \omega_{1} \rightarrow 2\right)$

$$
\left\{\alpha \in \omega_{1}: F(f \upharpoonright \alpha) E g_{F}(\alpha)\right\} \text { is stationary. }
$$

## Guessing the countable situation and choosing a suitable $\bar{\eta}$

We have $\left\langle\left(N^{\delta}, \bar{\beta}^{\delta}, \underset{\sim}{f},{\underset{\sim}{x}}^{\delta}, C^{\delta}, P_{\omega_{2}}^{\delta}, p^{\delta},<^{\delta}\right): \delta \in S\right\rangle$ such that

## Countable components

(a) $\bar{N}^{\delta}$ is a transitive collapse of a tower $\bar{M} \prec H\left(\chi, \in,<_{\chi}^{*}\right),<^{\delta}$ is a well-ordering of $\bigcup \bar{N}^{\delta}, U^{\delta}$ codes the isomorphism type of $\left(\bar{N}^{\delta}, P_{\omega_{2}}^{\delta}, p^{\delta}, \bar{\beta}^{\delta}\right)$.
(b) $N_{0}^{\delta} \models P_{\omega_{2}}^{\delta}=\left\langle P_{\alpha}^{\delta}, Q_{\beta}^{\delta}: \alpha \leq \omega_{2}^{N^{\delta}}, \beta<\omega_{2}^{N^{\delta}}\right\rangle$ is our chosen forcing iteration,
(c) $N_{0}^{\delta} \models\left(p^{\delta} \in P_{\omega_{2}}^{\delta},{\underset{\sim}{f}}^{\delta}\right.$ is a $P_{\omega_{2}}^{\delta}$-name of a member of ${ }^{\omega_{1}} 2$ $\left.\underset{\sim}{F}{ }^{\delta}: 2^{<\omega_{1}} \rightarrow 2^{\omega}\right)$.

## Continuation of the list

(d) If $p \in P_{\omega_{2}}$,

$$
p \Vdash_{P_{\omega_{2}}} \underset{\sim}{f} \in 2^{\omega_{1}} \wedge \underset{\sim}{F}: 2^{<\omega_{1}} \rightarrow 2^{\omega} \text { is Borel, } C \subseteq \omega_{1} \text { is club, }
$$

and $p, P_{\omega_{2}}, \underset{\sim}{F}, \underset{\sim}{f}, \underset{\sim}{C} \in H(\chi)$, then
$S(p, \underset{\sim}{F}, \underset{\sim}{f}):=\left\{\delta \in S\right.$ : there is a tower $\bar{M} \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ such that $\underset{\sim}{f}, \underset{\sim}{F}, C, P_{\omega_{2}}, p \in M$ and there is an isomorphism $h^{\delta}$ from $\bar{N}^{\delta}$ onto $\bar{M}$ mapping $P_{\omega_{2}}^{\delta}$ to $P_{\omega_{2}}, f_{2}^{\delta}$ to $\underset{\sim}{f}$, ${\underset{\sim}{F}}^{\delta}$ to $\underset{\sim}{F}, C_{\sim}^{\delta}$ to $\underset{\sim}{C,} p^{\delta}$ to $p,<^{\delta}$ to $\left.<_{\chi}^{*} \upharpoonright M_{\delta}\right\}$
is a stationary subset of $\omega_{1}$.

## Continuation of the list II

(e) Choose $\left\langle\mathbf{B}_{\gamma(\delta)}: \delta \in S\right\rangle$ such that $\gamma(\delta)=\operatorname{otp}\left(N_{0}^{\delta} \cap \omega_{2}\right)$ and

$$
\begin{aligned}
& \mathbf{B}_{\gamma(\delta)}:\left(\omega^{\omega}\right)^{\gamma(\delta)} \times \mathcal{P}(\omega) \rightarrow \\
& \quad \gamma(\delta) \text {-Sacks names for }\left(N^{\delta}, \mathbb{P}\right) \text {-generic conditions }
\end{aligned}
$$

with $U^{\delta}=U\left(\bar{N}^{\delta}, P_{\omega_{2}}^{\delta}, p^{\delta}, \bar{\beta}^{\delta}\right)$.

## Computing over guessed countable models

We assume that $N_{0}^{\delta} \cap \omega_{1}=\delta$. Since this holds on a club set of $\delta \in \omega_{1}$, this is no restriction.

Now assume the $p \in G$ and $\underset{\sim}{F}, \underset{\sim}{f}, \underset{\sim}{C}$ are as in (d).
We define a function $\mathbf{B}_{\delta, U_{\delta}}^{\prime}$ with domain $\left(\omega^{\omega}\right)^{\gamma(\delta)}$.

$$
\mathbf{B}_{\delta, U^{\delta}}^{\prime}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\gamma(\delta)\right\rangle\right)=\left\{\begin{array}{l}
{\underset{\sim}{F}}^{\delta}\left(f^{\delta} \upharpoonright \delta\right)\left[\mathbf{B}_{\gamma(\delta)}\left(\left\langle\eta_{\varepsilon}: \varepsilon<\gamma(\delta)\right\rangle, U^{\delta}\right)\right] \\
\text { if the argument } \bar{\eta} \text { is sufficiently large; } \\
\langle 0,0, \ldots,\rangle \in 2^{\omega}, \\
\text { otherwise. }
\end{array}\right.
$$

## Applying the second game to the value of the Borel function

 at the guessed argument$$
\begin{equation*}
\mathbf{B}_{\delta, U_{\delta}}^{\prime}\left(\left\langle\eta_{\varepsilon}^{\delta}: \varepsilon<\gamma(\delta)\right\rangle\right) \in S_{\mathbf{B}_{\delta, U^{\delta}}^{\prime}} \tag{3.1}
\end{equation*}
$$

Note that $S_{\mathbf{B}_{\delta, U}^{\prime}}$ does not depend on $\left\langle\eta_{\varepsilon}^{\delta}: \varepsilon<\gamma(\delta)\right\rangle$. So (3.1) also holds for $\left\langle\eta_{\varepsilon}^{\delta}: \varepsilon<\gamma(\delta)\right\rangle$ that are the answers of player IN in the game $\partial_{\left(\gamma(\delta), \mathbf{B}_{\delta, U^{\delta}}^{\prime}\right)}$ to any winning sequence $\left\langle\nu_{\varepsilon}^{\delta}: \varepsilon<\gamma(\delta)\right\rangle$ given by the generic player in the first game that is so fast growing $\nu_{\varepsilon}^{\delta}$ that $\mathbf{B}_{\delta, U_{\delta}}\left(\left\langle\nu_{\varepsilon}^{\delta}: \varepsilon<\gamma(\delta)\right\rangle\right)$ computes a Sacks name for a generic filter over $M_{0}$.

## The next level in the tree above $N_{\alpha}^{\delta} \cap \omega_{1}$

This is important, since the isomorphism $h^{\delta}$ does not preserve the knowledge (that is which branches are continued and what are the values of the promises in these continuations) about the level $\omega_{1} \cap M_{\gamma(\delta)}^{\delta}$ for the Aronszajn trees in $P \cap M_{\gamma(\delta)}^{\delta}$.

## The diamond function giving a small slalom

We set

$$
S_{\mathbf{B}_{\delta, U}^{\prime}}^{\prime}=: g(\delta) .
$$

## The order of the quantifiers in the weak diamonds

Definition, Moore, Hrušák, Džamonja
Let $A, B \subseteq \mathbb{R}$ be Borel and let $E \subseteq A \times B$ be Borel in $\mathbb{R}^{2}$.
$\diamond(A, B, E)$ is the following principle:
$\left(\forall\right.$ Borel $\left.F: 2^{<\omega_{1}} \rightarrow A\right)\left(\exists g_{F}: \omega_{1} \rightarrow B\right)\left(\forall f: \omega_{1} \rightarrow 2\right)$

$$
\left\{\alpha \in \omega_{1}: F(f \upharpoonright \alpha) E g_{F}(\alpha)\right\} \text { is stationary. }
$$

