On forcing with σ -ideals of closed sets

Marcin Sabok (Wrocław University)

Wien, 18 June 2009

Idealized forcing

Many classical forcing notions can be represented in the form $\mathbf{P}_I = \operatorname{Bor}(X) \setminus I$, where X is a Polish space and I is a σ -ideal on X.

Examples

The examples are: the Cohen forcing (σ -ideal of meager sets), the Sacks forcing (σ -ideal of countable sets), or the Miller forcing (K_{σ} sets in ω^{ω})

Another way

Note that the forcing $\mathbf{P}_I = \operatorname{Bor}(X) \setminus I$ is equivalent to the quotient Boolean algebra $\operatorname{Bor}(X)/I$ (which is the separative quotient of \mathbf{P}_I).

The generic real

A forcing notion of the form $\mathrm{Bor}(\omega^\omega)/I$ adds the *generic real*, denoted \dot{g} and defined in the following way:

$$\llbracket \dot{g}(n) = m \rrbracket = \llbracket (n,m) \rrbracket_I$$

where [(n, m)] is the basic clopen in ω^{ω}).

Genericity

Of course, the generic ultrafilter can be recovered from the generic real in the following way:

$$G = \{B \in Bor(X) : g \in B\}$$

where g denotes the generic real.

The σ -ideal

We say that a σ -ideal I is generated by closed sets, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n < \omega} F_n$.

Theorem (Solecki)

Let I be a σ -ideal generated by closed sets. If $A \subseteq X$ is analytic, then either $A \in I$, or else A contains a G_{δ} set G such that $G \notin I$.

Corollary

From the above theorem of Solecki we get that if I is generated by closed sets, then \mathbf{P}_I is forcing equivalent to $\mathbf{Q}_I = \mathbf{\Sigma}_1^1 \setminus I$ (\mathbf{P}_I is dense in \mathbf{Q}_I).

Theorem (Zapletal)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is proper.

Axiom A

Recall that a forcing notion **P** satisties Baumgartner's $Axiom\ A$ if there is a sequence of partial orders \leq_n on **P** such that $\leq_0 = \leq$, $\leq_{n+1} \subseteq \leq_n$ and

- if $\langle p_n \in \mathbf{P}, n < \omega \rangle$ is such that $p_{n+1} \leq_n p_n$, then there is $q \in \mathbf{P}$ such that $q \leq_n p_n$ for all n,
- for every $p \in \mathbf{P}$, for every n and for every name $\dot{\alpha}$ for an ordinal there exist $q \in \mathbf{P}$ and a countable set of ordinals A such that $q \leq_n p_n$ for each $n < \omega$, and $q \Vdash \dot{\alpha} \in A$.

Proposition (MS)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^{\omega}$ and fix I. Let $A \subseteq \omega^{\omega}$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to A.

Game $G_I(T)$

Consider the following game (between Adam and Eve).

- in his *n*-th move, Adam picks $au_n \in T$ such that au_{n+1} extends au_n .
- in her *n*-th move, Eve picks a clopen set O_n in ω^{ω} such that

$$\operatorname{proj}[T_{\tau_n}] \notin \mathcal{I} \Rightarrow O_n \cap \operatorname{proj}[T_{\tau_n}] \notin \mathcal{I}.$$

Winning condition

By the end of a play, Adam and Eve have a sequence of closed sets E_k in ω^ω defined as follows:

$$E_k = 2^{\omega} \setminus \bigcup_{i < \omega} O_{\rho^{-1}(i,k)}.$$

(ρ is some fixed bijection between ω and ω^2). Define $x = \pi(\bigcup_{n < \omega} \tau_n) \in \omega^{\omega}$. Adam wins if and only if

$$x \notin \bigcup_{k < \omega} E_k$$
.

Lemma

Eve has a winning strategy in $G_I(T)$ if and only if $A = \text{proj}[T] \in I$.

Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\operatorname{proj}[S]$ we denote the set of points $x \in \omega^{\omega}$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then proj[S] is an analytic subset of A and $\text{proj}[S] \notin I$.

Forcing with strategies

Consider the following forcing T_I :

 $\{S: S \text{ is a winning strategy for Adam in } G_I(T) \text{ for some tree } T\}$ ordered as follows:

$$S_0 \leq S_1 \text{ iff } \operatorname{proj}[S_0] \subseteq \operatorname{proj}[S_1].$$

Dense embedding

Notice that $\mathbf{T}_I \ni S \mapsto \operatorname{proj}[S] \in \mathbf{Q}_I$ is a dense embedding, hence the three forcing notions \mathbf{P}_I , \mathbf{Q}_I and \mathbf{T}_I are forcing equivalent. Let us show that \mathbf{T}_I satisfies Axiom A.

Winning condition revised

Recall that the winning condition for Adam in $G_I(T)$ says that

$$x \notin \bigcup_{k} E_{k}$$
.

Fix k. For each play in $G_I(T)$ both x and E_k are built "step-by-step" (E_k from basic clopen sets which sum up to $\omega^\omega \setminus E_k$). Hence, if π is a play and $x \not\in E_k$, then there is $m < \omega$ such that the partial play $\pi \upharpoonright m$ already determines that " $x \not\in E_k$ ".

Fusion

Let $S \in \mathbf{T}_I$ be a winning strategy for Adam. For each play π in S there is the least $m < \omega$ such that $\pi {\upharpoonright} m$ determines that " $x \notin E_i$ " for $i \le k$. Therefore, we can define the k-th front of the tree S, denoted by $F_k(S)$ so that each play determines " $x \notin E_i$ " before passing through $F_k(S)$.

Axiom A

We define the inequalities \leq_k as follows: $S_0 \leq S_1$ if and only if

- $S_0 \leq S_1$,
- $F_k(S_0) = F_k(S_1)$.

Fubini power

Recall the classical definition of the *Fubini product* of two σ -ideals I and J (on X and Y, resp.). For $A \subseteq X \times Y$

$$A \in I * J$$
 iff $\{x \in X : A_x \notin J\} \in I$.

This allows to define I^n for each $n < \omega$. We can also define I^{α} (for $\alpha < \omega_1$) as follows

Definition

Call a set $D \subseteq X^{\alpha}$ an (I, α) tree if

(i) for each $\beta<\alpha$ and for each $x\in\pi_{\alpha,\beta}[D]$ we have

$$(\pi_{\alpha,\beta+1}[D])_{\mathsf{X}} \not\in \mathcal{I}$$

(ii) for each limit $\beta < \alpha$ and $x \in X^{\beta}$,

$$x \in \pi_{\alpha,\beta}[D] \quad \Leftrightarrow \quad \forall \gamma < \beta \quad x | \gamma \in \pi_{\alpha,\gamma}[D].$$

Say that D is an (I, α) full tree if in (i): $X \setminus (\pi_{\alpha,\beta+1}[D])_x \in \mathcal{I}$.

Definable trees

If Γ is a projective class, then we say that D is an (I,α) Γ tree if D is a tree and

(iii) $\pi_{\alpha,\beta}[D] \in \Gamma$ for each $\beta \leq \alpha$ (so in particular $D \in \Gamma$).

Definition

We say that $A \subseteq X^{\alpha}$ is in I^{α} , if there is a (I, α) full tree D disjoint from A.

Theorem (Zapletal)

If I is an *iterable* σ -ideal and $\alpha < \omega_1$, then the countable-support iteration $(\mathbf{P}_I)^{*\alpha}$ is equivalent to the forcing \mathbf{P}_{I^α} . Moreover, each I^α -positive Borel set contains an (I,α) Bor tree.

Definition

We say that I is Π_1^1 on Σ_1^1 if for each Σ_1^1 set $A \subseteq X \times X$ the set

$$\{x \in X : A_x \in I\}$$
 is Π^1_1 .

Theorem (Kanovei, Zapletal)

Suppose I is a Π^1_1 on Σ^1_1 iterable σ -ideal and let $\alpha<\omega_1$. Then for any analytic set $A\subseteq X^\alpha$

- either $A \in I^{\alpha}$,
- or A contains an (I, α) Bor tree.

Lemma

Let I be a Π_1^1 on Σ_1^1 σ -ideal generated by closed sets. If $V \subseteq W$ is a forcing extension, then I is Π_1^1 on Σ_1^1 and generated by closed sets also in W.

Iterability

The above lemma in particular implies that Π_1^1 on Σ_1^1 σ -ideals generated by closed sets, are iterable.

Proposition (MS)

Let I be a Π^1_1 on Σ^1_1 σ -ideal generated by closed sets. If $A\subseteq X^\omega$ is analytic, then

- either $A \in I^{\omega}$,
- or A contains a (I, ω) \mathbf{G}_{δ} tree.

Idealized forcing Iteration

The end

Thank You.