Structural Ramsey theory and topological dynamics I

L. Nguyen Van Thé

Université de Neuchâtel

June 2009

L. Nguyen Van Thé (Université de Neuchâtel) Ramsey theory and dynamics

Part I

Outline

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 2 / 1

Outline and goals

Describe an interaction established by Alekos Kechris, Vladimir Pestov and Stevo Todorcevic between:

- Topological dynamics
 - Extreme amenability.
 - Universal minimal flows.
 - Oscillation stability.
- Combinatorics
 - Finite Ramsey theory on Fraïssé classes.
 - Infinite Ramsey theory on countable ultrahomogeneous structures.

First lecture: fundamentals of Fraïssé theory

- Extreme amenability for topological groups.
- Closed subgroups of S_{∞} .
- Fundamentals of Fraïssé theory.
- Examples of Fraïssé classes and Fraïssé limits.

Part II

Extreme amenability

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 5 / 1

Continuous actions and amenable groups

Definition

Let G be a topological group, X a topological space. A continuous action of G on X is a continuous map $G \times X \longrightarrow X$.

Remark

Such an action is also called a G-flow. Notation: $G \curvearrowright X$.

Definition

Let G be a topological group.

G is amenable when every continuous action of G on a compact space X has a fixed point, provided X convex subset of a Hausdorff locally convex topological vector space, and the action is affine:

$$\exists x \in X \ \forall g \in G \ g \cdot x = x.$$

L. Nguyen Van Thé (Université de Neuchâtel)

Extremely amenable groups

Definition

Let G be a topological group. G is extremely amenable when every continuous action of G on a compact space X has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

Theorem (Veech, 77)

Let G be non-trivial and locally compact. Then G is not extremely amenable. Extremely amenable groups: examples everywhere! Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g) = \int_0^1 d(f(x),g(x))d\mu.$$

- 3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).
- Homeo₊([0, 1]), Homeo₊(ℝ), pointwise convergence topology (Pestov, 98).
- 5. iso(𝔅), pointwise convergence topology, 𝔅 the Urysohn metric space (Pestov, 02).

Remark

Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

The work of Kechris, Pestov and Todorcevic, I

Definition

 S_{∞} : the group of permutations of \mathbb{N} . Basic open sets: $f \in S_{\infty}$, $F \subset \mathbb{N}$ finite.

$$U_{f,F} = \{g \in S_{\infty} : g \upharpoonright F = f \upharpoonright F\}.$$

This topology is Polish (separable, metrizable with a complete metric).

Theorem (Kechris - Pestov - Todorcevic, 05)

There is a link between extreme amenability and Ramsey theory when G is a closed subgroup of S_{∞} .

Part III Closed subgroups of S_{∞}

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 10 / 1

Ultrahomogeneous structures

Definition

Let $L = \{R_i : i \in I\} \cup \{f_j : j \in J\}$ be a first order language.

An L-structure \mathbb{F} is ultrahomogeneous when every isomorphism between finite substructures of \mathbb{F} extends to an automorphism of \mathbb{F} .

Example

$$L = \{<\}, < binary relation symbol.$$

 $\mathbb{F} = (\mathbb{Q}, <).$

More examples later.

Closed subgroups of S_{∞} and countable ultrahomogeneous structures

Proposition

- If F is countable (WLOG, F = (N,...)), then Aut(F) is a closed subgroup of S_∞.
- If G closed subgroup of S_{∞} , then there is
 - L countable language,
 - $\mathbb{F}_{G} = (\mathbb{N}, ...)$ countable ultrahomogeneous L-structure

such that

 $G = \operatorname{Aut}(\mathbb{F}_G).$

Relations of arity n: orbits of $G \curvearrowright \mathbb{N}^n$.

Corollary

The closed subgroups of S_{∞} are exactly the automorphism groups of countable ultrahomogeneous structures.

Part IV

Fraïssé theory

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 13 / 1

Combinatorial properties of classes of finite structures

L a countable first order language, \mathcal{K} a class of finite L-structures.

Definition

 ${\cal K}$ satisfies:

- 1. *hereditarity* when it is is closed under substructures.
- 3. joint embedding property: for all $A, B \in \mathcal{K}$, there is $C \in \mathcal{K}$ such that A, B embed in C.

Fraïssé classes

Definition

 \mathcal{K} is a Fraissé class when it is countable and satisfies properties 1, 2 and 3.

Examples

- \mathcal{LO} finite linear orders, $L = \{<\}$.
- G finite graphs, $L = \{E\}$ adjacency relation symbol.
- ▶ $\mathcal{M}_{\mathbb{Q}\cap[0,1]}$ finite metric spaces with rational distances, $L = \{d_q : q \in \mathbb{Q}\}$ binary relational language, $d_q^X(x, y)$ when $d^X(x, y) < q$.

Fraïssé's theorem

Proposition

Let \mathbb{F} be a countable ultrahomogeneous L-structure. $Age(\mathbb{F})$ the class of all finite substructures of \mathbb{F} . Then $Age(\mathbb{F})$ is a Fraissé class.

Theorem (Fraïssé, 54)

Let \mathcal{K} be a Fraïssé class in some language countable L. Then up to isomorphism, there is a unique countable ultrahomogeneous I-structure \mathbb{F} for which

 $Age(\mathbb{F}) = \mathcal{K}.$

Notation: $\mathbb{F} = Flim(\mathcal{K})$.

Part V

Examples of Fraïssé classes and Fraïssé limits

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 17 / 1

Graphs

Fraïssé classes of graphs classified by Lachlan-Woodrow, 80. Examples

- CG finite complete graphs: $Flim(CG) = K_{\omega}$. The countable infinite complete graph.
- ▶ G finite graphs: Flim(G) = R. The Rado graph, universal for countable graphs.
- ▶ G_n K_n-free finite graphs: Flim(G_n) = H_n. Henson graphs, universal for countable K_n-free graphs.

Fraïssé classes of oriented graphs classified by Cherlin, 98.

Examples

• \mathcal{LO} finite linear orders: $Flim(\mathcal{LO}) = (\mathbb{Q}, <).$

▶ PO finite partial orders: Flim(PO) = P. The countable ultrahomogeneous poset, universal for all countable posets.

Oriented graphs, cont'd

C finite local orders:
Finite tournaments not embedding

 $Flim(\mathcal{C}) = S(2).$

Vertices: Rational points of \mathbb{S}^1 (no antipodal pair). Arcs: $x \to y$ iff (counterclockwise angle from x to y) $< \pi$.

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

Metric spaces

Fraïssé classes of finite metric spaces still not classified. Examples

 M_S finite metric spaces with distances in S (conditions on S needed, see Delhommé-Laflamme-Pouzet-Sauer): Flim(M_S) = U_S.

The countable Urysohn space with distances in S, universal for countable metric spaces with distances in S.

▶ Interesting cases: finite, Q, N.

• \mathcal{U} finite ultrametric spaces with distances in $\{1/2^n : n \in \mathbb{N}\}$:

$$\forall x, y, z \ d(x, z) \leq \max(d(x, y), d(y, z)).$$

 $Flim(\mathcal{U}) = \mathbb{U}^{ult}.$

Dense subspace of the Baire space $\mathbb{N}^{\mathbb{N}}$ (eventually 0 sequences).

Euclidean metric spaces

Examples

• $\mathcal{E}_{\mathbb{Q}}$ finite affinely independent Euclidean metric spaces, distances in \mathbb{Q} : $Flim(\mathcal{E}_{\mathbb{Q}}) = \ell_2^{\mathbb{Q}}.$

Countable dense metric subspace of ℓ_2 .

S_Q finite affinely independent Euclidean metric spaces, distances in Q, circumradius < 1:</p>

 $Flim(\mathcal{S}_{\mathbb{Q}}) = \mathbb{S}_{\mathbb{Q}}^{\infty}.$

Countable dense metric subspace of the unit sphere \mathbb{S}^{∞} of ℓ_2 .

Finite metric subspaces of (M^ω, || · ||₂), M ⊂ ℝ countable and closed under sufficiently many operations (Jasinski, Hamilton-Loo, 08).

Structures with operations

Examples

▶ \mathcal{BA} finite Boolean algebras, $L = \{0, 1, -, \land, \lor\}$:

 $Flim(\mathcal{BA}) = B_{\infty}.$

The countable atomless Boolean algebra, universal for countable Boolean algebras.

▶ \mathcal{V}_F finite vector spaces, F finite field, $L = \{+\} \cup \{f_\alpha : \alpha \in F\}$: $Flim(\mathcal{V}_F) = F^{<\omega}$.

The countable infinite dimensional vector space over F.

Summary

- Some Polish, non locally compact groups G are extremely amenable: Every continuous action of G on a compact space has a fixed point.
- ▶ When G closed subgroup of S_∞, extreme amenability has a combinatorial characterization. Namely:
- $G = Aut(\mathbb{F})$, \mathbb{F} a countable ultrahomogeneous first order structure.
- \blacktriangleright $\mathbb F$ is the Fraissé limit of a class $\mathcal K$ of finite structures.
- G is extremely amenable iff some combinatorial phenomenon takes place at the level of \mathcal{K} (Ramsey type properties).