On properties of families of sets

Lajos Soukup

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Joint work with A. Hajnal, I. Juhász and Z. Szentmiklóssy, and with S. Fuchino

Theorem (Bernstein)

There is $X \subset \mathbb{R}$ such that neither X nor $\mathbb{R} \setminus X$ contain a perfect subset. The family of perfect subsets of the reals has property B.

Definition

A family \mathcal{A} has **property B** iff there is a set X such that $X \cap A \neq \emptyset$ and $A \setminus X \neq \emptyset$ for each $A \in \mathcal{A}$.

Theorem (Bernstein)

If $|\mathcal{A}| = \kappa$ and $|\mathcal{A}| \ge \kappa$ for each $\mathcal{A} \in \mathcal{A}$ then \mathcal{A} has **property** B.

Theorem (E. W. Miller, 1937)

Let $n \in \omega$. If \mathcal{A} is a family of **infinite countable sets**, and $|\mathcal{A} \cap \mathcal{A}'| < n$ for each $\mathcal{A} \neq \mathcal{A}' \in \mathcal{A}$ then \mathcal{A} has **property** \mathcal{B} .

 \mathcal{A} is μ -almost-disjoint iff $|A \cap A'| < \mu$ for $A \neq A' \in \mathcal{A}$

Miller's results

\mathcal{A} is μ -almost-disjoint iff $|A \cap A'| < \mu$ for $A \neq A' \in \mathcal{A}$

Theorem (E. W. Miller)

If a family A of infinite countable sets is n-almost disjoint for some $n \in \omega$ then A has **property** B.

Proof:

- $\mathcal{A} = \{A_k : k < \omega\}$. Let $A'_k = A_k \setminus \cup \{A_\ell : \ell < k\}$.
- Pick $\mathbf{x}_k \in A'_k$ and let $\mathbf{X} = \{\mathbf{x}_k : k < \omega\}$.
- $x_k \in X \cap A_k$, $|X \cap A_k| \le k+1 < \omega$.
- $\exists X \ (\forall A \in \mathcal{A}) \ 0 < |A \cap X| < \omega$

Theorem (E. W. Miller)

If a family A of infinite countable sets is n-almost disjoint for some $n \in \omega$ then A has **property** B.

•
$$\mathcal{A} = \{A_{\alpha} : \alpha < \omega_1\} \subset [\omega_1]^{\omega}$$

• $\mathcal{A} \in M_1 \prec M_2 \cdots \prec M_{\alpha} \prec M_{\alpha+1} \prec \cdots \prec \langle H(\kappa), \in, \triangleleft \rangle$,
• continuous chain of elementary submodels $(M_0 = \emptyset)$
• For $\alpha < \omega_1$ consider the family $\mathcal{A} \cap (M_{\alpha+1} \setminus M_{\alpha}) = \{A_{\alpha,k} : k < \omega\}$
• if $A \in M_{\alpha+1} \setminus M_{\alpha}$ then $A \subset M_{\alpha+1}$ and $|A \cap M_{\alpha}| < n$
• Let $A'_{\alpha,k} = (A_{\alpha,k} \setminus (\cup \{A_{\alpha,\ell} : \ell < k\})) \setminus M_{\alpha}$.
• Pick $x_{\alpha,k} \in A'_{\alpha,k}$. Let $X = \{x_{\alpha,k} : \alpha < \omega_1, k < \omega\}$.
• $x_{\alpha,k} \in X$, $|X \cap A_{\alpha,k}| \le |M_{\alpha} \cap A_{\alpha,k}| + |\{x_{\alpha,0}, \dots, x_{\alpha,k}\}| \le n + k$
• $\exists X \ (\forall A \in \mathcal{A}) \ 0 < |X \cap A| < \omega$
• $A'_{\alpha,k} \subset A_{\alpha,k} \ A_{\alpha,k} \setminus A'_{\alpha,k}$ is finite
• $A'_{\alpha,k} \cap A'_{\beta,m} = \emptyset$ if $\alpha < \beta$ then $A_{\alpha,k} \subset M_{\beta}$ and $A'_{\beta,m} \cap M_{\beta} = \emptyset$.

Theorem (E. W. Miller)

If a family A of infinite countable sets is n-almost disjoint for some $n \in \omega$ then A has **property** B.

•
$$\mathcal{A} = \{A_{\alpha,k} : \alpha < \omega_1, K < \omega\} \subset [\omega_1]^{\omega}$$

• $A'_{\alpha,k} \subset A_{\alpha,k}, A_{\alpha,k} \setminus A'_{\alpha,k}$ is finite, $A'_{\alpha,k} \cap A'_{\beta,m} = \emptyset$

• \mathcal{A} is ω -essentially disjoint

A family \mathcal{A} is μ -essentially disjoint (μ -ED) iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\mu}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

Theorem (Erdős-Hajnal, 1961)

If a family A of infinite countable sets is n-almost disjoint for some $n \in \omega$ then A is ω -ED.

Theorem (E. W. Miller)

If a family A of infinite countable sets is n-almost disjoint for some $n \in \omega$ then A has **property** B.

A family \mathcal{A} is μ -essentially disjoint (μ -ED) iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\mu}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

Theorem (Erdős-Hajnal, 1961)

If \mathcal{A} is an n-almost disjoint family of infinite countable countable sets for some $n \in \omega$, then \mathcal{A} is ω -ED.

A family \mathcal{A} of infinite sets has property $B(\mu)$ iff there is a set X such that $0 < |X \cap A| < \mu$ for each $A \in \mathcal{A}$.

Theorem (Erdős-Hajnal, 1961)

If A is an n-almost disjoint family of infinite countable sets for some $n \in \omega$, then A has property $B(\omega)$.

 \mathcal{A} is μ -ED iff $\forall A \in \mathcal{A} \exists F(A) \in [A]^{<\mu}$ s. t. $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint \mathcal{A} has property $B(\mu)$ iff $\exists X \ \forall A \in \mathcal{A} \ 0 < |X \cap A| < \mu$.

 \mathcal{A} is ω -ED implies \mathcal{A} has property $B(\omega)$ implies \mathcal{A} has property B.

• We consider only subfamilies of $[\lambda]^{\kappa}$ for some $\omega \leq \kappa \leq \lambda$.

Notation: $M(\lambda, \kappa, \mu) \to \Phi$ means that every μ -almost disjoint family $\mathcal{A} \subset [\lambda]^{\kappa}$ has property Φ Miller, Erdös-Hajnal: $M(\lambda, \omega, n) \to B$, $M(\lambda, \omega, n) \to B(\omega)$, $M(\lambda, \omega, n) \to \omega$ -ED,

$\mu \leq \kappa \leq \lambda$ $\Psi \rightarrow \Phi \text{ iff } \mathsf{M}(\lambda, \kappa, \mu) \rightarrow \Psi \text{ implies } \mathsf{M}(\lambda, \kappa, \mu) \rightarrow \Phi.$

DR: $\forall A \in \mathcal{A} \exists F(A) \in [A]^{|A|}$ s t { $F(A) : A \in \mathcal{A}$ } is disjoint **C**(κ) : $\exists f \forall A \in \mathcal{A} f''A = \kappa$ **wC**(κ) : $\exists f \forall A \in \mathcal{A} f''A \in [\kappa]^{\kappa}$ $\chi \leq \kappa$: $\exists f (ran(f) \subset \kappa and$ $\forall A \in \mathcal{A} |f''A| \geq 2$)

Colorings

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, f: X
 ightarrow
 ho function
- f is a proper coloring of \mathcal{A} iff $|f''\mathcal{A}| \ge 2$ for each $\mathcal{A} \in \mathcal{A}$.
- f is called a conflict free coloring iff $\forall A \in \mathcal{A} \exists \xi_A \in \rho \exists ! a \in A$ $f(a) = \xi_A$.
- $\chi_{CF}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

 $f: \cup \mathcal{A} \to \rho \text{ is a conflict free coloring for } \mathcal{A} \text{ iff} \\ \forall \mathcal{A} \in \mathcal{A} \exists \xi_{\mathcal{A}} \in \rho \exists ! a \in \mathcal{A} f(a) = \xi_{\mathcal{A}}.$

 $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

- Let $\mathcal{A} \subset [\lambda]^{\omega}$
- If \mathcal{A} is ω -ED, then $\chi_{CF}(\mathcal{A}) \leq \omega$.
- Proof: For $A \in \mathcal{A}$ let $F(A) \in [A]^{<\omega}$ s.t. $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint
- Let $f: \lambda \to \omega$ s.t. $f \upharpoonright A \setminus F(A)$ is injective
- If A ∈ A then F(A) is finite and f ↾ A \ F(A) is injective so there is a ∈ A \ F(A) s.t. f(a) ∉ f"F(A).
- Miller: If $\mathcal{A} \subset [\lambda]^{\omega}$ is *n*-a.d. for some $n \in \omega$ then $\chi_{CF}(\mathcal{A}) \leq \omega$.
- $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A}).$

$\mu \leq \kappa \leq \lambda$ $\Psi \rightarrow \Phi \text{ iff } \mathsf{M}(\lambda, \kappa, \mu) \rightarrow \Psi \text{ implies } \mathsf{M}(\lambda, \kappa, \mu) \rightarrow \Phi.$

DR: $\forall A \in \mathcal{A} \exists F(A) \in [A]^{|A|}$ s t $\{F(A) : A \in \mathcal{A}\}$ is disjoint $C(\kappa)$: $\exists f \ \forall A \in \mathcal{A} \ f''A = \kappa$ $\mathsf{wC}(\kappa): \exists f \ \forall A \in \mathcal{A} \ f''A \in \left\lceil \kappa \right\rceil^{\kappa}$ $\chi \leq \kappa$: $\exists f (ran(f) \subset \kappa and$ $\forall A \in \mathcal{A} | f''A | > 2$ $\chi_{\mathsf{CF}} \leq \kappa$: $\exists f (\operatorname{ran}(f) \subset \kappa \text{ and}$ $\forall A \in \mathcal{A} \exists \xi \in \kappa \exists ! a \in A$ $f(a) = \xi$

n-almost disjoint families

- If $\mathcal{A} \subset [\lambda]^{\omega}$ is *n*-a.d. for some $n \in \omega$ then \mathcal{A} is ω -ED, and so $\chi_{\mathsf{CF}}(\mathcal{A}) \leq \omega$.
- There is a 2-ad. family $\mathcal{A} \subset [\omega_1]^{\omega_1}$ which is not ω -ED.
- Remark: A above is ω₁-ED, and so it has property B, but ω₁-ED does not implies χ_{CF}(A) ≤ ω.

Theorem (HJSSs)

For each infinite cardinals $\kappa \leq \lambda$ and $n \in \omega$ if $\mathcal{A} \subset [\lambda]^{\kappa}$ is n-almost disjoint then $\chi_{\mathsf{CF}}(\mathcal{A}) \leq \omega$.

•
$$\chi_{\mathrm{CF}}([\lambda]^{\kappa}, \mu\text{-a.d.}) = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\lambda]^{\kappa}, |\mathcal{A}| = \lambda, \mathcal{A} \text{ is } \mu\text{-ad}\}.$$

Theorem (HJSSs)

 $\chi_{\mathrm{CF}}([\lambda]^{\kappa}, n\text{-}a.d.) \leq \omega$ for each infinite cardinals $\kappa \leq \lambda$ and $n \in \omega$.

Def: $\chi_{CF}([\lambda]^{\kappa}, \mu\text{-a.d.}) \leq \rho$ iff every $\mu\text{-almost disjoint family } \mathcal{A} \subset [\lambda]^{\kappa}$ of size λ has a conflict free coloring with ρ colors. Thm: $\chi_{CF}([\lambda]^{\kappa}, n\text{-a.d.}) \leq \omega$.

- Do we really need ω colors?
- Special case: Let *E* be the family of lines of the plane ℝ².
 E is 2-almost disjoint.
- Every line contains exactly one blue point or exactly one red point

• $\chi_{CF}(\mathcal{E}) \leq 3$ $\chi_{CF}(\mathcal{E}) = 3$

n-almost disjoint families: sharper theorems

- Do we really need ω colors?
 Special case: Let ε be the
- family of lines of the plane \mathbb{R}^2 . \mathcal{E} is 2-almost disjoint.
- Every line contains exactly one blue point or exactly one red point

•
$$\chi_{\mathsf{CF}}(\mathcal{E}) \leq 3$$
 $\chi_{\mathsf{CF}}(\mathcal{E}) = 3$

- f is a weak conflict free coloring for \mathcal{A} iff $\forall A \in \mathcal{A} \exists \xi \exists ! a \in A$ $f(a) = \xi$.
- $w\chi_{CF}(\mathcal{A})$ is the minimal ρ s.t. \mathcal{A} has a weak conflict free coloring with ρ colors.
- $w\chi_{\mathrm{CF}}(\mathcal{A}) \leq \chi_{\mathrm{CF}}(\mathcal{A}) \leq w\chi_{\mathrm{CF}}(\mathcal{A}) + 1$

- $f: \cup \mathcal{A} \to \rho$ is a **CF-coloring** iff $\forall A \in \mathcal{A} \ (\exists \zeta < \rho) \ |A \cap f^{-1}{\{\zeta\}}| = 1.$
- f is wCF-coloring if dom $(f) \subset \cup \mathcal{A}$
- $\chi_{\mathrm{CF}}([\lambda]^{\kappa}, \mu\text{-a.d.}) = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\lambda]^{\kappa}, |\mathcal{A}| = \lambda, \mathcal{A} \text{ is } \mu\text{-ad}\}.$
- $w\chi_{CF}([\lambda]^{\kappa}, \mu\text{-a.d.}) = \sup\{w\chi_{CF}(\mathcal{A}) : \mathcal{A} \subset [\lambda]^{\kappa}, |\mathcal{A}| = \lambda, \text{ is } \mu\text{-ad}\}.$
- $w\chi_{CF}([\lambda]^{\kappa}, \mu\text{-a.d.}) \leq \rho$ iff every $\mu\text{-almost disjoint family } \mathcal{A} \subset [\lambda]^{\kappa}$ of size λ has a weak conflict free coloring with ρ colors.
- $w\chi_{CF}([\omega]^{\omega}, 2-a.d.) \le 2.$ • $w\chi_{CF}([\omega_1]^{\omega}, 2-a.d.) \le 2.$ • $w\chi_{CF}([\omega_2]^{\omega}, 2-a.d.) \le 3$ and $w\chi_{CF}([\omega_3]^{\omega}, 2-a.d.) \le 3$

Theorem (HJSSz)

If κ is an infinite cardinal, m, d are natural numbers, then

$$w\chi_{\mathrm{CF}}([\kappa^{+m}]^{\kappa}, d-a.d.) \leq \left\lfloor \frac{(m+1)(d-1)+1}{2}
ight
floor+1.$$

Theorem

If κ is an infinite cardinal, m,d are natural numbers, then

$$w\chi_{\mathrm{CF}}(\left[\kappa^{+m}
ight]^{\kappa}, d$$
-a.d. $) \leq \left\lfloor rac{(m+1)(d-1)+1}{2}
ight
floor + 1.$

Theorem

If GCH holds, and if d = 2 or d is odd then we have equality in the result above for each κ and m.

• Do we really need ω colors?

Theorem Yes, we need: $\chi_{CF}([\beth_{\omega}]^{\omega}, 2\text{-}a.d.) = \omega.$

- $w\chi_{\mathrm{CF}}(\mathcal{A}) \leq \chi_{\mathrm{CF}}(\mathcal{A}) \leq w\chi_{\mathrm{CF}}(\mathcal{A}) + 1$
- GCH: $w\chi_{CF}([\omega_m]^{\omega}, 2\text{-a.d.}) = \lfloor m/2 \rfloor + 2;$
- $\lfloor m/2 \rfloor + 2 \leq \chi_{CF}([\omega_m]^{\omega}, 2-a.d.) \leq \lfloor m/2 \rfloor + 3.$
- Easy $\chi_{\mathrm{CF}}([\omega]^{\omega}, 2\text{-a.d.}) = \chi_{\mathrm{CF}}([\omega_1]^{\omega}, 2\text{-a.d.}) = 3$
- Open: GCH $\vdash \chi_{CF}([\omega_2]^{\omega}, 2\text{-a.d.}) = 4$
- GCH implies $\chi_{CF}([\omega_3]^{\omega}, 2\text{-a.d.}) = 4$
- Question: Assume that f is a function, dom(f) ⊂ Q², ran(f) ⊂ 3, dom(f) does not contain 3 collinear points. Is there a function g : Q² → 3 such that g ⊃ f and g is a CF-coloring for the lines?

- If $n < \omega \leq \lambda$ then $\chi_{\rm CF}([\lambda]^{\omega}, n\text{-a.d.}) \leq \omega$
- One can conjecture: If $\omega_1 \leq \lambda$ then $\chi_{\mathrm{CF}}([\lambda]^{\omega_1}, \omega\text{-a.d.}) \leq \omega_1$

Theorem

Let $\omega_2 \leq \lambda$ be an infinite cardinal. Assume that $\mu^{\omega} = \mu^+$ for each $\mu < \lambda$ with $cf(\mu) = \omega$. Then $\chi_{CF}([\lambda]^{\kappa}, \omega$ -a.d.) $\leq \omega_2$ for each $\omega_2 \leq \kappa \leq \lambda$.

- $\chi_{\mathrm{CF}}([\lambda]^{\omega_2}, \omega\text{-a.d.}) \leq \omega_2$
- If $\omega_2 \leq \kappa \leq \lambda$ and $\mathcal{A} \subset [\lambda]^{\kappa}$ is ω -ad then there is $X \subset \lambda$ s.t. $\{A \cap X : A \in \mathcal{A}\} \subset [X]^{\omega_2}$

${\cal A}$ is ω -almost disjoint

 ω_1 colors may not be enough

★(λ): there is a stationary set $S \subset E_{\omega_1}^{\lambda}$ and an ω -almost disjoint family $\{A_{\alpha} : \alpha \in S\}$ such that $A_{\alpha} \subset \alpha$ is cofinal for $\alpha \in S$.

Theorem

Assume that GCH holds and we have $\bigstar(\lambda)$ for some regular cardinal $\lambda > \omega_1$. Then there is a stationary set $S^* \subset E_{\omega_1}^{\lambda}$ and there is an ω -almost disjoint family $\{E_{\alpha} : \alpha \in S^*\}$ such that (1) $E_{\alpha} \subset \alpha$ is cofinal in α for each $\alpha \in S^*$, (2) for each $B \in [\lambda]^{\lambda}$ there is $\alpha \in S^*$ with $E_{\alpha} \subset B$.

Corollary

Assume that GCH. If $\bigstar(\lambda)$ holds for some regular cardinal $\lambda > \omega_1$, then there is an ω -almost disjoint family $\mathcal{A} \subset [\lambda]^{\omega_1}$ with $\chi(\mathcal{A}) = \lambda$. Especially $\chi_{CF}([\lambda]^{\omega_1}, \omega$ -**a.d.**) = λ .

${\mathcal A}$ is ω -almost disjoint

 ω_1 colors may not be enough

★(λ): there is a stationary set $S \subset E_{\omega_1}^{\lambda}$ and an ω -almost disjoint family $\{A_{\alpha} : \alpha \in S\}$ such that $\cup A_{\alpha} = \alpha$ for each $\alpha \in S$.

 $\mathsf{GCH} + \bigstar(\lambda) \Longrightarrow \exists \ \omega\text{-}\mathsf{A}.\mathsf{D}. \ \mathcal{A} \subset [\lambda]^{\omega_1} \text{ s.t. } \chi(\mathcal{A}) = \lambda.$

Theorem

Assume GCH. If $\bigstar(\lambda)$ holds for some regular cardinal $\lambda > \omega_1$, then for each $\omega_1 < \kappa < \lambda$ there is an ω -almost disjoint family $\mathcal{F} \subset [\lambda]^{\kappa}$ with $\chi_{CF}(\mathcal{F}) = \omega_2$.

Corollary

$$Con(ZFC + \exists supercompact) \implies Con(ZFC + GCH + (1) \chi_{CF}([\omega_{\omega+1}]^{\omega_1}, \omega \text{-} a.d.) = \omega_{\omega+1},$$

(2) $\chi_{CF}([\omega_{\omega+1}]^{\omega_n}, \omega \text{-} a.d.) = \omega_2 \text{ for } 2 \leq n \leq \omega.$

${\mathcal A}$ is ω -almost disjoint

 ω_1 colors may be enough

Definition

Let μ be a singular cardinal with $cf(\omega) = \omega$. For a sufficiently large ϑ and $x \in \mathcal{H}(\vartheta)$, a (ω_1, μ) -dominating sequence over x is a continuous, strictly increasing sequence $\langle M_\alpha : \alpha < \mu^+ \rangle$ of elementary submodels of $\mathcal{H}(\vartheta)$ such that

(s1)
$$(\omega_1+1)\cup\{x\}\subset M_0$$
, $|M_lpha|\le\mu$ and $\mu^+\subseteq igcup_{lpha<\mu^+}M_lpha$,

(s2) for each $\alpha < \mu^+$ the set M_{α} is the union of sets $\{M'_{\alpha,n} : n < \omega\}$ such that $[M'_{\alpha,n}]^{\omega} \subset M_{\alpha}$.

Theorem (Fuchino-S.)

Assume $\nu^{\omega} = \nu^+$ for each cardinal ν with $cf(\nu) = \omega$. Let μ be a singular cardinal with $cf(\mu) = \omega$. If $\Box_{\omega_1,\mu}^{***}$ holds, then, for any sufficiently large χ and $x \in \mathcal{H}(\chi)$, there is a (ω_1, μ) -dominating sequence over x.

${\cal A}$ is ω -almost disjoint

 ω_1 colors may be enough

 $\langle M_{\alpha} : \alpha < \mu^+ \rangle \prec \mathcal{H}(\vartheta)$ is a a (ω_1, μ) -dominating sequence over x iff

- (s1) $(\omega_1+1)\cup\{x\}\subset M_0$, $|M_{\alpha}|\leq \mu$ and $\mu^+\subseteq \bigcup_{\alpha<\mu^+}M_{\alpha}$,
- (s2) for each $\alpha < \mu^+$ the set M_{α} is the union of sets $\{M'_{\alpha,n} : n < \omega\}$ such that $[M'_{\alpha,n}]^{\omega} \subset M_{\alpha}$.

Theorem

Let λ be an infinite cardinal. Assume that

(i)
$$\mu^{\omega} = \mu^+$$
 for each cardinal $\mu < \lambda$ with ${\sf cf}(\mu) = \omega$,

(ii) for each singular cardinal $\mu < \lambda$ with $cf(\mu) = \omega$ if ϑ is sufficiently large and $x \in \mathcal{H}(\vartheta)$ then there is a (ω_1, μ) -dominating sequence over x.

Then $\chi_{\rm CF}([\lambda]^{\kappa}, \omega$ -**a**.d.) $\leq \omega_1$ for each $\omega_1 \leq \kappa \leq \lambda$.

$$\mathcal{CH} dash \chi_{\mathrm{CF}}(ig[\omega_{\textit{m}}ig]^{\omega_{\textit{k}}}, \omega ext{-a.d.}) \leq \omega_1 ext{ for } 2 \leq \textit{k} \leq \textit{m} < \omega.$$

L. Soukup (Rényi Institute)

 ω colors are not enough

Theorem (Komjáth)

There is an ω -almost disjoint family $\mathcal{A} \subset [2^{\omega}]^{\omega}$ with $\chi(\mathcal{A}) = 2^{\omega}$. Hence $\chi_{CF}([2^{\omega}]^{\omega}, \omega$ -a.d.) = 2^{ω} .

Komjáth proved that there is an ω -almost disjoint family $\mathcal{A} \subset [2^{\omega}]^{\omega}$ such that for each $X \in [2^{\omega}]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset X$.

 ω colors are not be enough

Komjáth: $\chi_{\mathrm{CF}}(\left[2^{\omega}\right]^{\omega},\omega\text{-a.d.})=2^{\omega}$

Theorem

If CH holds then
$$\chi_{CF}([\omega_1]^{\omega_1}, \omega$$
-**a**.**d**.) = ω_1 .

Assume MA_{\aleph_1} . Then $\chi_{CF}([\omega_1]^{\omega_1}, \omega \text{-} a.d.) = \omega$ and $\chi_{CF}([\omega_1]^{\omega}, \omega \text{-} a.d.) = \omega$.

More ZFC result

- Closure operation: Find $\langle N_{\alpha}: \alpha < \kappa \rangle$ s.t closed enough
- $\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u \subset \cup \mathcal{P}$.
- Shelah's Revised GCH theorem: If $\rho \geq \beth_{\omega}$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_{\omega}$.
- Let μ ≤ κ ≤ λ be cardinals. M(λ, κ, μ) → ED(κ) holds iff every μ-almost disjoint family A ⊂ [λ]^κ is κ-ED

Theorem

If
$$\mu < \beth_{\omega} \leq \lambda$$
 then $\mathsf{M}(\lambda, \beth_{\omega}, \mu) \to \mathsf{ED}(\beth_{\omega})$, and so $\chi_{\mathrm{CF}}([\lambda]^{\beth_{\omega}}, \mu\text{-a.d.}) \leq \beth_{\omega}$.

- $V = L \vdash \chi_{CF}([\lambda]^{\kappa}, \omega\text{-a.d.}) \le \omega_1 \text{ for } \omega_1 \le \kappa \le \lambda.$
- $GCH \vdash \chi_{CF}([\lambda]_{...}^{\kappa}, \omega\text{-a.d.}) \leq \omega_2 \text{ for } \omega_2 \leq \kappa \leq \lambda.$
- $ZFC \vdash \chi_{CF}([\lambda]^{\kappa}, \omega\text{-a.d.}) \leq \beth_{\omega} \text{ for } \beth_{\omega} \leq \kappa \leq \lambda.$

• $CH \vdash \chi_{CF}([\omega_m]^{\omega_k}, \omega\text{-a.d.}) \le \omega_1 \text{ for } 1 \le k \le m < \omega.$ • $Con(\chi_{CF}([\omega_2]^{\omega_1}, \omega\text{-a.d.}) = \omega_2.)$

Program:

Separate the properties in the diagram!

The assumption that every μ -a.d. family $\mathcal{A} \subset [\lambda]^{\kappa}$ has property Φ does not imply that every μ -a.d. family $\mathcal{A} \subset [\lambda]^{\kappa}$ has property Ψ .

Stepping up: Does $M(\lambda, \kappa, \rho) \rightarrow \Phi$ imply $\mathsf{M}(\lambda, \kappa', \rho) \to \Phi$ for $\kappa < \kappa'$?

•
$$\mathcal{A} \ll \mathcal{A}'$$
 iff
 $\forall A' \in \mathcal{A}' \ \exists A \in \mathcal{A} \ A \subset A'.$

•
$$\Phi(\mathcal{A}) \rightarrow \Phi(\mathcal{A}')$$

• $\Phi(\mathcal{A}) \not\rightarrow \Phi(\mathcal{A}')$