Structural Ramsey theory and topological dynamics II

L. Nguyen Van Thé

Université de Neuchâtel

June 2009

L. Nguyen Van Thé (Université de Neuchâtel) Ramsey theory and dynamics

Reminder from first lecture

- Extremely amenable group G:
 Every continuous action of G on a compact space has a fixed point.
- ► Ultrahomogeneous structure F: Every isomorphism between finite substructures of F extends to an automorphism of F.
- ► Fraïssé class *K*:
 - Countable class of finite structures with hereditarity, amalgamation and joint embedding property.
- Some Polish, non locally compact groups G are extremely amenable.
- ▶ When G closed subgroup of S_{∞} , then G = Aut(F), F countable ultrahomogeneous structure.
- The class $\mathcal K$ of finite substructures of $\mathbb F$ is a Fraissé class.
- G is extremely amenable iff some combinatorial phenomenon takes place at the level of \mathcal{K} (Ramsey type properties).

Second lecture: finite Ramsey theory, extreme amenability and universal minimal flows

- Ramsey theory on Fraïssé classes.
- The first main theorem: extreme amenability.
- ► The second main theorem: universal minimal flows.
- Examples of universal minimal flows.

Part I

Ramsey theory on Fraïssé classes

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 4 / 1

Example: complete graphs

- Color vertices of K_ω with finitely many colors.
 Fix Y ⊂ K_ω finite.
 Then there is Ỹ ≅ Y where all vertices have same color.
 Idem when coloring the edges of K_ω.
 Idem when coloring the copies of any finite substructure X ⊂ K_ω.
- ► CG has the Ramsey property.
- K_ω may be replaced by a finite large enough Z ∈ CG, whose size depends on X, Y, and the number of colors.

A famous example

Proposition

Any 2-coloring of the edges of K_6 has a triangle where all edges have same color.

Question

Does that happen for every Fraïssé class?

Finite oriented graphs

Z any finite oriented graph. Then: There is a 2-coloring of the arcs of Z such that no copy of Y has all arcs with same color.

Proof.

- Let < be a linear ordering on Z.
- Color an arc $x \leftarrow y$ blue if x < y, red otherwise.
- Then every cycle has the two colors appearing.
- This problem disappears when working with ordered oriented graphs instead of oriented graphs.

Ramsey property

 \mathcal{K} a Fraïssé class.

Definition

 \mathcal{K} has the Ramsey property when For any:

- $X \in \mathcal{K}$ (small structure, to be colored),
- $Y \in \mathcal{K}$ (medium structure, to be reconstituted),
- ▶ $k \in \mathbb{N}$ (number of colors),

There exists $Z \in \mathcal{K}$ (very large structure) such that:

 $Z \longrightarrow (Y)_{\mu}^{X}$

Whenever copies of X in Z are colored with k colors, there is $\tilde{Y} \cong Y$ where all copies of X have same color.

Part II

The first main theorem: extreme amenability

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 9 / 1

The first main theorem

Definition

Let $L^{<}$ be a language with a distinguished binary symbol <. $\mathcal{K}^{<}$ is a Fraïssé order class when it is a Fraïssé class with < always interpreted as a total linear order.

Theorem (Kechris-Pestov-Todorcevic, 05)

Let $\mathcal{K}^{<}$ be a Fraïssé order class. Let $\mathbb{R}^{<}$ be its Fraïssé limit

Then TFAE:

- i) $Aut(\mathbb{F}^{<})$ is extremely amenable.
- ii) $\mathcal{K}^{<}$ has the Ramsey property.

The very first example

• Finite linear orders:

Theorem (Ramsey, 30) \mathcal{LO} has the Ramsey property.

Corollary (Pestov, 98) Aut(\mathbb{Q} , <) *extremely amenable.*

Corollary (Pestov, 98) Homeo₊(\mathbb{R}) (pointwise convergence topology) extremely amenable.

Proof. $\operatorname{Aut}(\mathbb{Q},<) \hookrightarrow \operatorname{Homeo}_+(\mathbb{R})$ densely. \Box

Example: Metric spaces

- Finite ordered metric spaces with rational distances: $\mathbb{U}_{\mathbb{Q}}^{<} = (\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}}).$
- Theorem (Nešetřil, 05)
- $\mathcal{M}^<_\mathbb{O}$ has the Ramsey property.

Corollary $\operatorname{Aut}(\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}})$ extremely amenable.

Corollary $iso(\mathbb{U})$ extremely amenable.

Proof. $\operatorname{Aut}(\mathbb{U}_{\mathbb{Q}}, <^{\mathbb{U}_{\mathbb{Q}}}) \hookrightarrow \operatorname{iso}(\mathbb{U})$ densely. \Box

L. Nguyen Van Thé (Université de Neuchâtel)

Part III

The second main theorem: universal minimal flows

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 13 / 1

Compact G-flows

Recall: A *G*-flow is a continuous action of *G* on a topological space *X*. Notation: $G \curvearrowright X$.

Remark

In what follows, G will be Hausdorff and X will be compact Hausdorff.

Example

$$\begin{split} \mathbb{F}: & a \text{ countable ultrahomogeneous structure.} \\ LO(\mathbb{F}): & the set of linear orderings on \mathbb{F}. \\ LO(\mathbb{F}) \subset 2^{\mathbb{F} \times \mathbb{F}} \text{ is compact.} \\ lf <\in LO(\mathbb{F}), \ g \in \operatorname{Aut}(\mathbb{F}), \ define \ g \cdot <: \end{split}$$

$$x (g \cdot <) y \quad \leftrightarrow \quad g^{-1}(x) < g^{-1}(y).$$

Then $\operatorname{Aut}(\mathbb{F}) \curvearrowright \overline{\operatorname{Aut}(\mathbb{F})} < is$ a compact $\operatorname{Aut}(\mathbb{F})$ -flow.

Minimal flows

Definition Let $G \curvearrowright X$ be a G-flow. $G \curvearrowright X$ is minimal when every $x \in X$ has dense orbit in X:

$$\overline{G \cdot x} = X$$

Theorem

Let G be a topological group. Then there is a unique universal minimal flow $G \curvearrowright M(G)$: $\forall G \curvearrowright X$ minimal, $\exists \pi : M(G) \longrightarrow X$ continuous, onto, equivariant:

$$\forall g \in G \;\; \forall x \in X \;\; \pi(g \cdot x) = g \cdot \pi(x).$$

L. Nguyen Van Thé (Université de Neuchâtel)

The work of Kechris, Pestov and Todorcevic, II

- Finding $G \curvearrowright M(G)$ is hard in general.
- M(G) may not be metrizable (e.g. G countable discrete).
- G is extremely amenable iff |M(G)| = 1.

Theorem (Kechris - Pestov - Todorcevic, 05)

Combinatorics on Fraïssé classes gives access to an explicit description of $G \curvearrowright M(G)$ when G closed subgroup of S_{∞} .

Extensions

Definition

Let L be a language, < new symbol for a binary relation. $L^* = L \cup \{<\}$. \mathcal{K} class of finite L-structures, \mathcal{K}^* class of finite L*-structures.

 \mathcal{K}^* is an extension of \mathcal{K} when:

$$\forall (X,<^X), \ \ (X,<^X)\in \mathcal{K}^* \to X\in \mathcal{K}.$$

Example

 $\mathcal{G}^{<}$ finite ordered graphs, \mathcal{G} finite graphs.

L. Nguyen Van Thé (Université de Neuchâtel)

The extension property

Definition

Let \mathcal{K} be a Fraïssé class, $\mathcal{K}^{<}$ a Fraïssé order class. Assume $\mathcal{K}^{<}$ is an extension of \mathcal{K} . $\mathcal{K}^{<}$ has the extension property with respect to \mathcal{K} when:

For any $(X, <^X) \in \mathcal{K}^<$ There exists $Y \in \mathcal{K}$ such that

 $(X, <^X)$ embeds in (Y, \prec) whenever $(Y, \prec) \in \mathcal{K}^<$.

Flow minimality and extension property

Theorem (Kechris - Pestov - Todorcevic, 05) Assume

- \mathcal{K} a Fraïssé class, with limit \mathbb{F} .
- $\mathcal{K}^{<}$ an extension of \mathcal{K} , Fraissé order class, with limit $\mathbb{F}^{<}$.
- $\mathbb{F}^{<}$ is of the form $(\mathbb{F}, <^{\mathbb{F}})$.

• $\mathcal{K}^{<}$ has the extension property with respect to \mathcal{K} .

Then TFAE:

- i) $\operatorname{Aut}(\mathbb{F}) \curvearrowright \overline{\operatorname{Aut}(\mathbb{F}) \cdot <^{\mathbb{F}}}$ is minimal.
- ii) $\mathcal{K}^{<}$ has the extension property with respect to \mathcal{K} .

The second main theorem

Theorem (Kechris - Pestov - Todorcevic, 05)

Assume

- \mathcal{K} a Fraïssé class, with limit \mathbb{F} .
- $\mathcal{K}^{<}$ an extension of \mathcal{K} , Fraïssé order class, with limit $\mathbb{F}^{<}$.
- $\mathbb{F}^{<}$ is of the form $(\mathbb{F}, <^{\mathbb{F}})$.

• $\mathcal{K}^{<}$ has the Ramsey and the extension property with respect to \mathcal{K} . Then:

The universal minimal flow of $Aut(\mathbb{F})$ is

 $\operatorname{Aut}(\mathbb{F}) \curvearrowright \overline{\operatorname{Aut}(\mathbb{F}) \cdot <^{\mathbb{F}}}.$

```
In particular, M(Aut(\mathbb{F})) is metrizable.
```

Strategy to find universal minimal flows

- ► Choose your favorite countable ultrahomogeneous structure F.
- Consider its class \mathcal{K} of finite substructures.
- \blacktriangleright Try to enrich ${\cal K}$ with linear orderings to obtain ${\cal K}^<$ such that
 - ▶ K[<] is a Fraïssé class with the Ramsey property.
 - $\mathcal{K}^{<}$ has the extension property with respect to \mathcal{K} .
- Express the limit of $\mathcal{K}^{<}$ as $(\mathbb{F}, <^{\mathbb{F}})$.
- Describe the action $\operatorname{Aut}(\mathbb{F}) \curvearrowright \overline{\operatorname{Aut}(\mathbb{F}) \cdot \langle \mathbb{F} \rangle}$.

Part IV

Examples of universal minimal flows

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 22 / 1

Graphs

• G finite graphs:

Theorem (Nešetřil-Rödl, 77)

Let $\mathcal{G}^{<}$ be the class of all finite ordered graphs. Then $\mathcal{G}^{<}$ has the Ramsey and the extension property.

Corollary

 $\operatorname{Aut}(\mathcal{R}) \curvearrowright M(\operatorname{Aut}(\mathcal{R}))$ is $\operatorname{Aut}(\mathcal{R}) \curvearrowright LO(\mathcal{R})$.

• G_n finite K_n -free graphs:

Theorem (Nešetřil-Rödl, 77)

Let $\mathcal{G}_n^<$ be the class of all finite ordered K_n -free graphs. Then $\mathcal{G}_n^<$ has the Ramsey and the extension property.

Corollary $\operatorname{Aut}(H_n) \curvearrowright M(\operatorname{Aut}(H_n))$ is $\operatorname{Aut}(H_n) \curvearrowright LO(H_n)$.

Partial orders

• \mathcal{P} finite partial orders:

Definition

Let $P \in \mathcal{P}$. A linear order on P is compatible when it extends $<^{P}$.

Theorem (Nešetřil, 05)

Let $\mathcal{P}^{e<}$ be the class of all finite compatibly ordered partial orders. Then $\mathcal{P}^{e<}$ has the Ramsey and the extension property.

Corollary

Let $eLO(\mathbb{P})$ be the class of all compatible linear orders on \mathbb{P} . Then $Aut(\mathbb{P}) \curvearrowright M(Aut(\mathbb{P}))$ is $Aut(\mathbb{P}) \curvearrowright eLO(\mathbb{P})$.

Examples: ultrametric spaces

• \mathcal{U} finite ultrametric spaces, distances in $\{1/2^n : n \in \mathbb{N}\}$: Equivalently: finite metric subspaces of the Baire space $\mathbb{N}^{\mathbb{N}}$.

Theorem (NVT, 08)

Let $\mathcal{U}^{<}$ be the class of all finite ordered metric subspaces of $\mathbb{N}^{\mathbb{N}}$. Then $\mathcal{U}^{<}$ has neither the Ramsey property nor the extension property.

Definition

<, linear ordering on metric space, is convex when all balls are <-convex.

Theorem (NVT, 08)

Let $\mathcal{U}^{c<}$ be the class of finite convexly ordered metric subspaces of $\mathbb{N}^{\mathbb{N}}$. Then $\mathcal{U}^{c<}$ has the Ramsey and the extension property.

Corollary $\operatorname{iso}(\mathbb{U}^{ult}) \curvearrowright M(\operatorname{iso}(\mathbb{U}^{ult}))$ is $\operatorname{iso}(\mathbb{U}^{ult}) \curvearrowright \operatorname{LexO}(\mathbb{U}^{ult})$.

Vector spaces

• \mathcal{V}_F finite vector spaces, F finite field.

Definition

Let $V \in \mathcal{V}_F$. A natural linear ordering of V is obtained by

- ▶ fixing B linearly ordered basis of V,
- fixing a linear ordering of F with least element 0_F ,
- ► taking the resulting lexicographical ordering induced on V.

 $\mathcal{V}_{F}^{n<}$: the class of naturally ordered finite vector spaces over F.

Vector spaces, cont'd

Theorem (Thomas, 86)

- $\mathcal{V}_{F}^{n<}$ is a Fraissé order class with reduct \mathcal{V}_{F} ,
- $\mathcal{V}_F^{n<}$ has the extension property.

Theorem (Graham-Leeb-Rothschild, 72)

 $\mathcal{V}_{F}^{n<}$ has the Ramsey property.

Corollary

Let $nLO(F^{<\omega})$ be the set of all linear orderings on $F^{<\omega}$ with natural restrictions on finite-dimensional subspaces. Then: $GL(F^{<\omega}) \curvearrowright M(GL(F^{<\omega}))$ is $GL(F^{<\omega}) \curvearrowright nLO(F^{<\omega})$.

The case of S(2)

- ► Finite substructures of (S(2), <) never have the Ramsey property: ∃2-coloring of the vertices with no monochromatic 3-cycle.
- Ramsey property holds if S(2) is enriched differently:

- ▶ Key fact: (S(2), S₁, S₂) ≅ (Q, Q₁, Q₂, <), Q₁, Q₂ dense subsets of Q (Reversing the arcs between points in different parts).
- Ramsey and extension property hold for the corresponding finite substructures.

The case of S(2), cont'd

- The second main theorem holds in that case.
- $\operatorname{Aut}(S(2)) \frown M(\operatorname{Aut}(S(2)))$ is $\operatorname{Aut}(S(2)) \frown \overline{\operatorname{Aut}(S(2)) \cdot (S_1, S_2)}$.
- ▶ $\overline{\operatorname{Aut}(S(2)) \cdot (S_1, S_2)} \cong (\mathbb{S}^1 \text{ with rational and corational points doubled}).$
- ▶ Thus, $\operatorname{Aut}(S(2)) \curvearrowright M(\operatorname{Aut}(S(2)))$ is $\operatorname{Aut}(S(2)) \curvearrowright (\mathbb{S}^1$ with rational and corational points doubled):

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

Summary

- A flow $G \curvearrowright X$ is minimal when every $x \in X$ has a dense orbit.
- ► Every Hausdorff topological group has a largest minimal flow: the universal minimal flow G ~ M(G).
- G is extremely amenable iff |M(G)| = 1.
- ► If K Fraïssé class with Fraïssé limit F, extensions of K with Ramsey and extension property give access to an explicit description of

 $\operatorname{Aut}(\mathbb{F}) \curvearrowright M(\operatorname{Aut}(\mathbb{F})).$

Perspectives

- Towards a new proof of Gromov-Milman theorem (extreme amenability of O(l₂)):
 Is there a Ramsey theorem for finite ordered affinely independent Euclidean metric spaces, distances in Q?
- Is there a unified approach to prove Ramsey property for classes of finite structures?
- Recent developments of the theory:
 - Projective version (Irwin-Solecki).
 - Dual version (Solecki).
- ► A possible development of the theory: continuous logic?