Exploring Singular Cardinal Combinatorics

Dima Sinapova UCI

June 16, 2009

Dima Sinapova UCI Exploring Singular Cardinal Combinatorics

æ

Introduction

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{cf(\kappa)} < \kappa$, then $\kappa^{cf(\kappa)} = \kappa^+$.

Theorem

(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_{ω} is strong limit and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$.

Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ^{++} . This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.

Square principles

- These principles were isolated by Jensen in his fine structure analysis of L.
- ► □_κ states that there is a coherent sequence of closed and unbounded sets singularizing ordinals α < κ⁺.
- \Box_{κ}^* is a weakening which allows up to κ guesses for each club.
- The Approachability Property, AP_{κ} .
 - States that almost all points in κ⁺ are "approachable"
 - Approachability can be viewed as a weak square-like principle and is closely connected with the concept of scales.

・ロン ・回と ・ヨン ・ヨン

Shelah's theorem and PCF

Theorem (Shelah) If $2^{\aleph_n} < \aleph_{\omega}$ for every $n < \omega$, then $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

- A famous conjecture is that the subscript 4 can be replaced by 1.
- The body of techniques used by Shelah is called PCF theory.
- ► A central concept in PCF theory is the notion of *scales*

Scales

Let κ be a singular cardinal and $\kappa = \sup_{\eta < cf(\kappa)} \kappa_{\eta}$. For f and g in $\prod_{\eta < cf(\kappa)} \kappa_{\eta}$, we say that $f <^* g$ if $f(\eta) < g(\eta)$ for all large η .

A scale of length κ^+ is a sequence of functions $\langle f_{\alpha} \mid \alpha < \kappa^+ \rangle$ from $\prod_{\eta < cf(\kappa)} \kappa_{\eta}$ which is increasing and cofinal with respect to $<^*$.

A point $\gamma < \kappa^+$ of cofinality between $cf(\kappa)$ and κ is a good point iff there exists an $A \subseteq \gamma$, unbounded in γ such that $\langle f_{\alpha}(\eta) | \alpha \in A \rangle$ is strictly increasing for all large η . If A is club in γ , then γ is a very good point.

A scale is (very) good iff modulo the club filter on κ^+ , almost every point of cofinality between $cf(\kappa)$ and κ is (very) good.

소리가 소문가 소문가 소문가

Combinatorial properties and some relative consistency results:

- 1. $\Box \rightarrow \Box^* \rightarrow AP \rightarrow all \text{ scales are good.}$
- 2. There are no good scales above a supercompact. I.e. if κ is supercompact, $cf(\nu) < \kappa < \nu$, there are no good scales at ν .
- 3. For all $\lambda < \kappa$, $\Box_{\kappa,\lambda} \to VGS_{\kappa}$.
- 4. $\Box_{\kappa}^* \not\rightarrow VGS_{\kappa}$.
- 5. $VGS_{\kappa} \not\rightarrow \Box_{\kappa}^*$.

Gitik and Sharon showed that:

1. The failure of SCH does not imply weak square

2. The existence of a very good scale does not imply weak square In particular, they showed the following:

Theorem

(Gitik, Sharon) If κ is supercompact, then there is a generic extension in which $cf(\kappa) = \omega$, SCH fails at κ , VGS_{κ}, and \neg AP_{κ}.

Cummings and Foreman showed that the approachability property fails precisely because there is a bad scale at κ .

Gitik and Sharon pushed down this construction to make κ be $\aleph_{\omega^2}.$

The Main Theorem

Theorem

(S) Suppose κ is supercompact, λ is a regular cardinal less than κ , and GCH holds. Then there is a generic extension, in which:

- 1. κ becomes \aleph_{λ^2} ,
- 2. SCH fails at κ ,
- 3. there is a very good scale at κ , and
- 4. there is a bad scale at κ .

Before we sketch the proof, let us recall some relevant types of forcings:

- 1. Magidor forcing adds a club set of order type λ in κ , starting with an increasing sequence $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ of normal measures on κ .
- Supercompact Prikry forcing adds an increasing ω-sequence of sets x_n ∈ (P_κ(η))^V with η = U_n x_n, starting form a supercompactness measure U on κ.
- 3. Gitik-Sharon forcing adds an increasing ω -sequence of sets $x_n \in (\mathcal{P}_{\kappa}(\kappa^{+n}))^V$ with $\kappa^{+\omega} = \bigcup_n x_n$, starting from a sequence $\langle U_n \mid n < \omega \rangle$ of supercompactness measures on $\mathcal{P}_{\kappa}(\kappa^{+n})$.

Introduction The main forcing Properties of the forcing

Here we start from an increasing sequence $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ of supercompactness measures on $\mathcal{P}_{\kappa}(\kappa^{+\alpha})$ and add an increasing and continuous λ -sequence of sets $x_{\alpha} \in \mathcal{P}_{\kappa}(\kappa^{+\alpha})$, for $\alpha < \lambda$ such that $\kappa^{+\lambda} = \bigcup_{\alpha < \lambda} x_{\alpha}$.

In order to collapse cardinals, we need a sequence $\langle K_{\alpha} \mid \alpha < \lambda \rangle$ where each K_{α} is $Ult_{U_{\alpha}}$ -generic for $Col(\kappa^{+\lambda+2}, < j_{\alpha}(\kappa))$.

Introduction The main forcing Properties of the forcing

More precisely, we prepare the ground model so that:

$$\blacktriangleright 2^{\kappa} = \kappa^{+\lambda+2}$$

- ⟨U_α | α < λ⟩ is a Mitchell-order increasing sequence where each U_α is a supercompactness measure on P_κ(κ^{+α})
- ⟨K_α | α < λ⟩ is such that each K_α is Ult_{U_α}-generic for Col(κ^{+λ+2}, < j_α(κ)).

・ロン ・回と ・ヨン ・ヨン

Conditions are of the form $p = \langle g, f, H, F \rangle$, where:

- $\operatorname{dom}(g) = \operatorname{dom}(f)$ is a finite subset of λ
- for α ∈ dom(g), g(α) ∈ P_κ(κ^{+α}), and g is strictly increasing i.e. for α < β, in dom(g), we have
 - ▶ $g(\alpha) \subset g(\beta)$ ▶ $ot(g(\alpha)) < \kappa_{g(\beta)} = \kappa \cap g(\beta).$
- For each α ∈ dom(g), f(α) collapses cardinals between the points given by g i.e.

1.
$$f(\alpha) \in Col(\kappa_{g(\alpha)}^{+\lambda+2}, < \kappa_{g(\beta)})$$
, where $\beta = \min(\operatorname{dom}(g) \setminus \alpha + 1)$;
2. $f(\max(\operatorname{dom}(g))) \in Col(\kappa_{g(\alpha)}^{+\lambda+2}, < \kappa)$.

Definition continued; $p = \langle g, f, H, F \rangle$, where:

- $\operatorname{dom}(H) = \operatorname{dom}(F) = \lambda \setminus \operatorname{dom}(g).$
- For α ∉ dom(g), H(α) is a "measure one" set of potential ways to extend g.
- ▶ for $\alpha \notin \text{dom}(g)$, $F(\alpha)$ is a function with domain $H(\alpha)$ and gives the potential ways to extend f for every $y \in H(\alpha)$.

"Measure one" above refers to the increasing sequence $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ of supercompactness measures on $\mathcal{P}_{\kappa}(\kappa^{+\alpha})$ and Skolem-Lowenheim collapses of these measures.

The ordering is defined in the usual way.

Introduction The main forcing Properties of the forcing

Properties of the forcing

- 1. \mathbb{P} has the $\mu = \kappa^{+\lambda+1}$ chain condition.
- 2. \mathbb{P} has the Prikry property.
- 3. Let G be \mathbb{P} generic. Let $g^* = \bigcup_{\langle g,H \rangle \in G} g$. Then g^* is an increasing function with domain λ and with $g^*(\alpha) \in \mathcal{P}_{\kappa}(\kappa^{+\alpha})$ for each $\alpha \in \operatorname{dom}(g^*)$. Set $x_{\alpha} = g^*(\alpha)$, and $\kappa_{\alpha} = \kappa \cap x_{\alpha}$.
- 4. κ and each κ_{α} are preserved

5.
$$(\kappa^{+\lambda})^V = \bigcup_{\alpha < \lambda} x_{\alpha}$$

6. In
$$V[G]$$
, $cf(\kappa) = \lambda$, for each $\alpha < \lambda$, $cf((\kappa^{+\alpha+1})^V) = \lambda$, and $\mu = (\kappa^{+\lambda+1})^V = (\kappa^+)^{V[G]}$.

The Very Good Scale

٠

We can arrange that in V there are functions $\langle F_{\gamma}^{\xi} | \gamma < \mu, \xi < \lambda \rangle$, from κ to κ , such that for all $\xi < \lambda, \gamma < \mu$, $j_{U_{\xi}}(F_{\gamma}^{\xi})(\kappa) = \gamma$.

In V[G], define $\langle f_{\gamma} \mid \gamma < \mu \rangle$ in $\prod_{\xi < \lambda} \kappa_{\xi}^{+\lambda+1}$, by

$$f_{\gamma}(\xi) = F_{\gamma}^{\xi}(\kappa_{\xi})$$

- 1. Increasing: Just use that if $A_{\xi} \in U_{\xi}$, $\xi < \lambda$, then $x_{\xi} \in A_{\xi}$ for all large ξ .
- 2. Cofinal: We use a bounding lemma.

・同下 ・ヨト ・ヨト

 $\langle f_{\gamma} \mid \gamma < \mu \rangle$ is very good: i.e. for almost all $\gamma < \mu$ with $\lambda < \operatorname{cf}(\gamma) < \kappa$ there exists a club $A \subseteq \gamma$ such that $\langle f_{\alpha}(\eta) \mid \alpha \in A \rangle$ is strictly increasing for all large η .

Proof.

(Sketch) Let $\gamma < \mu$ with $\lambda < cf(\gamma) < \kappa$. (Note that $cf(\gamma)^{V} = cf(\gamma)^{V[G]}$) Let $A \subset \gamma$ with $o.t.(A) = cf(\gamma)$, $A \in V$.

For
$$\xi < \lambda$$
 and $\delta < \eta$ in A , $j_{U_{\xi}}(F_{\delta}^{\xi})(\kappa) = \delta < \eta = j_{U_{\xi}}(F_{\eta}^{\xi})(\kappa)$, so $\{x \mid F_{\delta}^{\xi}(\kappa_x) < F_{\eta}^{\xi}(\kappa_x)\} \in U_{\xi}$.
Using $\lambda < \operatorname{card}(A) < \kappa$ and taking intersections of measure one sets we get:

$$\forall \xi < \lambda, \ \forall_{U_{\xi}} x, \ \langle F_{\delta}^{\xi}(\kappa_{x}) \mid \delta \in A \rangle \text{ is increasing.}$$

So for all large ξ , $\langle F_{\gamma}^{\xi}(\kappa_{\xi}) | \delta \in A \rangle$ is increasing. I.e. $\langle f_{\delta}(\xi) | \delta \in A \rangle$ is increasing.

The Bad Scale

The entire construction is done after fixing in advance a bad scale $\langle G_{\beta} \mid \beta < \mu \rangle$ in $\prod_{\alpha < \lambda} \kappa^{+\alpha+1}$ that exists by a lemma of Shelah. The lemma makes use of the supercompactness of κ .

Also we fix (again in advance) an inaccessible $\delta < \kappa$ so that there is a stationary set of bad points of cofinality $\delta^{+\lambda+1}$.

We arrange the defined forcing to use only measures of completeness greater than $\delta^{+\lambda+1}.$

Lemma

 $V[G] \models A \subset ON, o.t.(A) = \tau, \lambda < cf^{V}(\tau) = \tau \le \delta^{+\lambda+1}$, then there is a $B \in V$ such that $B \subset A$, and B is unbounded in A.

For every $\alpha < \lambda$ and $\eta < \kappa^{+\alpha+1}$, fix $F^{\eta}_{\alpha} : \mathcal{P}_{\kappa}(\kappa^{+\alpha}) \longrightarrow V$, such that

$$[F^{\eta}_{\alpha}]_{U_{\alpha}} = \eta$$

Define in V[G], $\langle g_{\beta} \mid \beta < \mu \rangle$ in $\prod_{\alpha < \lambda} \kappa_{\alpha}^{+\alpha+1}$ by setting: $g_{\beta}(\alpha) = F_{\alpha}^{G_{\beta}(\alpha)}(x_{\alpha})$

(日) (四) (王) (王) (王)

$$\langle g_{\gamma} \mid \gamma < \mu
angle$$
 is not good: (sketch of proof)

- 1. Suppose $\beta < \mu$ with $cf(\beta) = \delta^{+\lambda+1}$ is a good point for $\langle g_{\gamma} | \gamma < \mu \rangle$ in V[G]. Then β is a good point in V for $\langle G_{\gamma} | \gamma < \mu \rangle$.
- 2. There are stationary many bad points with cofinality $\delta^{+\lambda+1}$ in V for $\langle G_{\gamma} | \gamma < \mu \rangle$ and \mathbb{P} has the μ chain condition, so $\langle g_{\gamma} | \gamma < \mu \rangle$ is not good.

The proof for (1) uses that we can fix an unbounded $A \subset \beta$ in Vand $\nu < \lambda$ witnessing goodness of β in V[G]. Then we can show that $(\forall U_{\alpha} y) \langle F_{\alpha}^{G_{\gamma}(\alpha)}(y) | \gamma \in A \rangle$ is increasing for large α . Finally, use that $[F_{\alpha}^{G_{\gamma}(\alpha)}]_{U_{\alpha}} = G_{\gamma}(\alpha)$.

We conclude with an open question:

Is it consistent that \aleph_{ω} is strong limit, *SCH* fails at \aleph_{ω} , and weak square fails at \aleph_{ω} ?

・ロン ・回と ・ヨン・

æ