Structural Ramsey theory and topological dynamics |

L. Nguyen Van Thé
Université de Neuchatel

June 2009

L. Nguyen Van Thé (Université de Neuchatel) Ramsey theory and dynamics June 2009 1/1



Part |

Outline

L. Nguyen Van Thé (Université de Neuchatel) Ramsey theory and dynamics June 2009 2/1



Outline and goals

Describe an interaction established by Alekos Kechris, Vladimir Pestov and

Stevo Todorcevic between:

» Topological dynamics

» Extreme amenability.
» Universal minimal flows.
> Oscillation stability.

» Combinatorics

» Finite Ramsey theory on Fraissé classes.

» Infinite Ramsey theory on countable ultrahomogeneous structures.
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First lecture: fundamentals of Fraissé theory

Extreme amenability for topological groups.
Closed subgroups of S..
Fundamentals of Fraissé theory.

Examples of Fraissé classes and Fraissé limits.
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Extreme amenability
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Continuous actions and amenable groups

Definition
Let G be a topological group, X a topological space.
A continuous action of G on X is a continuous map G x X — X.

Remark
Such an action is also called a G-flow.
Notation: G ~ X.

Definition
Let G be a topological group.
G is amenable when every continuous action of G on a compact space X

has a fixed point, provided X convex subset of a Hausdorff locally convex
topological vector space, and the action is affine:

IxeXVgeG g-x=x.
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Extremely amenable groups

Definition
Let G be a topological group.

G is extremely amenable when every continuous action of G on a compact

space X has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

Theorem (Veech, 77)

Let G be non-trivial and locally compact.
Then G is not extremely amenable.
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Extremely amenable groups: examples everywhere!

Examples

1. O(¢2), pointwise convergence topology (Gromov-Milman, 84).
2. Measurable maps [0,1] — St (Furstenberg-Weiss, unpub-Glasner, 98)

1
d(f.g) = /0 d(F(x), g(x))dp.

3. Aut(Q, <), product topology induced by QU (Pestov, 98).
4. Homeo4([0,1]), Homeo.(R), pointwise convergence topology
(Pestov, 98).

5. iso(U), pointwise convergence topology, U the Urysohn metric space
(Pestov, 02).

Remark

Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.
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The work of Kechris, Pestov and Todorcevic, |

Definition
Soo: the group of permutations of N.
Basic open sets: f € 5., F C N finite.

Ur={g€S5«c:g I F=fTF}
This topology is Polish (separable, metrizable with a complete metric).

Theorem (Kechris - Pestov - Todorcevic, 05)

There is a link between extreme amenability and Ramsey theory when G is
a closed subgroup of 5.
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Closed subgroups of S,
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Ultrahomogeneous structures

Definition

Let L={R;:iel}U{f;:je J} be a first order language.

An L-structure ' is ultrahomogeneous when every isomorphism between
finite substructures of F extends to an automorphism of .

Example

L = {<}, < binary relation symbol.
F=(Q,<).

More examples later.
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Closed subgroups of S, and countable ultrahomogeneous
structures
Proposition
» IfF is countable (WLOG, F = (N,...)),
then Aut(F) is a closed subgroup of Sx.
» If G closed subgroup of S, then there is

» L countable language,
» Fe = (N,...) countable ultrahomogeneous L-structure

such that
G = Aut(Fg).

Relations of arity n: orbits of G ~ N".

Corollary

The closed subgroups of S, are exactly the automorphism groups of
countable ultrahomogeneous structures.
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Part IV

Fraissé theory
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Combinatorial properties of classes of finite structures

L a countable first order language, K a class of finite L-structures.
Definition
IC satisfies:

1. hereditarity when it is is closed under substructures.

2. amalgamation when for all A, B; € K (i =0,1), embeddings
f; : A— B;, there is C and embeddings g; : B — C such that

goofo=g1oHh. A A By

3. joint embedding property: for all A, B € K, there is C € K such that
A, B embed in C.
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Fraissé classes

Definition
K is a Fraissé class when it is countable and satisfies properties 1, 2 and 3.

Examples

» LO finite linear orders, L = {<}.
» G finite graphs, L = {E} adjacency relation symbol.
> Mano,1) finite metric spaces with rational distances,

L ={dy : q € Q} binary relational language,
dc)f(x,y) when dX(x,y) < q.
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Fraissé's theorem

Proposition

Let F be a countable ultrahomogeneous L-structure.
Age(TF) the class of all finite substructures of F.
Then Age(F) is a Fraissé class.

Theorem (Fraissé, 54)

Let IC be a Fraissé class in some language countable L.
Then up to isomorphism, there is a unique countable ultrahomogeneous
L-structure F for which

Age(F) = K.

Notation: F = Flim(KC).
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Part V

Examples of Fraissé classes and Fraissé limits
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Graphs

Fraissé classes of graphs classified by Lachlan-Woodrow, 80.
Examples

» CG finite complete graphs: Flim(CG) = K,,.
The countable infinite complete graph.
> G finite graphs:  Flim(G) = R.
The Rado graph, universal for countable graphs.
> G, Kn-free finite graphs:  Flim(G,) = H,.
Henson graphs, universal for countable K,-free graphs.
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Oriented graphs

Fraissé classes of oriented graphs classified by Cherlin, 98.
Examples

» LO finite linear orders: Flim(LO) = (Q, <).

» PO finite partial orders:  Flim(PO) = P.
The countable ultrahomogeneous poset, universal for all countable
posets.
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Oriented graphs, cont'd

» C finite local orders: l

Finite tournaments not embedding /'\

Flim(C) = S(2).

Vertices: Rational points of S! (no antipodal pair).
Arcs: x — y iff (counterclockwise angle from x to y) < 7.
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Metric spaces
Fraissé classes of finite metric spaces still not classified.

Examples

> M finite metric spaces with distances in S
(conditions on S needed, see Delhommé-Laflamme-Pouzet-Sauer):

Flim(Ms) = Us.
The countable Urysohn space with distances in S, universal for
countable metric spaces with distances in S.

> Interesting cases: finite, Q, N.

» U finite ultrametric spaces with distances in {1/2" : n € N}:
Vx,y,z d(x,z) < max(d(x, y),d(y,z)).
Flim(U) = UY.

Dense subspace of the Baire space N (eventually 0 sequences).
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Euclidean metric spaces

Examples
» &q finite affinely independent Euclidean metric spaces, distances in Q:
Flim(£g) = £3.
Countable dense metric subspace of £>.

» Sg finite affinely independent Euclidean metric spaces,
distances in Q, circumradius < 1:

Flim(Sg) = Sg -
Countable dense metric subspace of the unit sphere S of {5.

> Finite metric subspaces of (M“, || - [|2), M C R countable and closed
under sufficiently many operations (Jasinski, Hamilton-Loo, 08).
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Structures with operations

Examples
» BA finite Boolean algebras, L = {0,1,—, A, V}:
Flim(BA) = Bx.
The countable atomless Boolean algebra, universal for countable

Boolean algebras.
» Vr finite vector spaces, F finite field, L = {+} U{fy: o € F}:
Flim(Vg) = F<¥.

The countable infinite dimensional vector space over F.
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Summary

v

Some Polish, non locally compact groups G are extremely amenable:
Every continuous action of G on a compact space has a fixed point.

v

When G closed subgroup of S, extreme amenability has a
combinatorial characterization. Namely:

v

G = Aut(F), F a countable ultrahomogeneous first order structure.

v

IF is the Fraissé limit of a class IC of finite structures.

v

G is extremely amenable iff some combinatorial phenomenon takes
place at the level of KL (Ramsey type properties).
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