Playing with ctbl support iteration

Janusz Pawlikowski (University of Wrocław)

June 2009

- [Z] J.Zapletal, Forcing Idealized, CUP 2008;
- [CP] K.Ciesielski, JP, *The Covering Property Axiom*, CUP 2004;
- [DHM] M.Džamonia, M.Hrušák, J.Moore, *Parametrized* \Diamond *Principles*, Transactions AMS, 2003.

Forcing has two aspects.

When we add a Cohen real, we

- get an object not covered by ground model a real that avoids all ground model meager sets
- cover every object by ground model every real is in a ground model null set.

MA addresses the first aspect, CPA - the second.

CPA makes possible constructions of length ω_1 in which one meets ω_2 requirements.

The space of requirements is covered by ω_1 sets s.t. each set requirements are met in one step of the construction.

CPA(null)

Adam and Eve meet ω_1 times. At round α Adam chooses a non-null Borel set $A_\alpha\subseteq 2^\omega$ and a Borel function $f_\alpha:A_\alpha\to 2^\omega$, Eve responds with non-null Borel $E_\alpha\subseteq A_\alpha$. Adam wins if $\bigcup_{\alpha<\omega_1}f_\alpha[E_\alpha]=2^\omega$. CPA(null) \equiv Eve has no winning strategy.

random reals

 \mathcal{R}_{ω_2} - a poset for adding ω_2 random reals, Baire subsets of 2^{ω_2} of positive measure.

Theorem

Suppose $V \models CH$. Then $\mathcal{R}_{\omega_2} \Vdash \mathtt{CPA}(null)$.

Theorem

 $\mathtt{CPA}(\mathit{null}) \Rightarrow \mathtt{universally}$ measurable sets are unions of ω_1 Borel sets.

proof

Fix universally measurable $U \subseteq 2^{\omega}$. Talk Eve into this tactic:

- Adam: $f_{\alpha}: A_{\alpha} \to 2^{\omega}$,
- Eve: E_{α} contained either in $A_{\alpha} \cap f_{\alpha}^{-1}[U]$ or in $A_{\alpha} \setminus f_{\alpha}^{-1}[U]$.

Find Adam's winning counter-play $\langle A_{\alpha}, f_{\alpha} \rangle_{\alpha < \omega_1}$.

The sets $f_{\alpha}[E_{\alpha}]$ cover the space 2^{ω} , each set is either in or out of U, and, being analytic, is a union of ω_1 Borel sets.

So we get:

Theorem (Larson-Shelah)

Suppose $V \models GCH$. Then \mathcal{R}_{ω_2} forces that universally measurable sets are unions of ω_1 Borel sets, hence that there are \mathfrak{c} many of them.

- ctbl the σ -ideal of ctbl subsets of 2^{ω} ,
- $ctbl^{\alpha}$ the α th Fubini power of ctbl, $\alpha < \omega_1$.

Fubini power

 $X \in ctbl^{\alpha}$ iff $X \subseteq (2^{\omega})^{\alpha}$ and there is a tree $S \subseteq (2^{\omega})^{<\alpha}$ s.t.

- non-terminal nodes splits into co-ctbly many successors,
- at limit levels all branches are taken,
- $\lim S = \{ s \in (2^{\omega})^{\alpha} : \forall \beta < \alpha \text{ s } \upharpoonright \beta \in S \}$ is disjoint with X.

Sacks

Positive sets ordered by inclusion

$$\mathcal{P}_{\alpha} = Borel((2^{\omega})^{\alpha}) \setminus ctbl^{\alpha}.$$

 $\mathcal{P}_{lpha} \equiv$ the lphath stage of ctbl support iteration of the Sacks forcing.

covering game

Adam and Eve meet ω_1 times. At round α Adam chooses $\alpha' < \omega_1$, $p_{\alpha} \in \mathcal{P}_{\alpha'}$, and a Borel function

$$f_{\alpha}:p_{\alpha}\rightarrow 2^{\omega}.$$

Eve responds with $q_{\alpha} \in \mathcal{P}_{\alpha'}$, $q_{\alpha} \subseteq p_{\alpha}$. Adam wins if

$$\bigcup_{\alpha<\omega_1}f_\alpha[q_\alpha]=2^\omega.$$

CPA - Covering Property Axiom

 $CPA \equiv Eve has no winning strategy.$

Theorem CPA in the Sacks model

CPA holds in the Sacks model.

Sacks model = ω_2 Sacks reals added to CH via ctbl support,

diamond game

Adam and Eve meet ω_1 times. At round α Adam chooses $\alpha' < \omega_1$, $p_{\alpha} \in \mathcal{P}_{\alpha'}$, and a Borel function

$$f_{\alpha}: p_{\alpha} \to 2^{\alpha}$$
.

Eve responds with $q_{\alpha} \in \mathcal{P}_{\alpha'}$, $q_{\alpha} \subseteq p_{\alpha}$. Adam wins if for every $t \in 2^{\omega_1}$ for stationary many α

$$t \upharpoonright \alpha \in f_{\alpha}[q_{\alpha}].$$

$\Diamond CPA$

 $\Diamond CPA \equiv Eve has no winning strategy.$

Theorem \Diamond CPA in the Sacks model

♦ CPA holds in the Sacks model.

Easily, $\Diamond \Rightarrow \Diamond CPA \Rightarrow CPA$, $CH \Rightarrow CPA$.

proof - sketch

For $\alpha \geq \omega_1$ let \mathcal{P}_{α} consist of all cylinders in $(2^{\omega})^{\alpha}$ of the form

$${s \in (2^{\omega})^{\alpha} : s \circ e \in p},$$

where $p \in \mathcal{P}_{\beta}$ for some $\beta < \omega_1$ and $e : \beta \to \alpha$ is an order preserving embedding.

 $\mathcal{P}_{\alpha} \equiv$ the α th stage of ctbl support iteration of the Sacks forcing. Let \dot{r}_{α} and \dot{G}_{α} be the canonical terms for the α th Sacks real and the generic subset of \mathcal{P}_{α} .

Let $\dot{\sigma}$ be a \mathcal{P}_{ω_2} term for Eve's strategy.

- $\{\alpha < \omega_2 : \mathcal{P}_{\omega_2} \Vdash \dot{\sigma} \upharpoonright V[\dot{G}_{\alpha}] \in V[\dot{G}_{\alpha}]\}$ is unbounded and ω_1 -closed in ω_2 ;
- $\operatorname{cf} \alpha = \omega_1 \Rightarrow \mathcal{P}_\alpha \Vdash \Diamond;$
- $\forall \alpha < \omega_2 \ \mathcal{P}_{\alpha} \Vdash "\mathcal{P}_{\omega_2}/\mathcal{P}_{\alpha} \equiv \text{cs iteration of } \omega_2 \ \text{Sacks reals"}.$

WLOG

- $\sigma \upharpoonright V \in V$ is Eve's strategy in V;
- $V \models \Diamond$.

We will find in V a counter-play for Adam s.t. in $V[G_{\omega_2}]$ makes him a winner.

We work in V.

Fix a ♦ sequence

$$\langle \varepsilon_{\alpha} \subseteq \alpha \times \alpha : \alpha < \omega_1 \rangle$$

that predicts subsets of $\omega_1 \times \omega_1$.

Fix large enough regular \varkappa .

Adam's counter-play.

At round lpha Adam attempts to find an elementary embedding

$$\langle \alpha, \varepsilon_{\alpha} \rangle \to \langle H_{\varkappa}, \in \upharpoonright H_{\varkappa} \rangle$$
.

Let M_{α} be the range of the embedding, M_{α}^* - the transitive collapse of M_{α} , and $e_{\alpha}: M_{\alpha}^* \to M_{\alpha}$ - the inverse of the collapsing map. Adam wants

- $M_{\alpha} \cap \omega_1 = \alpha$
- $e_{\alpha}(0)$ is a condition in \mathcal{P}_{ω_2} , call it p,
- $e_{\alpha}(1)$ is a sequence $\langle \dot{t}_{\beta} \rangle_{\beta < \omega_1}$ of \mathcal{P}_{ω_2} terms s.t.

$$\forall \beta \ \mathcal{P}_{\omega_2} \Vdash \dot{t}_\beta \in \{0,1\}$$
.

If Adam fails, then he playes anything legal.

If he succeeds, then he looks at

- $\alpha' = \operatorname{ot}(M_{\alpha} \cap \omega_2) = (\omega_2)^{M_{\alpha}^*};$
- the set S_{α} of all $s \in (2^{\omega})^{M_{\alpha} \cap \omega_2}$ for which there is (in V) an M_{α} -generic filter $H_s \subseteq M_{\alpha} \cap \mathcal{P}_{\omega_2}$ containing p and s.t. $s(\xi) = \dot{r}_{\xi}/H_s$ for all $\xi \in M_{\alpha} \cap \omega_2$;

and plays

- $p_{\alpha} = \{ s \circ e_{\alpha} : s \in \mathcal{S}_{\alpha} \} \subseteq (2^{\omega})^{\alpha'};$
- $f_{\alpha}: p_{\alpha} \to 2^{\alpha}$ defined by $s \circ e_{\alpha} \longmapsto \langle \dot{t}_{\beta}/H_{s} \rangle_{\beta < \alpha}$.

Properness implies that

- $p_{\alpha} \in \mathcal{P}_{\alpha'}$;
- H_s is uniquely determined by s;
- the function f_{α} is Borel.
- p_{α} and f_{α} don't depend on the particular choice of M_{α} , they depend on M_{α}^* , ultimately on ε_{α} .

Suppose Adam follows the above counter-play while Eve plays according to her strategy σ .

Let $\{q_{lpha}\}_{lpha<\omega_1}$ list the sets played by Eve.

We want to see that

$$\mathcal{P}_{\omega_2} \Vdash \forall t \in 2^{\omega_1} \{ \alpha < \omega_1 : t \upharpoonright \alpha \in f_{\alpha}[q_{\alpha}] \}$$
 is stationary.

Fix a condition $p \in \mathcal{P}_{\omega_2}$, a \mathcal{P}_{ω_2} term \dot{D} for a club subset of ω_1 , and a sequence $\langle \dot{t}_{\alpha} \rangle_{\alpha < \omega_1}$ of \mathcal{P}_{ω_2} terms for members of $\{0,1\}$. Find an elementary submodel

$$\langle N, \in \upharpoonright N \rangle \prec \langle H_{\varkappa}, \in \upharpoonright H_{\varkappa} \rangle$$

of size ω_1 s.t.

$$\omega_1 \cup \{p, \dot{D}, \langle \dot{t}_{\alpha} \rangle_{\alpha < \omega_1}\} \subseteq N.$$

Fix a bijection $\psi:\omega_1\to N$ s.t.

$$\psi(0) = p, \ \psi(1) = \langle \dot{t}_{\alpha} \rangle_{\alpha < \omega_1}, \ \psi(2) = \dot{D}.$$

Note that for club many $\alpha < \omega_1$,

$$\psi[\alpha] \cap \omega_1 = \alpha \quad \land \quad \langle \psi[\alpha], \in \upharpoonright \psi[\alpha] \rangle \prec \langle H_{\varkappa}, \in \upharpoonright H_{\varkappa} \rangle.$$

Look at

$$\varepsilon = \{ \langle \xi, \zeta \rangle \in \omega_1 \times \omega_1 : \psi(\xi) \in \psi(\zeta) \},$$

and use the predictive capabilities of $\langle \varepsilon_{\alpha} \rangle_{\alpha < \omega_1}$ to get α s.t. $\varepsilon_{\alpha} = \varepsilon \cap (\alpha \times \alpha)$.

Note that ε_{α} and $M_{\alpha}=\psi[\alpha]$ pass Adam's search criteria.

Now

$$q = \{s \in (2^{\omega})^{\omega_2} : s \circ e_{\alpha} \in q_{\alpha}\}$$

is $(M, \mathcal{P}_{\omega_2})$ generic, $q \leq p$, and

$$q \Vdash f_{\alpha}(\langle \dot{r}_{\xi} : \xi \in M_{\alpha} \cap \omega_{2} \rangle) = \langle \dot{t}_{\beta} \rangle_{\beta < \alpha},$$

which gives

$$q \Vdash \langle \dot{t}_{\beta} \rangle_{\beta < \alpha} \in f_{\alpha}[q_{\alpha}].$$

Also, $\dot{D} \in \mathcal{M}_{\alpha}$ and $\alpha = \mathcal{M}_{\alpha} \cap \omega_1$ imply by genericity of q that $q \Vdash \alpha \in \dot{D}$.

other forcings

Analogous axioms can be formulated for other forcings. E.g., we can change everywhere above 2^{ω} to ω^{ω} , Sacks forcing to Miller forcing, and ctbl to \mathcal{K}_{σ} , the σ -ideal generated by compact subsets of ω^{ω} . We get CPA for Miller forcing.

abstracting

 $\widetilde{\mathcal{I}}$ is a family of σ -ideals; each $\mathcal{I} \in \widetilde{\mathcal{I}}$ is a σ -ideal of Borel subsets of a Polish space $\mathbb{X}_{\mathcal{I}}$, $\mathcal{P}_{\mathcal{I}} = \mathit{Borel}(\mathbb{X}_{\mathcal{I}}) \smallsetminus \mathcal{I}$.

ideal game

Consider two games, regular and diamond.

In both games there are ω_1 rounds.

At round α Adam chooses $\mathcal{I}_{\alpha} \in \mathcal{I}$, $p_{\alpha} \in \mathcal{P}_{\mathcal{I}_{\alpha}}$, and a Borel function

- ullet $f_lpha:p_lpha o 2^\omega$, in the regular game, or
- $f_{\alpha}:p_{\alpha}\to 2^{\alpha}$, in the diamond game.

Eve responds with $q_{lpha}\subseteq p_{lpha}$, $q_{lpha}\in \mathcal{P}_{\mathcal{I}_{lpha}}$.

Adam wins

- the regular game if $\bigcup_{\alpha<\omega_1}f_\alpha[q_\alpha]=2^\omega$,
- the diamond game if for every $t \in 2^{\omega_1}$ for stationary many α , $t \upharpoonright \alpha \in f_{\alpha}[q_{\alpha}]$.

$extstyle{ t CPA}(\widetilde{\mathcal{I}})$ and $extstyle{ t CPA}(\widetilde{\mathcal{I}})$

Axioms $\mathtt{CPA}(\widetilde{\mathcal{I}})$ and $\diamondsuit\mathtt{CPA}(\widetilde{\mathcal{I}})$ both say that

Eve has no winning strategy in the respective game.

Theorem CPA for Sacks Miller Cohen Solovay

 $\lozenge \mathtt{CPA}(\widetilde{\mathcal{I}})$ is forced by ctbl support iteration of length ω_2 of

- Sacks real: $\widetilde{\mathcal{I}} = \widetilde{ctbl} = \{ctbl^{\alpha}\}_{\alpha < \omega_1}$;
- Miller real: $\widetilde{\mathcal{I}} = \widetilde{\mathcal{K}}_{\sigma} = \{\mathcal{K}_{\sigma}^{\alpha}\}_{\alpha < \omega_{1}};$
- Cohen real: $\widetilde{\mathcal{I}} = \widetilde{\mathcal{M}} = \{\mathcal{M}^{\alpha}\}_{\alpha < \omega_1}, \, \mathcal{M} = \textit{meager}(2^{\omega});$
- Solovay real: $\widetilde{\mathcal{I}} = \widetilde{\mathcal{N}} = \{\mathcal{N}^{\alpha}\}_{\alpha < \omega_1}, \, \mathcal{N} = null(2^{\omega});$
-

meager and null

Cohen reals

 \mathcal{C}_{ω_2} - poset for adding ω_2 Cohen reals, non-meager Baire subsets of 2^{ω_2} . Equivalent to the finite support iteration of length ω_2 of $\mathcal{C}=\mathcal{P}_{\mathcal{M}}$.

random reals

 \mathcal{R}_{ω_2} - a poset for adding ω_2 random reals, Baire subsets of 2^{ω_2} of positive measure. \mathcal{R}_{ω_2} is not an iteration of $\mathcal{R} = \mathcal{P}_{\mathcal{N}}$.

$$\mathcal{N}^2 = \mathcal{N}((2^\omega)^2)$$
 but \mathcal{N}^ω is a proper subideal of $\mathcal{N}((2^\omega)^\omega)$.
Eg., $\{\langle x_n \rangle_{n \in \omega} \in (2^\omega)^\omega : \forall n \, x_n(0) = 0\} \in \mathcal{N}((2^\omega)^\omega) \setminus \mathcal{N}^\omega$.

Likewise for \mathcal{M} .

meager and null

Theorem CPA for meager and null

- Assume $V \models CH$. Then $\mathcal{C}_{\omega_2} \Vdash \mathtt{CPA}(\mathit{meager})$.
- Assume $V \models \Diamond$. Then $\mathcal{C}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\mathit{meager})$.
- Likewise for *null* and \mathcal{R}_{ω_2} .

CPA(meager)

At round α Adam chooses a non-meager Borel set A_{α} and a Borel function $f_{\alpha}: A_{\alpha} \to 2^{\omega}$;

Eve responds with non-meager Borel set $E_{\alpha} \subseteq A_{\alpha}$.

Adam wins if $\bigcup_{\alpha<\omega_1} f_{\alpha}[E_{\alpha}] = 2^{\omega}$.

 $CPA(meager) \equiv Eve has no winning strategy.$

Kunen - small MAD

 $CPA(meager) \Rightarrow \exists MAD \text{ of size } \omega_1.$

section game

 $\mathbb S$ - a Polish space; $\mathbb X_{\mathcal I}$ ($\mathcal I \in \widetilde{\mathcal I}$) more Polish spaces; each $\mathcal I$ from $\widetilde{\mathcal I}$ is a σ -ideal in $\mathit{Borel}(\mathbb S \times \mathbb X_{\mathcal I})$;

 $\mathcal{P}_{\mathcal{I}} = \textit{Borel}(\mathbb{S} \times \mathbb{X}_{\mathcal{I}}) \setminus \mathcal{I}.$

As before, at round α

Adam chooses $\mathcal{I}_{lpha} \in \widetilde{\mathcal{I}}$, $p_{lpha} \in \mathcal{P}_{\mathcal{I}_{lpha}}$, and a Borel function

- ullet $f_lpha: p_lpha
 ightarrow 2^\omega$, in the regular game, or
- $f_{\alpha}:p_{lpha}
 ightarrow 2^{lpha}$, in the diamond game.

Eve responds with $q_{\alpha} \subseteq p_{\alpha}$, $q_{\alpha} \in \mathcal{P}_{\mathcal{I}_{\alpha}}$.

Adam wins

- ullet the regular game if $\exists s \in \mathbb{S} \, igcup_{lpha < \omega_1} f_lpha[q_lpha|s] = 2^\omega$
- the diamond game if $\exists s \in \mathbb{S}$ for every $t \in 2^{\omega_1}$ for stationary many α , $t \upharpoonright \alpha \in f_{\alpha}[q_{\alpha}|s]$;

Here $q_{\alpha}|s=q_{\alpha}\cap(\{s\}\times\mathbb{X}_{\mathcal{I}_{\alpha}}).$

$\mathtt{CPA}'(\widetilde{\mathcal{I}})$ and $\diamondsuit\mathtt{CPA}'(\widetilde{\mathcal{I}})$

Axioms ${\tt CPA'}(\widetilde{\mathcal{I}})$ and ${\tt \diamondsuitCPA'}(\widetilde{\mathcal{I}})$ both say, as before, that

• Eve has no winning strategy in the respective game.

The games are harder for Adam. The axioms are stronger.

Theorem

 $\Diamond \mathtt{CPA'(ctbl)}$ holds in the Sacks model.

Likewise for other forcings and ideals.

Laver and BC

Let $\widetilde{\mathcal{L}} = \{\mathcal{L}_{\alpha}\}_{\alpha < \omega_1}$, where \mathcal{L}_{α} is the σ -ideal in $Borel((\omega^{\omega})^{\alpha})$ associated with ctbl support iteration of Laver forcing. Then $\Diamond \mathtt{CPA}'(\widetilde{\mathcal{L}})$ holds in the Laver model.

 $\mathtt{CPA}'(\widetilde{\mathcal{L}}) \Rightarrow \mathtt{every} \ \mathtt{strong} \ \mathtt{measure} \ \mathtt{zero} \ \mathtt{subset} \ \mathtt{of} \ 2^\omega \ \mathtt{is} \ \mathtt{ctbl}.$

Carlson and Dual BC

 $CPA'(meager) \Rightarrow$ every strongly meager subset of 2^{ω} is ctbl.

 $\mathbb{S}, \mathbb{T}, \mathbb{Z}$ - Polish spaces, $\Delta \subseteq \mathbb{S} \times \mathbb{T} \times \mathbb{Z}$ - a Borel set.

A set $Z \subseteq \mathbb{Z}$ is s-small, $s \in \mathbb{S}$, if $\exists t \in \mathbb{T} \ Z \subseteq \Delta_{st}$.

Let Δ^* collect sets that are s-small for every $s \in \mathbb{S}$.

Fubini

Let \mathcal{I} be a σ -ideal in $Borel(\mathbb{S} \times \mathbb{X})$, \mathbb{X} - a Polish space, and let \mathcal{H} be a hereditary family of subsets of \mathbb{Z} .

For every Borel function $g:\mathbb{S} imes\mathbb{X} o\mathbb{T}$ form the set

$$\Delta(g) = \{ \langle \langle s, x \rangle, z \rangle \in \mathbb{S} \times \mathbb{X} \times \mathbb{Z} : \langle s, g(s, x), z \rangle \in \Delta \} .$$

 $Fubini(\Delta, \mathcal{I}, \mathcal{H})$ iff always

$$p \in \mathcal{P}_{\mathcal{I}} \Rightarrow \text{ for co}\mathcal{H} \text{ many z } p \setminus \Delta(g)^z \in \mathcal{P}_{\mathcal{I}}.$$

Lemma

$$\mathtt{CPA'}(\widetilde{\mathcal{I}}) \wedge \mathit{Fubini}(\Delta, \widetilde{\mathcal{I}}, \mathcal{H}) \ \Rightarrow \ \Delta^* \subseteq \mathcal{H} \, .$$

proof

Suppose $Z \in \Delta^* \setminus \mathcal{H}$. Talk Eve into the following tactic:

- ullet Adam $f_lpha:p_lpha o \mathbb{T}$,
- Eve $q_{\alpha} = A \setminus \Delta(f_{\alpha})^{z_{\alpha}}$, $z_{\alpha} \in Z$ is from $Fubini(\Delta, \mathcal{I}_{\alpha}, \mathcal{H})$.

Then $f_{lpha}[q_{lpha}|s]\cap \Delta^{\mathsf{z}_{lpha}}_{s}=arnothing$ for all s .

Find Adam's counter-play $\langle p_{\alpha}, f_{\alpha} \rangle_{\alpha < \omega_1}$ and $s \in \mathbb{S}$ s.t.

$$\bigcup_{\alpha} f_{\alpha}[q_{\alpha}|s] = \mathbb{T}.$$

Then the corresponding set $\{z_{\alpha}\}_{{\alpha}<{\omega_1}}$ fails the *s*-test: $t\in f_{\alpha}[q_{\alpha}|s] \Rightarrow z_{\alpha}\notin \Delta_{st}$.

Laver and BC cont.

Set $\mathbb{S} = \omega^{\omega}$ and $\mathbb{T} = \mathbb{Z} = 2^{\omega}$. For $s \in \mathbb{S}$ let $\mathbb{T}_s = \prod_n [2^{s(n)}]^{\leq n}$. For $t \in \mathbb{T}_s$ let $\overline{t} = \{z \in 2^{\omega} : \exists^{\infty} n \ z \upharpoonright s(n) \in t(n)\}$. Claim: $Z \subseteq 2^{\omega}$ is stronly null iff $\forall s \ \exists t \in \mathbb{T}_s \ Z \subseteq \overline{t}$.

Endow $[2^{s(n)}]^{\leq n}$ with discrete topology. Choose homeomorphisms $\varphi_s:\mathbb{T}\to\mathbb{T}_s$ so that the following set is G_δ

$$\Delta = \left\{ \langle s, t, z \rangle \in \mathbb{S} \times \mathbb{T} \times \mathbb{Z} : z \in \overline{\varphi_s(t)} \right\}.$$

Then Δ^* is exactly the family of strong measure zero subsets of \mathbb{Z} , and $Fubini(\Delta, \widetilde{\mathcal{L}}, \mathcal{H})$ holds for $\mathcal{H} = ctbl$.

Theorem Martin's Axiom - generics

Assume $\lozenge \mathtt{CPA'}(\widetilde{\mathcal{I}})$ for a family $\widetilde{\mathcal{I}}$. Let $\mathcal{J} \subseteq \mathcal{P}(\mathbb{S})$ be an ideal s.t. for every $\mathcal{I} \in \widetilde{\mathcal{I}}$ and $S \in \mathcal{J}$ every $p \in \mathcal{P}_{\mathcal{I}}$ has $q \in \mathcal{P}_{\mathcal{I}}$ s.t. $q \subseteq p \setminus (S \times \mathbb{X}_{\mathcal{I}})$. Then $cov(\mathcal{J}) > \omega_1$.

proof

Let $\{S_{\alpha}\}_{\alpha<\omega_1}\subseteq\mathcal{J}$ is ascend. Talk Eve into the following tactic:

- Adam $f_{\alpha}: p_{\alpha} \to 2^{\alpha}$
- Eve $q_{\alpha} \subseteq p_{\alpha} \setminus (S_{\alpha} \times \mathbb{X}_{\mathcal{I}_{\alpha}})$.

Find Adam's counter-play $\langle p_{\alpha}, f_{\alpha} \rangle_{\alpha < \omega_1}$ and $s \in \mathbb{S}$ s.t.

 $\mathbf{0} \upharpoonright \alpha \in f_{\alpha}[q_{\alpha}|s]$ for stationary many α .

As $f_{\alpha}[q_{\alpha}|s] \neq \emptyset \Rightarrow q_{\alpha}|s \neq \emptyset \Rightarrow s \notin S_{\alpha}$, s falls out of stationary many S_{α} .

So, $s \notin \bigcup_{\alpha < \omega_1} S_\alpha$ because S_α ascend.

invariants

Imagine a binary relation ρ , $\mathbb{C} = dom \, \rho$ and $\mathbb{A} = rng \, \rho$. If $c \rho a$ say that the answer a covers the challenge c. A set of answers is covering if it covers every challenge. The norm $\|\rho\|$ is the least size of a covering set. Consider only Borel invariants $(\mathbb{C} \text{ and } \mathbb{A} \text{ are Polish spaces and } \rho \text{ is a Borel subset of } \mathbb{C} \times \mathbb{A}).$

Many cardinal characteristics of the continuum are norms:

- the dominating number $\mathfrak d$ is $\|\mathfrak D\|$, $\mathfrak D = \{\langle s,t\rangle \in \omega^\omega \times \omega^\omega : \forall^\infty n \, s(n) \leq t(n)\},$
- the number $\mathfrak b$ is $\|\mathfrak B\|$, $\mathfrak B = \{\langle s,t\rangle \in \omega^\omega \times \omega^\omega : \exists^\infty n \ s(n) > t(n)\};$
- non \mathcal{M} , the least size of a nonmeager subset of 2^{ω} , is $\|\mathfrak{Non}\,\mathcal{M}\|$, $\mathfrak{Non}\,\mathcal{M}$ is a G_{δ} subset of $2^{\omega}\times 2^{\omega}$ whose vertical sections constitute a basis of the filter of comeager sets in 2^{ω} .

reductions

Write $\rho \sqsubset \rho'$ if there are functions translating answers $\alpha: \mathbb{A} \to \mathbb{A}'$ and challenges $\gamma: \mathbb{C}' \to \mathbb{C}$ s.t. $\gamma \rho \alpha \subseteq \rho'$.

$$\begin{array}{cccc} \mathbb{A} & \longrightarrow \alpha \longrightarrow & \mathbb{A}' \\ \rho \uparrow & & \vdots \rho' \\ \mathbb{C} & \longleftarrow \gamma \longleftarrow & \mathbb{C}' \end{array}$$

Notation for binary relations - (functions are relations):

- forward composition: $R_0R_1 = \{\langle x, z \rangle : \exists y \ xR_0y \ \& \ yR_1z\};$
- functorial notation: $R: X \to Y$ if dom R = X and $rng\ R \subseteq Y$:
- images: given R, let $xR = \{y : xRy\}$, likewise $Ry = \{x : xRy\}$.

Constructive proofs of inequalities often give rise to reductions. E.g., from a suitable proof of $non \mathcal{M} > \mathfrak{b}$ we can get $\mathfrak{Non} \mathcal{M} \sqsubset \mathfrak{B}$ (even with Borel translating functions)

invariant game

$\mathtt{CPA}(ho)$

Axiom CPA(ρ) says that Eve has no winning strategy in the ρ game: Adam and Eve, meet ω_1 times.

Adam wants to cover a space of topics $\mathbb{T}=2^\omega.$

At round α Eve reveals topics via a Borel relation $R_{\alpha}: \mathbb{T} \to \mathbb{C}$.

Adam responds with $a_{lpha}\in\mathbb{A}$ - covers topics from the set $R_{lpha}
ho a_{lpha}.$

Adam wins if $\mathbb{T} = \bigcup_{\alpha} R_{\alpha} \rho a_{\alpha}$ (all topics are covered).

$\Diamond \mathtt{CPA}(\rho)$

 $\mathbb{T}=2^{\omega_1}$ and $R_{lpha}:2^{lpha}
ightarrow\mathbb{C}.$

Adam wins if for every topic $t \in 2^{\omega_1}$ for stationary many α ,

 $t \upharpoonright \alpha \in R_{\alpha} \rho \mathsf{a}_{\alpha}$

Easily:

 $\Diamond \mathtt{CPA}(\rho) \Rightarrow \mathtt{CPA}(\rho).$

 $CPA(\rho) \Rightarrow CPA(\rho')$ if $\rho \sqsubset \rho'$ with a Borel translation of challenges.

preserving answers in ho

Say that ${\mathcal P}$ preserves answers if

 $\mathcal{P} \Vdash$ "the ground model answers are covering".

This preservation property is well known. E.g., a poset preserves answers

- in $\mathfrak D$ iff it is ω^ω bounding;
- in B iff it adds no dominating real;
- in $\mathfrak{Non}\,\mathcal{M}$ iff it forces that the ground model reals are non-meager.

Lemma

Suppose that $\mathcal{P}_{\mathcal{I}}$ is proper. The following are equivalent.

- ullet $\mathcal{P}_{\mathcal{I}}$ preserves answers in ho
- For any $p \in \mathcal{P}_{\mathcal{I}}$ and any Borel relation $F : p \to \mathbb{C}$ there exist $q \in \mathcal{P}_{\mathcal{I}}$ and $a \in \mathbb{A}$ s.t. $q \subseteq p \cap F \rho a \ (q \Vdash F_{\dot{g}} \cap \rho^{\check{a}} \neq \emptyset)$.

Proposition

$${\tt CPA}(\widetilde{\mathcal{I}}) \Rightarrow {\tt CPA}(\rho) \text{ and } \diamondsuit {\tt CPA}(\widetilde{\mathcal{I}}) \Rightarrow \diamondsuit {\tt CPA}(\rho)$$
 if each $\mathcal{P}_{\mathcal{I}} \ (\mathcal{I} \in \widetilde{\mathcal{I}})$ preserves answers in ρ .

an application - Sacks, Miller, and $\Diamond \mathtt{CPA}(\mathfrak{B})$

ctbl and
$$\mathcal{K}_{\sigma}$$
 preserve \mathfrak{B} , so $\Diamond \mathtt{CPA}(\mathfrak{B})$ is true in the Sacks model and in the Miller model.

Proposition - proof

Assume $\operatorname{CPA}(\widetilde{\mathcal{I}})$. Fix a strategy of Eve in the ρ game and define her strategy in the $\widetilde{\mathcal{I}}$ game as follows. Consider round α . At the ρ board, following her strategy, Eve plays $R_{\alpha}: \mathbb{T} \to \mathbb{C}$. She notices Adam's move $f_{\alpha}: p_{\alpha} \to \mathbb{T}$ at the $\widetilde{\mathcal{I}}$ board, applies lemma to $F_{\alpha} = f_{\alpha}R_{\alpha}$, and plays q_{α} for which she can find $a_{\alpha} \in \mathbb{A}$ s.t.

$$q_{\alpha}\subseteq p_{\alpha}\cap F_{\alpha}\rho a_{\alpha}$$
.

Let $f_{\alpha}: p_{\alpha} \to \mathbb{T}$, $\alpha < \omega_1$ be Adam's winning counter-play at the $\widetilde{\mathcal{I}}$ board.

We define a winning counter-play for him at the ρ board. Following her strategies, Eve plays $R_{\alpha}: \mathbb{T} \to \mathbb{C}$ and finds q_{α} and a_{α} s.t. $q_{\alpha} \subseteq f_{\alpha}R_{\alpha}\rho a_{\alpha}$. Fortunately for Adam f_{α} is a function, so $q_{\alpha}f_{\alpha} \subseteq R_{\alpha}\rho a_{\alpha}$. Now $\mathbb{T} = \bigcup_{\alpha} q_{\alpha}f_{\alpha} \subseteq \bigcup_{\alpha} R_{\alpha}\rho a_{\alpha}$, so $\langle a_{\alpha}\rangle_{\alpha<\omega_{1}}$ is a winning counter-play for Adam.

Proposition

$$\mathtt{CPA}(\rho) \Rightarrow \|\rho\| = \omega_1.$$

proof

Let $\mathbb{T}=\mathbb{C}$. Let Eve play as $R_{\alpha}:\mathbb{T}\to\mathbb{C}$ the identity function. If $\langle a_{\alpha}\rangle_{\alpha<\omega_{1}}\subseteq\mathbb{A}$ is Adam's winning counter-play, then $\mathbb{C}=\mathbb{T}=\bigcup_{\alpha}R_{\alpha}\rho a_{\alpha}=\bigcup_{\alpha}\rho a_{\alpha}$.

Theorem

Let \mathcal{P}_{ω_2} be the limit of a ctbl support iteration of length ω_2 of a "nice" sequence of proper Borel posets.

Then $\mathcal{P}_{\omega_2} \Vdash \|\rho\| \leq \omega_1 \Leftrightarrow \mathcal{P}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\rho)$.

proof

A suitable adaptation of a similar result about parametrized \Diamond from [DHM].

free lunch

Often $\mathfrak{c}=\omega_2$ and $\|\rho\|=\omega_1$ is forced by a ctbl support iteration of length ω_2 of proper Borel posets that add reals but preserve answers.

By one of Shelah's preservation theorems the limit \mathcal{P}_{ω_2} also preserves answers.

So, the ground model answers witness $\mathcal{P}_{\omega_2} \Vdash \|\rho\| \leq \omega_1$.

Bonus: by the above theorem $\mathcal{P}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\rho)$.

A more brutal method of forcing $\Diamond \mathtt{CPA}(\rho)$ is finite support iteration. Say that a poset $\mathcal P$ kills challenges if it adds an answer that answers all ground model challenges, i.e., there is a term \dot{a} for a member of $\mathbb A$ s.t. for every ground model $c \in \mathbb C$, $\mathcal P \Vdash c \rho \dot{a}$.

finite support iteration thm

Let \mathcal{P}_{ω_1} be a finite support iteration of length ω_1 of ccc posets. If $\forall \, \alpha < \omega_1 \,\, \mathcal{P}_\alpha \Vdash "\mathcal{P}_{\omega_1}/\mathcal{P}_\alpha$ kills challenges in ρ ", then $\mathcal{P}_{\omega_1} \Vdash \Diamond \mathtt{CPA}(\rho)$.

Since $\mathcal{C}=\mathcal{P}_{\mathcal{M}}$ preserves answers in $\mathfrak{Non}\,\mathcal{M},$

 $\Diamond \mathtt{CPA}(\{\mathcal{M}\})$ implies $\Diamond \mathtt{CPA}(\mathfrak{Non}\,\mathcal{M})$.

Assuming $V \models \Diamond$, from $\mathcal{C}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(meager)$, and the fact that $\Diamond \mathtt{CPA}(meager)$ is just $\Diamond \mathtt{CPA}(\{\mathcal{M}\})$, we get $\mathcal{C}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\mathfrak{Non} \mathcal{M})$. Actually we can drop $V \models \Diamond$ here.

Proposition

 $\mathcal{C}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\mathfrak{Non}\,\mathcal{M}).$

proof

 $\mathcal{C}_{\omega_2} \approx \mathcal{C}_{\omega_2} * \mathcal{C}_{\omega_1}$, view \mathcal{C}_{ω_1} as \mathcal{C} iterated ω_1 times with finite support. Every tail, adds a Cohen real, kills the intermediate model challenges in $\mathfrak{Non}\,\mathcal{M}$. The theorem applies.

in fact

Any finite support iteration of nontrivial ccc forcings of length ω_1 forces $\Diamond CPA(\mathfrak{Non} \mathcal{M})$.

Likewise for random.

Proposition

 $\mathcal{R}_{\omega_2} \Vdash \Diamond \mathtt{CPA}(\mathfrak{Non}\,\mathcal{N})$

In fact, in both propositions, we have a club of good $\alpha < \omega_1$. $\diamondsuit^*\mathtt{CPA}(\mathfrak{Non}\,\mathcal{M})$ and $\diamondsuit^*\mathtt{CPA}(\mathfrak{Non}\,\mathcal{N})$ are forced.

Parametrized \Diamond of [DHM]

 $\Diamond(\rho) \equiv \text{Eve has no winning tactic.}$

So,

$$\Diamond CPA(\rho) \Rightarrow \Diamond(\rho).$$

