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Reminder from first lecture

I Extremely amenable group G :
Every continuous action of G on a compact space has a fixed point.

I Ultrahomogeneous structure F:
Every isomorphism between finite substructures of F extends to an
automorphism of F.

I Fräıssé class K:
Countable class of finite structures with hereditarity, amalgamation
and joint embedding property.

I Some Polish, non locally compact groups G are extremely amenable.

I When G closed subgroup of S∞, then
G = Aut(F), F countable ultrahomogeneous structure.

I The class K of finite substructures of F is a Fräıssé class.

I G is extremely amenable iff some combinatorial phenomenon takes
place at the level of K (Ramsey type properties).
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Second lecture: finite Ramsey theory, extreme amenability
and universal minimal flows

I Ramsey theory on Fräıssé classes.

I The first main theorem: extreme amenability.

I The second main theorem: universal minimal flows.

I Examples of universal minimal flows.

L. Nguyen Van Thé (Université de Neuchâtel) Ramsey theory and dynamics June 2009 3 / 1



Part I

Ramsey theory on Fräıssé classes
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Example: complete graphs

I Color vertices of Kω with finitely many colors.
Fix Y ⊂ Kω finite.
Then there is Ỹ ∼= Y where all vertices have same color.
Idem when coloring the edges of Kω.
Idem when coloring the copies of any finite substructure X ⊂ Kω.

I CG has the Ramsey property.

I Kω may be replaced by a finite large enough Z ∈ CG,
whose size depends on X , Y , and the number of colors.
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A famous example

Proposition

Any 2-coloring of the edges of K6 has a triangle where all edges have same
color.

Question
Does that happen for every Fräıssé class?
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Finite oriented graphs

Proposition

Let
X = r r-

r
Y = r r-

�
��	 @

@@I

Z any finite oriented graph. Then:
There is a 2-coloring of the arcs of Z such that
no copy of Y has all arcs with same color.

Proof.
Let < be a linear ordering on Z .
Color an arc x ← y blue if x < y , red otherwise.
Then every cycle has the two colors appearing.

This problem disappears when working with ordered oriented graphs
instead of oriented graphs.
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Ramsey property

K a Fräıssé class.

Definition
K has the Ramsey property when
For any:

I X ∈ K (small structure, to be colored),

I Y ∈ K (medium structure, to be reconstituted),

I k ∈ N (number of colors),

There exists Z ∈ K (very large structure) such that:

Z −→ (Y )Xk .

Whenever copies of X in Z are colored with k colors,
there is Ỹ ∼= Y where all copies of X have same color.
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Part II

The first main theorem: extreme amenability
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The first main theorem

Definition
Let L< be a language with a distinguished binary symbol <.
K< is a Fräıssé order class when it is a Fräıssé class with < always
interpreted as a total linear order.

Theorem (Kechris-Pestov-Todorcevic, 05)

Let K< be a Fräıssé order class.
Let F< be its Fräıssé limit.
Then TFAE:

i) Aut(F<) is extremely amenable.

ii) K< has the Ramsey property.
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The very first example

• Finite linear orders:

Theorem (Ramsey, 30)

LO has the Ramsey property.

Corollary (Pestov, 98)

Aut(Q, <) extremely amenable.

Corollary (Pestov, 98)

Homeo+(R) (pointwise convergence topology) extremely amenable.

Proof.
Aut(Q, <) ↪→ Homeo+(R) densely.
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Example: Metric spaces

• Finite ordered metric spaces with rational distances: U<
Q = (UQ, <UQ).

Theorem (Nešeťril, 05)

M<
Q has the Ramsey property.

Corollary

Aut(UQ, <UQ) extremely amenable.

Corollary

iso(U) extremely amenable.

Proof.
Aut(UQ, <UQ) ↪→ iso(U) densely.
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Part III

The second main theorem: universal minimal flows
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Compact G -flows

Recall: A G -flow is a continuous action of G on a topological space X .
Notation: G y X .

Remark
In what follows, G will be Hausdorff and X will be compact Hausdorff.

Example

F: a countable ultrahomogeneous structure.
LO(F): the set of linear orderings on F.
LO(F) ⊂ 2F×F is compact.
If <∈ LO(F), g ∈ Aut(F), define g · <:

x (g · <) y ↔ g−1(x) < g−1(y).

Then Aut(F) y Aut(F)· < is a compact Aut(F)-flow.
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Minimal flows

Definition
Let G y X be a G-flow.
G y X is minimal when every x ∈ X has dense orbit in X :

G · x = X

Theorem
Let G be a topological group.
Then there is a unique universal minimal flow G y M(G ):
∀ G y X minimal,
∃π : M(G ) −→ X continuous, onto, equivariant:

∀g ∈ G ∀x ∈ X π(g · x) = g · π(x).
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The work of Kechris, Pestov and Todorcevic, II

I Finding G y M(G ) is hard in general.

I M(G ) may not be metrizable (e.g. G countable discrete).

I G is extremely amenable iff |M(G )| = 1.

Theorem (Kechris - Pestov - Todorcevic, 05)

Combinatorics on Fräıssé classes gives access to an explicit description of
G y M(G ) when G closed subgroup of S∞.
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Extensions

Definition
Let L be a language, < new symbol for a binary relation.
L∗ = L ∪ {<}.
K class of finite L-structures, K∗ class of finite L∗-structures.

K∗ is an extension of K when:

∀(X , <X ), (X , <X ) ∈ K∗ → X ∈ K.

Example

G< finite ordered graphs, G finite graphs.
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The extension property

Definition
Let K be a Fräıssé class, K< a Fräıssé order class.
Assume K< is an extension of K.
K< has the extension property with respect to K when:

For any (X , <X ) ∈ K<

There exists Y ∈ K such that

(X , <X ) embeds in (Y ,≺) whenever (Y ,≺) ∈ K<.
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Flow minimality and extension property

Theorem (Kechris - Pestov - Todorcevic, 05)

Assume

I K a Fräıssé class, with limit F.

I K< an extension of K, Fräıssé order class, with limit F<.

I F< is of the form (F, <F).

I K< has the extension property with respect to K.

Then TFAE:

i) Aut(F) y Aut(F)· <F is minimal.

ii) K< has the extension property with respect to K.
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The second main theorem

Theorem (Kechris - Pestov - Todorcevic, 05)

Assume

I K a Fräıssé class, with limit F.

I K< an extension of K, Fräıssé order class, with limit F<.

I F< is of the form (F, <F).

I K< has the Ramsey and the extension property with respect to K.

Then:
The universal minimal flow of Aut(F) is

Aut(F) y Aut(F)· <F.

In particular, M(Aut(F)) is metrizable.
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Strategy to find universal minimal flows

I Choose your favorite countable ultrahomogeneous structure F.

I Consider its class K of finite substructures.
I Try to enrich K with linear orderings to obtain K< such that

I K< is a Fräıssé class with the Ramsey property.
I K< has the extension property with respect to K.

I Express the limit of K< as (F, <F).

I Describe the action Aut(F) y Aut(F)· <F.
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Part IV

Examples of universal minimal flows
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Graphs

• G finite graphs:

Theorem (Nešeťril-Rödl, 77)

Let G< be the class of all finite ordered graphs.
Then G< has the Ramsey and the extension property.

Corollary

Aut(R) y M(Aut(R)) is Aut(R) y LO(R).

• Gn finite Kn-free graphs:

Theorem (Nešeťril-Rödl, 77)

Let G<
n be the class of all finite ordered Kn-free graphs.

Then G<
n has the Ramsey and the extension property.

Corollary

Aut(Hn) y M(Aut(Hn)) is Aut(Hn) y LO(Hn).
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Partial orders

• P finite partial orders:

Definition
Let P ∈ P. A linear order on P is compatible when it extends <P .

Theorem (Nešeťril, 05)

Let Pe< be the class of all finite compatibly ordered partial orders.
Then Pe< has the Ramsey and the extension property.

Corollary

Let eLO(P) be the class of all compatible linear orders on P.
Then Aut(P) y M(Aut(P)) is Aut(P) y eLO(P).
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Examples: ultrametric spaces

• U finite ultrametric spaces, distances in {1/2n : n ∈ N}:
Equivalently: finite metric subspaces of the Baire space NN.

Theorem (NVT, 08)

Let U< be the class of all finite ordered metric subspaces of NN.
Then U< has neither the Ramsey property nor the extension property.

Definition
<, linear ordering on metric space, is convex when all balls are <-convex.

Theorem (NVT, 08)

Let Uc< be the class of finite convexly ordered metric subspaces of NN.
Then Uc< has the Ramsey and the extension property.

Corollary

iso(Uult) y M(iso(Uult)) is iso(Uult) y LexO(Uult).
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Vector spaces

• VF finite vector spaces, F finite field.

Definition
Let V ∈ VF . A natural linear ordering of V is obtained by

I fixing B linearly ordered basis of V ,

I fixing a linear ordering of F with least element 0F ,

I taking the resulting lexicographical ordering induced on V .

Vn<
F : the class of naturally ordered finite vector spaces over F .
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Vector spaces, cont’d

Theorem (Thomas, 86)

I Vn<
F is a Fräıssé order class with reduct VF ,

I Vn<
F has the extension property.

Theorem (Graham-Leeb-Rothschild, 72)

Vn<
F has the Ramsey property.

Corollary

Let nLO(F<ω) be the set of all linear orderings on F<ω with natural
restrictions on finite-dimensional subspaces. Then:
GL(F<ω) y M(GL(F<ω)) is GL(F<ω) y nLO(F<ω).
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The case of S(2)

I Finite substructures of (S(2), <) never have the Ramsey property:
∃2-coloring of the vertices with no monochromatic 3-cycle.

I Ramsey property holds if S(2) is enriched differently:

&%
'$S1 S2

I Key fact: (S(2),S1,S2) ∼= (Q,Q1,Q2, <), Q1,Q2 dense subsets of Q
(Reversing the arcs between points in different parts).

I Ramsey and extension property hold for the corresponding finite
substructures.
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The case of S(2), cont’d

I The second main theorem holds in that case.

I Aut(S(2)) y M(Aut(S(2))) is Aut(S(2)) y Aut(S(2)) · (S1,S2).

I Aut(S(2)) · (S1,S2) ∼= (S1 with rational and corational points
doubled).

I Thus, Aut(S(2)) y M(Aut(S(2))) is
Aut(S(2)) y (S1 with rational and corational points doubled):

&%
'$rr r
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Summary

I A flow G y X is minimal when every x ∈ X has a dense orbit.

I Every Hausdorff topological group has a largest minimal flow: the
universal minimal flow G y M(G ).

I G is extremely amenable iff |M(G )| = 1.

I If K Fräıssé class with Fräıssé limit F, extensions of K with Ramsey
and extension property give access to an explicit description of

Aut(F) y M(Aut(F)).
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Perspectives

I Towards a new proof of Gromov-Milman theorem (extreme
amenability of O(`2)):
Is there a Ramsey theorem for finite ordered affinely independent
Euclidean metric spaces, distances in Q?

I Is there a unified approach to prove Ramsey property for classes of
finite structures?

I Recent developments of the theory:
I Projective version (Irwin-Solecki).
I Dual version (Solecki).

I A possible development of the theory: continuous logic?
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