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Analytic and Borel equivalence relations

A pair (X ,E ) is said to be an analytic equivalence relation (resp. Borel
equivalence relation) if X is a Polish space (or even just a standard Borel
space) and E is an equivalence relation on X which is analytic (resp.
Borel) as a subset of X × X .

Any two uncountable standard Borel spaces are Borel-isomorphic, hence
we can restrict ourselves to the case X = ω2.

A motivation for analyzing analytic equivalence relations and their
relationships is given by the various classification problems arising in many
areas of mathematics.
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Borel reducibility

To compare the complexity of two analytic equivalence relations (X ,E ) e
(Y ,F ) we use Borel-reducibility:

(X ,E ) ≤B (Y ,F ) iff there is a Borel function f : X → Y such that
∀x1, x2 ∈ X (x1 E x2 ⇐⇒ f (x1) F f (x2));

(X ,E ) and (Y ,F ) are Borel-equivalent, (X ,E ) ∼B (Y ,F ) in symbols,
iff (X ,E ) ≤B (Y ,F ) and (Y ,F ) ≤B (X ,E ).

(X ,E ) is said to be complete if for every analytic equivalence relation
(Y ,F ) one has (Y ,F ) ≤B (X ,E ).

Intuitively: “(X ,E ) ≤B (Y ,F )” = “(X ,E ) is not more complicated than
(Y ,F )”.

The structure of analytic equivalence relation under ≤B is quite
complicated!
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Example: Polish group actions

A Polish group G = (G , e, ·) is a group equipped with a Polish topology τ
such that the map G × G → G : (x , y) 7→ x · y−1 is continuous.

If X is a Polish space, a continuous function a : G × X → X is said to be
action of G on X if a(e, x) = x and a(g , a(h, x)) = a(g · h, x) for every
x ∈ X and g , h ∈ G .

The orbit equivalence relation Ea induced by a on X ,
where x Ea y ⇐⇒ ∃g ∈ G (a(g , x) = y),

is an analytic equivalence relation.

We can also just require X to be standard Borel and a to be a Borel
function: in this case X is said to be a Borel G -space.
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Example: isomorphism relation

Let L be a countable language. We can assume that each countable
L-structure has domain ω, so that we can identify such a structure with
an element of the Cantor space ω2.

Example: L = {R}, R binary relational symbol. Every x ∈ ω2 codes the
structure Ax = (ω,RAx ), where n RAx m iff x(〈n,m〉) = 1.

Every isomorphism between countable L-structures is simply a
permutation of ω.

The isomorphism relation on a Borel set of countable L-structures is an
analytic equivalence relation.

Remark: The isomorphism relation among countable L-structures
coincides with the orbit equivalence relation induced by the canonical
action (“logic action”) jL of the group S∞ on ω2.
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Example: isomorphism relation

ModL = (codes for) countable L-structures

S∞ = Polish group of permutations on ω.

Definition

A set X ⊆ ModL is said to be invariant if it is closed under isomorphism
(i.e. closed with respect to the logic action jL of S∞ on ModL).

Given an Lω1ω-sentence ϕ, let Modϕ be the collection of those x ∈ ModL
which model ϕ.

Theorem (Lopez-Escobar)

X ⊆ ModL is Borel and invariant iff there is an Lω1ω-sentence ϕ such that
X = Modϕ.
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Example: isomorphism relation

Isomorphism relations are a very special subclass of the analytic
equivalence relations:

H. Friedman-Stanley: isomorphism on countable trees, on linear
orders, and so on are S∞-complete, i.e. F ≤B E for every
isomorphism relation F ;

there are analytic equivalence relations which are not Borel-reducible
to an isomorphism relation;

in particular, no isomorphism relation can be complete!
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Analytic quasi-orders

All the notions and definitions about analytic equivalence relations can be
rephrased in the context of quasi-orders (i.e. reflexive and transitive
relations):

a quasi-order R is analytic if its domain X is standard Borel and R is
an analytic subset of X × X ;

R ≤B S iff there is a Borel function f : X → Y (where X and Y are
the domains of R and S) such that x R y ⇐⇒ f (x) S f (y);

R is complete if S ≤ R for every analytic quasi-order S , and so on.

Every analytic quasi-order R canonically induce the analytic equivalence
relation ER = R ∩ R−1, and if R is complete then ER is complete as well.
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Example: embeddability relation

Let L, ModL, ϕ and Modϕ be defined as before.

Definition

Given two L-structures A and B, we say that A embeds into B (A v B in
symbols) if there is an injection f : A→ B which is an isomorphism on its
image (considered as a substructure of B).

Remark: v restricted to Modϕ is an analytic quasi-order, and canonically
induces the analytic equivalence relation ≡ of bi-embeddability.
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Some examples

Example 1: On well-founded linear orders of length ≤ α, α a fixed
countable ordinal, isomorphism and bi-embeddability coincide.

Example 2: The isomorphism relation on linear orders is S∞-complete (H.
Friedman-Stanley), whereas bi-embeddability on linear orders has ℵ1-many
equivalence classes but doesn’t Borel-reduces equality on ω2 (Laver: vLO

is a bqo).

Exmple 3: Embeddability on graphs (hence also bi-embeddability) is
complete (Louveau-Rosendal), whereas isomorphism on graphs is
S∞-complete.
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Combinatorial trees

A combinatorial tree is a connected acyclic graph. CT denotes the
collection of all countable combinatorial trees.

Theorem (Louveau-Rosendal)

vCT is a complete analytic quasi-order.

The proof uses the fact that, given an arbitrary analytic quasi-order R on
X , one can code informations about x ∈ X w.r.t. R into a corresponding
combinatorial tree Gx using the distance and the valence function,
together with the fact that any embedding between graphs must preserve
distances and (at most) increase valences.
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“Universality” of embeddability

Theorem (S. D. Friedman-M.)

For every analytic quasi-order R there is an Lω1ω-sentence ϕ such that R
is Borel-equivalent to v on Modϕ.

Corollary (S. D. Friedman-M.)

E is an analytic equivalence relation iff there is an Lω1ω-sentence ϕ such
that E is Borel-equivalent to ≡ on Modϕ.

One can also replace “embeddability between countable L-structures” with
homomorphism or weak-homomorphism between countable L-structures.
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Sketch of the proof of the main result

Let R be an arbitrary quasi-order on X , and x 7→ Gx be the Borel map
constructed by Louveau and Rosendal (in particular, such map reduces R
to v).

Now modify the definition of Gx to obtain a Ĝx such that:

x 6= y ⇒ Ĝx 6∼= Ĝy ;

each Ĝx is rigid (no nontrivial automorphisms);

x 7→ Ĝx is still a Borel reduction of R into v.

The structure Ĝx can be obtained in two different ways:

1 add some new vertices to Gx to code some additional informations (in
particular in order to have a rigid structure);

2 add a new binary relational symbol to the language and interpret it as
a (special) well-founded linear order on the original Gx (in this case
Ĝx will be a so-called ordered combinatorial tree).
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Sketch of the proof of the main result

Let R ′ be the analytic quasi-order on X × S∞ defined by
(x , p) R ′ (y , q) ⇐⇒ x R y . Clearly R ∼B R ′, so it is enough to construct
Modϕ such that R ′ ∼B v � Modϕ.

Consider the Borel map f which sends (x , p) to jL(p, Ĝx). f reduces R ′ to
v because

(x , p) R ′ (y , q) ⇐⇒ x R y

⇐⇒ Ĝx v Ĝy

⇐⇒ f (x , p) v f (y , q).
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Sketch of the proof of the main result

Check that f is injective. Consider (x , p), (y , q) ∈ X × S∞ and assume
f (x , p) = f (y , q): since this implies Ĝx

∼= Ĝy , we have x = y ; but then
q−1 ◦ p is an automorphism of Ĝx , whence p = q.

Notice that the range(f ) is invariant by definition of f .

Since f is an injective Borel map defined on a Borel set we get:

range(f ) is Borel: being Borel and invariant, it coincides with Modϕ

for some Lω1ω-sentence ϕ;

f −1 is a Borel function, hence a Borel reduction of v � Modϕ to R ′.

This concludes the proof.
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Homomorphism and weak-homomorphism

Given two L-structures A and B, an homomorphism between A and B is a
function f : A→ B which preserves relations and functions in both
directions (that is, if e.g. P ∈ L is a binary relational symbol then n PAm
iff f (n) PB f (m)).

f is said to be a weak-homomorphism if relations and functions are
preserved just in one direction (if n PAm then f (n) PB f (m)).

Theorem (S. D. Friedman-M.)

If R is an analytic quasi-order then there is an Lω1ω-sentence ϕ such that
R is Borel-equivalent to the homomorphism (resp. weak-homomorphism)
relation on Modϕ.
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Sketch of the proof

Construct Ĝx by adjoining to Gx a suitable strict well-founded linear order
<x . Then check that on ordered combinatorial trees of this form
weak-homomorphism, homomorphism and embedding coincide.

Let f be a weak-homomorphism between Ĝx and Ĝy . First notice that f is
injective because <y is strict and <x is linear.

Now assume f (z0) <y f (z1): if z0 ≮x z1 then z1 <x z0 and hence
f (z1) <y f (z0) , a contradiction!

Finally, let f (z0) and f (z1) be two linked vertices of Gy : if z0 and z1 are
not linked in Gx , then the (unique) proper chain between z0 and z1 should
be mapped to a proper chain between f (z0) and f (z1), a contradiction!
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Relationship between isomorphism and bi-embeddability

Let C be an Lω1ω-elementary class (i.e. C = Modϕ for some Lω1ω-sentence
ϕ), and let ∼=C , vC and ≡C denote, respectively, isomorphism,
embeddability and bi-embeddability on C.

Example

if C is the class of linear orders then ∼=C is S∞-complete, whereas ≡C
has ℵ1-many classes (vC is a bqo);

if C is the class of combinatorial trees then ≡C and vC are both
complete, whereas ∼=C is S∞-complete.
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Three questions

Louveau and Rosendal asked if we can increase the previous gaps between
∼=C and ≡C .

Question

Is there an Lω1ω-elementary class C such that ∼=C is S∞-complete but
≡C has just countably many classes?

Is there an Lω1ω-elementary class C such that ≡C is complete but ∼=C
is not S∞-complete?

A similar question, which is related to the Louveau-Rosendal’s method for
proving completeness of analytic equivalence relations is the following:

Question

Is there an Lω1ω-elementary class C such that ≡C is complete but vC is
not complete?
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∼=C S∞-complete, ≡C with ω-many classes

Consider the set-theoretical trees defined by Friedman-Stanley in the proof
that ∼= on trees is S∞-complete: each of them consists of the tree Tseq of
all finite sequences of natural numbers plus some new terminal node.

The class of all set-theoretical trees of this form is an Lω1ω-elementary
class C, and since any set-theoretical tree can be embedded into Tseq we
get that ≡C has just one equivalence class (whereas ∼=C remains
S∞-complete).
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≡C complete, ∼=C not S∞-complete

Recall that we constructed the combinatorial trees Ĝx in such a way that
the map x 7→ Ĝx reduces equality to ∼=.

This means that, given an arbitrary analytic quasi-order R, the
Lω1ω-elementary class C = Modϕ given by our main theorem is such that
R ∼B vC and simultaneously = ∼B

∼=C (both equivalences being
witnessed by the same functions).

Therefore, if R is complete then the relations vC and ≡C resulting from
the application of the main theorem will be complete, but ∼=C will be
Borel-equivalent to equality on ω2.

Remark: Such result is best possible: if = �B
∼=C then ≡C cannot be

complete since = �B ≡C .
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≡C complete, vC not complete

Let E be a complete analytic equivalence relation. Since E is, in particular,
a quasi-order, we can apply our main theorem to such E : the resulting C is
such that E ∼B vC = ≡C , hence ≡C is complete while vC cannot be
complete because it is an equivalence relation (a downward closed notion).

More generally, given two analytic equivalence relations E ,F and an
analytic quasi-order R, our techniques can be used to produce, an Lω1ω

elementary class C such that E ,F ,R are Borel-equivalent to, respectively,
∼=C ,≡C ,vC as long as E ∼B = and F ∼B ER .

For example, we can produce an Lω1ω-elementary class C such that ∼=C
and ≡C are distinct but still ∼=C ∼B ≡C .

Remark: Recently the condition E ∼B = has been removed... but this is
another story!
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Other complete analytic quasi-orders

After Louveau-Rosendal’s paper, many other natural complete analytic
quasi-orders have been discovered: colour-preserving and colour-decreasing
embeddability on linear orders, colour-preserving dop embeddability on
colourings of Q, weak-epimorphism on countable graphs, and so on.

Question

Is it possible to extend the main result to all these quasi-orders?

More precisely, we are asking if for any quasi-order S above is it true that
given an arbitrary analytic quasi-order R there is a Borel class C closed
under the natural “isomorphism” relation E associated to S such that
R ∼B S � C. If the answer is positive we say that (S ,E ) (or just S) is
invariantly universal.
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The general technique

Let Y be a Polish group acting in a Borel way on X and G (Y ) be the
standard Borel space of the closed subgroups of Y .

Lemma

Let X → G (Y ) : x 7→ Hx be a Borel map. Then there is a Borel set
Z ⊆ X × Y such that Zx = π2(Z ∩ ({x} × Y )) is a Borel transversal for
Ex , the equivalence relation on Y whose classes are the (left) cosets of Hx .

Theorem

Suppose (S ,E ) is a pair of analytic relations on a standard Borel space W
such that S is a quasi-order and E ⊆ ES is a Borel Y -space. Suppose f is
a Borel reduction of v between countable graphs to S which
simultaneously reduces isomorphism on G (the set of all possible Ĝx

constructed as above) to E , and assume that the function
G → G (Y ) : Ĝx 7→ StabY (f (Ĝx)) is Borel. Then (S ,E ) is invariantly
universal.
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Sketch of the proof

Given an arbitrary analytic quasi-order R, apply the lemma to the map
x 7→ StabY (f (Ĝx)) and let Z ⊆ X × Y be the resulting Borel set. Define
g on Z by (x , y) 7→ a(y , f (Ĝx)): g reduces R to S because E ⊆ ES .

g is injective. g(x0, y0) = g(x1, y1) ⇐⇒ f (Ĝx0) E f (Ĝx1) ⇐⇒
Ĝx0
∼= Ĝx1 ⇐⇒ x0 = x1. Then y−1

1 ◦ y0 ∈ StabY (f (Ĝx0)), hence
y0 = y1 because (x0, y0), (x1, y1) ∈ Z .

range(g) is E -saturated. For y ∈ Y we have that
a(y , f (Ĝx)) = a(ȳ , f (Ĝx)) = g(x , ȳ), where ȳ is the unique point such
that y Ex ȳ and (x , ȳ) ∈ Z .

The proof can now be concluded as before.
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Weak-epimorphism on graphs

Definition

We call weak-epimorphism a surjective weak-homomorphism.

If ϕ is an Lω1ω-sentence, the relation x �epi y if and only if x is the
weak-epimorphic image of y defined on Modϕ is an analytic equivalence
relation.

Theorem (Camerlo)

�epi on graphs is a complete analytic quasi-order.

Theorem (Camerlo-M.)

�epi is invariantly universal.
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Coloured linear orders

A coloured linear order is an element of LO × ωC . Given a quasi-order P
on C and coloured linear orders (L, ϕ), (L′, ψ), we put (L, ϕ) �Q (L′, ψ) iff
there is an embedding f from L to L′ such that ϕ(n)Qψ(f (n)).

Theorem

The following are complete analytic quasi-orders:

(Marcone-Rosendal) �=;

(Camerlo) �≥;

(Camerlo) �= restricted to colourings on Q or on any fixed
non-scattered linear order.

Theorem (Camerlo-M.)

All previous quasi-orders are invariantly universal.
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Colour preserving dop embeddings

A function f : Q→ Q is dop (dense order preserving) if for every
q0, q1, r0, r1 ∈ Q such that f (q0) < r0 < r1 < f (q1) there is a q ∈ Q such
that r0 < f (q) < r1. Given two colourings ϕ,ψ ∈ CQ and a quasi-order P
on C , we put ϕ ≤P

dop ψ iff there is a dop function f such that
ϕ(q)Pψ(f (q)).

Theorem (Camerlo)

The following are complete analytic quasi-orders: ≤=
dop, ≤≥dop, ≤=2

dop.

Theorem (Camerlo-M.)

All previous quasi-orders are invariantly universal.
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Open problems

1 Is the relation of “being epimorphic image” (where epimorphism is
surjective homomorphism) a complete analytic quasi-order? Is it
invariantly universal?

2 Is the relation of elementary embeddability between countable
structures a complete analytic quasi-order? Is it invariantly universal?

3 What about complete analytic quasi-orders arising in analysis, such as
isometric embeddability between ultrametric Polish spaces,
continuous embeddability between compacta (or even just dendrites),
and so on? Are they invariantly universal?

4 Is there a complete analytic quasi-order which is not invariantly
universal (with respect to some natural analytic equivalence relation)?
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...

Thank you
for your attention!
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