Structural Ramsey theory and topological dynamics III

L. Nguyen Van Thé

Université de Neuchâtel

June 2009

L. Nguyen Van Thé (Université de Neuchâtel) Ramsey theory and dynamics

Reminder from second lecture

- ${\mathcal K}$ a Fraïssé class, ${\mathbb F}$ its Fraïssé limit.
 - *K* has the Ramsey property when For any:
 - $X \in \mathcal{K}$ (small structure, to be colored),
 - $Y \in \mathcal{K}$ (medium structure, to be reconstituted),
 - $k \in \mathbb{N}$ (number of colors),

$$\mathbb{F} \longrightarrow (Y)_k^X.$$

Whenever copies of X in \mathbb{F} are colored with k colors, there is $\tilde{Y} \cong Y$ where all copies of X have same color.

- ► Continuous actions of Aut(F) on compact spaces capture Ramsey properties of K and its extensions K* (and vice-versa).
- We are now interested in the case where Y is replaced by \mathbb{F} .

Third lecture: oscillation stability and infinite Ramsey theory

- Oscillation stability for topological groups.
- Coloring vertices.
- Higher dimension.

Part I

Oscillation stability for topological groups

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 4 / 25

Let $\mathbb F$ be a countable ultrahomogeneous structure. Color vertices of $\mathbb F$ with finitely many colors:

$$\mathbb{F}=A_1\cup\ldots\cup A_k.$$

• Is there a copy of \mathbb{F} in \mathbb{F} where only one color appears?

▶ If so, can we see it at the level of Aut(𝔅)?

Left completion of topological groups

Let G be a Polish group. Then:

- G admits a left-invariant metric. Call \widehat{G} the completion.
- Multiplication extends to \widehat{G} .
- Inversion does not extend to \widehat{G} in general.

Therefore, \widehat{G} is a topological semigroup.

Examples

▶ If **F** countable ultrahomogeneous,

$$\widehat{\operatorname{Aut}(\mathbb{F})} = \operatorname{Emb}(\mathbb{F}).$$

▶ If X complete separable ultrahomogeneous metric space,

$$\widehat{\mathrm{iso}(X)} = Emb(X).$$

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

Oscillation stability, definitions

Definition

Let G be a topological group. G is oscillation stable when

- for every $f : G \longrightarrow [0,1]$ uniformly continuous,
- ► for every ε > 0,

there is a right ideal $I \subset \widehat{G}$ such that

$$\operatorname{osc}(\hat{f},I) := \sup_{x,y\in I} |\hat{f}(y) - \hat{f}(x)| < \varepsilon.$$

If H a subgroup of G, (G, H) is oscillation stable if same conclusion holds when f compatible with G/H.

The work of Kechris, Pestov and Todorcevic, III

Theorem (Kechris-Pestov-Todorcevic, 05)

Let \mathcal{K} be a Fraïssé class, \mathbb{F} its Fraïssé limit. Let $X \in \mathcal{K}$ with no non trivial automorphism. Then TFAE:

i)
$$\forall k \in \mathbb{N}, \quad \mathbb{F} \longrightarrow (\mathbb{F})_k^X.$$

ii) $(Aut(\mathbb{F}), Stab(X))$ is oscillation stable.

Corollary

Let $\mathcal{K}^{<}$ be a Fraïssé order class, $\mathbb{F}^{<}$ its Fraïssé limit. Then TFAE:

i)
$$\forall X \in \mathcal{K}^{<}, \ \forall k \in \mathbb{N}, \ \mathbb{F} \longrightarrow (\mathbb{F})_{k}^{X}.$$

ii) $\forall H \leq \operatorname{Aut}(\mathbb{F})$ open, $(\operatorname{Aut}(\mathbb{F}), H)$ is oscillation stable.

Hjorth's theorems

Theorem (Hjorth, 08)

Let $\mathcal{K}^{<}$ be a Fraïssé order class, $\mathbb{F}^{<}$ its Fraïssé limit. Then there is $X \in \mathcal{K}^{<}$, |X| = 2, such that:

 $\mathbb{F}^{<} \nrightarrow (\mathbb{F}^{<})_{2}^{X}.$

Equivalently, $(Aut(\mathbb{F}^{<}), Stab(X))$ is not oscillation stable.

Theorem (Hjorth, 08)

Let G be a non trivial Polish group. Then G is not oscillation stable.

Remark

Recently, new proof of this Theorem by Melleray via continuous logic.

Part II

Coloring vertices

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 10 / 25

Big Ramsey degree for vertices

Let ${\mathbb F}$ be countable ultrahomogeneous structure.

Definition

Vertices have big Ramsey degree I in F when I ≤ ω is least such that: For every k ∈ N and every

$$\mathbb{F}=A_1\cup\ldots\cup A_k$$

there is a copy of \mathbb{F} in \mathbb{F} where $\leq I$ colors appear.

• When l = 1, \mathbb{F} is indivisible.

Example: Graphs

Proposition

The Rado graph \mathcal{R} is indivisible.

Proof. Let $\mathcal{R} = R \cup B$. Write $\mathcal{R} = \{x_n : n \in \omega\}$. If all vertices are red, done. Otherwise, pick a blue \tilde{x}_0 . In general, if $\tilde{x}_0, \ldots, \tilde{x}_n$ are blue and $\{\tilde{x}_0, \ldots, \tilde{x}_n\} \cong \{x_0, \ldots, x_n\}$, consider

$$\mathsf{E} = \{ x \in \mathcal{R} : \{ \tilde{x}_0, \ldots, \tilde{x}_n, x \} \cong \{ x_0, \ldots, x_n, x_{n+1} \} \},$$

 $E \subset \mathcal{R}$ ultrahomogeneous, universal for finite graphs, hence $\cong \mathcal{R}$. If $E \subset R$, done. Otherwise, pick $\tilde{x}_{n+1} \in E$ blue. Carry on.

Examples: K_n -free graphs

Recall: \mathcal{H}_n the countable ultrahomogeneous K_n -free graph.

- Theorem (Komjáth-Rödl, 86)
- \mathcal{H}_3 is indivisible.

Theorem (El-Zahar - Sauer, 87)

 \mathcal{H}_n is indivisible for every $n \in \mathbb{N}$.

Remark

Those are particular cases where amalgamation is free.

Free amalgams

Definition

Let $f_i : A \longrightarrow B_i$, i = 0, 1 be embeddings of finite structures. Their free amalgam is the structure obtained by

- Considering disjoint copies of B₀, B₁.
- Gluing them by identifying $f_0''A$ and $f_1''A$.

Definition

A Fraïssé class has free amalgamation property when it is closed under free amalgams.

Examples

- Finite graphs.
- Finite K_n-free graphs.
- > Finite graphs with red edges, blue edges, no monochromatic triangle.

Orbits

Definition

Let \mathbb{F}, \mathbb{G} be countable structures. $\mathbb{F} \preccurlyeq \mathbb{G}$ means $\mathbb{F} = \bigcup_{i=1}^{n} F_i$ with each F_i embeddable in \mathbb{G} .

Definition Let $X \subset \mathbb{F}$ finite. Then Stab(X) acts on $\mathbb{F} \setminus X$.

Corresponding orbits are orbits of \mathbb{F} . Orb := set of all orbits of \mathbb{F} .

Sauer's theorem

Theorem (Sauer, 03)

Let \mathcal{K} be a Fraïssé class in a finite binary language, \mathbb{F} its Fraïssé limit. Assume \mathcal{K} has free amalgamation property. Then the big Ramsey degree vertices in \mathbb{F} is

 $\sup\{|\mathcal{A}|: \mathcal{A} \subset (\mathit{Orb}, \preccurlyeq) \text{ antichain}\}.$

Examples

- ▶ *R* Rado graph: 1.
- H_n countable ultrahomogeneous K_n -free graph: 1.
- Countable ultrahomogeneous graph with red edges, blue edges, no monochromatic triangle: 2.

Examples: metric spaces

Recall: \mathbb{U}_m countable ultrahomogeneous metric space, distances in $\{1, \ldots, m\}$.

- Theorem (NVT-Sauer, 09)
- \mathbb{U}_m is indivisible for every $m \in \mathbb{N}$.

Remark

- ▶ Proof works with $\{1, ..., m\}$ replaced by $\{s_1, ..., s_m\}$ and $\forall i < m \ s_{i+1} \leq 2s_i$.
- Proof fails if $\exists i < m \ 2s_i < s_{i+1}$.

More on metric spaces: Hilbert and Urysohn spheres

 \mathbb{U} : the unique complete separable ultrahomogeneous metric space into which any separable metric space embeds.

```
Theorem (López-Abad - NVT - Sauer, 09)

Let S be a sphere in \mathbb{U},

\varepsilon > 0, S = R \cup B.

Then S \hookrightarrow (R)_{\varepsilon} or S \hookrightarrow (B)_{\varepsilon}.

Corollary

Let \varepsilon > 0,

S_{\mathcal{C}([0,1])} = R \cup B.

Then S_{\mathcal{C}([0,1])} \hookrightarrow (R)_{\varepsilon} or S_{\mathcal{C}([0,1])} \hookrightarrow (B)_{\varepsilon}.
```

```
Theorem (Odell-Schlumprecht, 94)
This is false if C([0,1]) is replaced by \ell_2.
```

Examples: affine spaces

 \mathcal{A}_F : finite affine spaces over F (finite field), Fraissé limit $F^{<\omega}$.

Theorem (Hindman, 74)

Big Ramsey degree of vertices in $\mathbb{F}_2^{<\omega}$: 1.

Theorem (Folklore)

Assume $F \neq \mathbb{F}_2$. Big Ramsey degree of vertices in $F^{<\omega}$: ω .

Proof.

Let $x \in F^{<\omega}$. c(x): number of times it changes value (ignoring value 0). Then range of c contains arbitrarily long intervals on copies of $F^{<\omega}$.

Part III

Higher dimension

L. Nguyen Van Thé (Université de Neuchâtel)

Ramsey theory and dynamics

June 2009 20 / 25

Coloring more complex structures

Let \mathbb{F} be countable ultrahomogeneous structure, $X \subset \mathbb{F}$ finite, $\binom{\mathbb{F}}{X}$ set of copies of X in \mathbb{F} . Definition X has big Ramsey degree I in \mathbb{F} when $I \leq \omega$ is least such that:

For every $k \in \mathbb{N}$ and every

$$\binom{\mathbb{F}}{X} = A_1 \cup \ldots \cup A_k$$

there is a copy \tilde{F} of \mathbb{F} in \mathbb{F} where $\leq I$ colors appear on (\tilde{F}) .

Example

From Hjorth's theorem, there is always $X \subset \mathbb{F}$ of size 2 with big Ramsey degree ≥ 2 .

Examples: Tournaments

Theorem (Lachlan-Woodrow, 84)

There are only three countable ultrahomogeneous tournaments:

- The rationals $(\mathbb{Q}, <)$: $x \leftarrow y$ iff x < y.
- The countable random tournament $\overrightarrow{\mathcal{R}}$.
- ► The dense local order S(2).

Theorem (D. Devlin, 79)

In $(\mathbb{Q}, <)$, every X has degree $\tan^{(2|X|-1)}(0)$.

Theorem (Laflamme-Sauer-Vuksanovic, 04) In $\overrightarrow{\mathcal{R}}$, every X has degree...< ω , equal to something.

Theorem (Laflamme-NVT-Sauer, 09) In S(2), every X has degree $\tan^{(2|X|-1)}(0) \cdot 2|X|/|\operatorname{Aut}(X)|$. Previous results use coding of structures in $2^{<\omega}$. The following one does not:

Theorem (Sauer, 98)

In H_3 countable ultrahomogeneous triangle-free graph, edges have big Ramsey degree 2.

Summary

- Hjorth's theorem provides an obstruction for some $|X| \ge 2$.
- Still, can study big Ramsey degrees:
 - For vertices, least *l* ≤ ω such that: For every

$$\mathbb{F} = A_1 \cup \ldots \cup A_k$$

there is a copy of $\mathbb F$ in $\mathbb F$ where $\leq I$ colors appear.

$$\binom{\mathbb{F}}{X} = A_1 \cup \ldots \cup A_k$$

there is a copy \tilde{F} of \mathbb{F} in \mathbb{F} where $\leq I$ colors appear on $\binom{\tilde{F}}{X}$.

- El-Zahar Sauer's theorem allows to compute big Ramsey degrees for vertices when language is finite and binary and amalgamation is free.
- In higher dimensions, most known results use combinatorics on trees.

Perspectives

- Can oscillation stability be better understood from the group theory side?
- For vertex partitions:
 - Is there a characterization of structures with finite big Ramsey degree (even in finite binary language)?
 - Can we characterize complete separable metric spaces X so that

$$\forall \varepsilon > 0, \ \forall X = R \cup B, \ X \hookrightarrow (R)_{\varepsilon} \ \text{or} \ X \hookrightarrow (B)_{\varepsilon}.$$

- Can Odell-Schlumprecht theorem be reproved combinatorially?
- ► For higher dimensions:
 - ▶ What about big Ramsey degrees in *K_n*-free graphs?
 - What about the countable ultrahomogeneous partial order?
 - What about countable ultrahomogeneous directed graphs?