Some Consequences of Martin’s Conjecture

Simon Thomas
Rutgers
The Soprano State University
"Jersey Roots, Global Reach"

26th June 2009
Definition

The Borel equivalence relation E on the standard Borel space X is said to be countable iff every E-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E^X_G is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E^X_G$.
Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that
 \[x E y \iff f(x) F f(y). \]

 In this case, f is called a **Borel reduction** from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.

- $E <_B F$ iff both $E \leq_B F$ and $E \not\sim_B F$.

Definition

More generally, $f : X \to Y$ is a **Borel homomorphism** from E to F iff

\[x E y \implies f(x) F f(y). \]
Countable Borel equivalence relations

$E_\infty = \text{universal}$

Uncountably many relations

$E_0 = \text{hyperfinite}$

$id_{2^\mathbb{N}} = \text{smooth}$

Definition

The Borel equivalence relation E is **smooth** iff $E \leq_B id_{2^\mathbb{N}}$.

Definition

E_0 is the equivalence relation of **eventual equality** on $2^\mathbb{N}$.

Theorem (Adams-Kechris 2000)

There exist 2^{\aleph_0} many countable Borel equivalence relations up to Borel bireducibility.
Countable Borel equivalence relations

- \(E_\infty = \text{universal} \)
- \(E_0 = \text{hyperfinite} \)
- \(\text{id}_{2^\mathbb{N}} = \text{smooth} \)

Definition
A countable Borel equivalence relation \(E \) is *universal* iff \(F \leq_B E \) for every countable Borel equivalence relation \(F \).

Theorem (JKL)
The orbit equivalence relation \(E_\infty \) of the shift action of the free group \(\mathbb{F}_2 \) on \(2^{\mathbb{F}_2} \) is universal.
The Borel vs. measurable settings

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data (X, E^X_G) "remember" the group G and its action on X?

Dirty Little Secret

We cannot possibly recover the group G from the data (X, E^X_G) unless we add the hypotheses that:

- G acts freely on X; and
- there exists a G-invariant probability measure μ on X.
Essentially free relations

Definition

- The countable Borel equivalence relation E on X is **free** iff there exists a countable group G with a free Borel action on X such that $E^X_G = E$.

- The countable Borel equivalence relation E is **essentially free** iff there exists a free countable Borel equivalence relation F such that $E \sim_B F$.

Theorem (Thomas 2006)

The universal countable Borel equivalence relation E_∞ is **not essentially free**.
Strongly universal relations

Question (Thomas 2006)

Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an E-invariant probability measure μ on X;
- whenever $Y \subseteq X$ is a Borel subset with $\mu(Y) = 1$, then $E \upharpoonright Y$ is countable universal?

Main Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X.
- Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not universal.
Countable Borel Equivalence Relations

- Essentially Free
- E_∞
- New methods needed
- Measure theoretic methods
- E_0
- Baire category methods

Simon Thomas (Rutgers) Erwin Schrödinger Institute Workshop 26th June 2009
Convention

Throughout the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $x, y \in 2^{\mathbb{N}}$, then x is Turing reducible to y, written $x \leq_T y$, iff there exists a y-oracle Turing machine which computes x.

Remark

In other words, there is an algorithm which computes x modulo an oracle which correctly answers questions of the form “Is $n \in y$?”
A Notion of Largeness

Definition

For each $z \in 2^\mathbb{N}$, the corresponding cone is $C_z = \{ x \in 2^\mathbb{N} | z \leq_T x \}$.

- Suppose $z_n = \{ a_n, \ell | \ell \in \mathbb{N} \} \in 2^\mathbb{N}$ for each $n \in \mathbb{N}$ and define
 \[\oplus z_n = \{ p_n^{a_n, \ell} | n, \ell \in \mathbb{N} \} \in 2^\mathbb{N}, \]
 where p_n is the nth prime.
- Then $z_m \leq_T \oplus z_n$ for each $m \in \mathbb{N}$ and so $C_\oplus z_n \subseteq \bigcap_n C_{z_n}$.

Remark

It is well-known that if $C \subsetneq 2^\mathbb{N}$ is a proper cone, then C is both null and meager.
The Turing equivalence relation

Definition

The *Turing equivalence relation* \(\equiv_T \) on \(2^\mathbb{N} \) is defined by

\[
x \equiv_T y \text{ iff } x \leq_T y \text{ & } y \leq_T x,
\]

where \(\leq_T \) denotes Turing reducibility.

Remark

- Clearly \(\equiv_T \) is a countable Borel equivalence relation on \(2^\mathbb{N} \).
- However, \(\equiv_T \) is *not* essentially free and is *not* induced by the action of any countable subgroup of \(\text{Sym}(\mathbb{N}) \) with its natural action on \(2^\mathbb{N} \).
Martin’s Theorem

Theorem (Martin)

If $X \subseteq 2^\mathbb{N}$ is a \equiv_T-invariant Borel subset, then either X or $2^\mathbb{N} \setminus X$ contains a cone.

Remark

For later use, notice that if $X \subseteq 2^\mathbb{N}$ is a \equiv_T-invariant Borel subset, then the following are equivalent:

(i) X contains a cone.

(ii) For all $z \in 2^\mathbb{N}$, there exists $x \in X$ with $z \leq_T x$.
Ergodicity

Definition

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be ergodic iff $\mu(A) = 0, 1$ for every G-invariant Borel subset $A \subseteq X$.

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and $f : X \to Y$ is a G-invariant Borel function, then there exists a G-invariant Borel subset $M \subseteq X$ with $\mu(M) = 1$ such that $f \mid M$ is a constant function.
Theorem (Folklore)

If $\varphi : 2^\mathbb{N} \to 2^\mathbb{N}$ is a \equiv_T-invariant Borel map, then there exists a cone C such that $\varphi \upharpoonright C$ is a constant map.

Proof.

For each $n \in \mathbb{N}$, there exists $\varepsilon_n \in \{0, 1\}$ such that $X_n = \{ x \in 2^\mathbb{N} \mid \varphi(x)(n) = \varepsilon_n \}$ contains a cone.

Hence there exists a cone $C \subseteq \bigcap X_n$ and clearly $\varphi \upharpoonright C$ is a constant map.
Proof of Martin’s Theorem

- Suppose that \(X \subseteq 2^\mathbb{N} \) is a \(\equiv^T \)-invariant Borel subset.

- Consider the two player Borel game \(G(X) \)

\[
 s(0) \ s(1) \ s(2) \ s(3) \ \cdots
\]

where \(I \) wins iff \(s = (s(0) \ s(1) \ s(2) \ \cdots) \in X \).

- Then the Borel game \(G(X) \) is determined. Suppose, for example, that \(\sigma : 2^{<\mathbb{N}} \rightarrow 2 \) is a winning strategy for \(I \).

- Let \(\sigma \leq_T t \in 2^\mathbb{N} \) and consider the run of \(G(X) \) where
 - \(II \) plays \(t = (s(1) \ s(3) \ s(5) \ \cdots) \)
 - \(I \) responds with \(\sigma \) and plays \((s(0) \ s(2) \ s(4) \ \cdots) \).

- Then \(s \in X \) and \(s \equiv_T t \). Hence \(t \in X \) and so \(C_\sigma \subseteq X \).
Strong Ergodicity

Definition

- Suppose that E, F are countable Borel equivalence relations on the standard Borel spaces X, Y and that μ is an E-invariant Borel probability measure on X.
- Then E is said to be F-ergodic iff for every Borel homomorphism $\varphi : X \to Y$ from E to F, there exists a Borel subset $Z \subseteq X$ with $\mu(Z) = 1$ such that φ maps Z into a single F-class.

Example (Jones-Schmidt)

E_∞ is E_0-ergodic.
Definition

Let E be a countable Borel equivalence relation on the standard Borel space X. Then \equiv_T is said to be E-m-ergodic iff for every Borel homomorphism $\varphi : 2^\mathbb{N} \to X$ from \equiv_T to E, there exists a cone $C \subseteq 2^\mathbb{N}$ such that φ maps C into a single E-class.

Target

Classify the countable Borel equivalence relations E such that \equiv_T is E-m-ergodic.

Question

When is it “obvious” that \equiv_T is not E-m-ergodic?
Definition

- The Borel homomorphism $\varphi : X' \to X$ from E' to E is said to be a weak Borel reduction iff φ is countable-to-one. In this case, we write $E' \leq^w_B E$.

- A countable Borel equivalence relation E is said to be weakly universal iff $F \leq^w_B E$ for every countable Borel equivalence relation F.

Some Examples

- If E is universal, then E is weakly universal.
- The Turing equivalence relation \equiv_T is weakly universal.

Observation

If E is weakly universal, then \equiv_T is not E-m-ergodic.
Strong Ergodicity for Turing equivalence

Strong Ergodicity Theorem (MC)

If E is any countable Borel equivalence relation, then exactly one of the following conditions holds:

(a) E is weakly universal.
(b) \equiv_T is E-m-ergodic.

Remark

- There are currently no nonsmooth countable Borel equivalence relations E for which it has been proved that \equiv_T is E-m-ergodic.
- In particular, it is not known whether \equiv_T is E_0-m-ergodic, where E_0 denotes the eventual equality equivalence relation on $2^\mathbb{N}$.
The Kechris-Miller Theorem

Observation

Let E, F be countable Borel equivalence relations.
- If $E \leq_B F$, then $E \leq^w_B F$.
- If $E \subseteq F$, then $E \leq^w_B F$.

Theorem (Kechris-Miller)

If E, F are countable Borel equivalence relations on the uncountable standard Borel spaces X, Y respectively, then the following conditions are equivalent:

(i) $E \leq^w_B F$.

(ii) There exists a countable Borel equivalence relation $S \subseteq F$ on Y such that $S \sim_B E$.
The weak universality of Turing equivalence

Proposition (Kechris)
\[
\equiv_T \text{ is weakly universal.}
\]

Proof.
Identifying the free group \(F_2 \) with a suitably chosen group of recursive permutations of \(\mathbb{N} \), we have that \(E_\infty \subseteq \equiv_T \).

Important Remark
If \(C = \{ x \in 2^\mathbb{N} \mid z \leq_T x \} \) is a cone, then the map \(y \mapsto y \oplus z \) is a weak Borel reduction from \(\equiv_T \) to \(\equiv_T \upharpoonright C \) and hence \(\equiv_T \upharpoonright C \) is also weakly universal.
Martin’s Conjecture (MC)

If \(\varphi : 2^\mathbb{N} \rightarrow 2^\mathbb{N} \) is a Borel homomorphism from \(\equiv_T \) to \(\equiv_T \), then exactly one of the following conditions holds:

(i) There exists a cone \(C \subseteq 2^\mathbb{N} \) such that \(\varphi \) maps \(C \) into a single \(\equiv_T \)-class.

(ii) There exists a cone \(C \subseteq 2^\mathbb{N} \) such that \(x \leq_T \varphi(x) \) for all \(x \in C \).

Theorem (Slaman-Steel)

Suppose that \(\varphi : 2^\mathbb{N} \rightarrow 2^\mathbb{N} \) is a Borel homomorphism from \(\equiv_T \) to \(\equiv_T \). If \(\varphi(x) <_T x \) on a cone, then there exists a cone \(C \subseteq 2^\mathbb{N} \) such that \(\varphi \) maps \(C \) into a single \(\equiv_T \)-class.
Some easy consequences of Martin’s Conjecture

Theorem \((MC)\)

If \(\varphi : 2^\mathbb{N} \to 2^\mathbb{N}\) is a Borel homomorphism from \(\equiv_T\) to \(\equiv_T\), then exactly one of the following conditions holds:

(i) There exists a cone \(C \subseteq 2^\mathbb{N}\) such that \(\varphi\) maps \(C\) into a single \(\equiv_T\)-class.

(ii) There exists a cone \(C \subseteq 2^\mathbb{N}\) such that \(\varphi \upharpoonright C\) is a weak Borel reduction from \(\equiv_T \upharpoonright C\) to \(\equiv_T\).

Furthermore, in case (ii), if \(D \subseteq 2^\mathbb{N}\) is any cone, then \([\varphi(D)]_{\equiv_T}\) contains a cone.
Some easy consequences of Martin’s Conjecture

Corollary (MC)

- $\equiv_T <_B (\equiv_T \sqcup \equiv_T)$.
- *In particular, \equiv_T is not countable universal.*

Corollary (MC)

If $A \subseteq 2^\mathbb{N}$ is a \equiv_T-invariant Borel subset, then $\equiv_T \upharpoonright A$ is weakly universal iff A contains a cone.

Remark

There are currently no naturally occurring classes $D \subseteq 2^\mathbb{N}$ for which it is known that $\equiv_T \upharpoonright D$ is not weakly universal.
Proof of the Strong Ergodicity Theorem (MC)

Let E be any countable Borel equivalence relation.

Since $E \leq_B \equiv_T$, we can suppose that $E \subseteq \equiv_T$.

Suppose that $\varphi : 2^\mathbb{N} \to 2^\mathbb{N}$ is a Borel homomorphism from \equiv_T to E and that φ does not map any cone to a single E-class.

Then φ is also a Borel homomorphism from \equiv_T to \equiv_T and clearly φ does not map any cone to a single \equiv_T-class.

Hence there exists a cone C such that $\varphi \upharpoonright C$ is countable-to-one.

Since $\equiv_T \upharpoonright C$ is weakly universal and $(\equiv_T \upharpoonright C) \leq_B^w E$, it follows that E is weakly universal.
Some applications of the Strong Ergodicity Theorem

Theorem (MC)

There exist uncountably many weakly universal countable Borel equivalence relations up to Borel bireducibility.

Definition

The countable group G is (weakly) action universal iff there exists a standard Borel G-space X such that E^X_G is (weakly) universal.

Theorem (MC)

If G is a countable group, then the following are equivalent.

(a) G is weakly action universal.

(b) The conjugacy relation on the space of subgroups of G is weakly universal.
Borel Boundedness

Definition

If \(c, d \in \mathbb{N}^\mathbb{N} \), then:

- \(c \leq^* d \) iff \(c(n) \leq d(n) \) for all but finitely many \(n \in \mathbb{N} \).
- \(c =^* d \) iff both \(c \leq^* d \) and \(d \leq^* c \).

Easy Observation

Suppose that \(E \) is a countable Borel equivalence relation on the standard Borel space \(X \) and that \(\sigma : X \to \mathbb{N}^\mathbb{N} \) is any map. Then there exists a map \(\psi : X/E \to \mathbb{N}^\mathbb{N} \) such that \(\sigma(x) \leq^* \psi([x]_E) \) for all \(x \in X \).
Suppose that E is a countable Borel equivalence relation on the standard Borel space X and that $\sigma : X \to \mathbb{N}^\mathbb{N}$ is a Borel map. Then there exists a Borel map $\psi : X \to \mathbb{N}^\mathbb{N}$ such that for all $x \in X$,

$$\sigma(y) \leq^* \psi(x) \quad \text{for all } y \in [x]_E$$

Proof.

By Feldman-Moore, we can realize E by a Borel action of a countable group $G = \{ \gamma_m \mid m \in \mathbb{N} \}$.

Define $\psi(x)(n) = \max\{ \sigma(\gamma_m \cdot x)(n) \mid m \leq n \}$.
Borel Boundedness

Definition (Boykin-Jackson)

The countable Borel equivalence relation E on the standard Borel space X is said to be **Borel-Bounded** iff for every Borel map $\theta : X \to \mathbb{N}^\mathbb{N}$, there exists a Borel homomorphism $\varphi : X \to \mathbb{N}^\mathbb{N}$ from E to \equiv^* such that $\theta(x) \leq^* \varphi(x)$ for all $x \in X$.

Theorem (Boykin-Jackson)

If E is hyperfinite, then E is Borel-Bounded.

Question (Boykin-Jackson)

Is Borel-Boundedness equivalent to hyperfiniteness?

Problem (Boykin-Jackson)

Find an example of a countable Borel equivalence relation which is **not** Borel-Bounded.
Proposition

If (X, μ) is a standard Borel probability space and $\theta : X \to \mathbb{N}^\mathbb{N}$ is a Borel map, then there exists a function $h \in \mathbb{N}^\mathbb{N}$ such that

\[\mu(\{ x \in X \mid \theta(x) \leq^* h \}) = 1. \]

Proof.

For each $n \in \mathbb{N}$, there exists $h(n) \in \mathbb{N}$ such that

\[\mu(\{ x \in X \mid \theta(x)(n) > h(n) \}) \leq (1/2)^{n+1}. \]

By the Borel-Cantelli Lemma, we have that

\[\mu(\{ x \in X \mid \theta(x)(n) > h(n) \text{ for infinitely many } n \}) = 0. \]
An application of Martin’s Conjecture

Theorem (MC)

The Turing equivalence relation \equiv_T is not Borel-Bounded.

Corollary (MC)

If E is a weakly universal countable Borel equivalence relation, then E is not Borel-Bounded. In particular, E_∞ is not Borel-Bounded.

Proof.

By Boykin-Jackson, if E is Borel-Bounded and $F \leq_B^w E$, then F is also Borel-Bounded.
Growth Rates

Definition

Identifying each \(r \in 2^\mathbb{N} \) with the corresponding subset of \(\mathbb{N} \), define the Borel map \(\theta : 2^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) by:

- \(\theta(r) \) is the increasing enumeration of \(r \cap 2^\mathbb{N} \), if \(r \cap 2^\mathbb{N} \) is infinite;
- \(\theta(r) \) is the zero function, otherwise.

Observation

For each \(h \in \mathbb{N}^\mathbb{N} \), the \(\equiv_T \)-invariant Borel set

\[
D_h = \{ r \in 2^\mathbb{N} \mid (\exists s \in 2^\mathbb{N}) s \equiv_T r \text{ and } h < \theta(s) \}
\]

contains a cone.
Proof of Theorem (MC)

- Suppose that $\varphi : 2^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is a Borel homomorphism from \equiv_T to \equiv^* such that $\theta(r) \leq^* \varphi(r)$ for all $r \in 2^\mathbb{N}$.

- Since \equiv^* is hyperfinite, it follows that \equiv_T is \equiv^*-m-ergodic.

- Hence there exists a cone C such that φ maps C into a single \equiv^*-class; say, $[h]_{\equiv^*}$.

- But then $C \cap D_h = \emptyset$, which is a contradiction.
Strongly universal relations

Question (Thomas 2006)

Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an *ergodic* E-invariant probability measure μ on X;
- whenever $Y \subseteq X$ is a Borel subset with $\mu(Y) = 1$, then $E \upharpoonright Y$ is countable universal?

Theorem (MC)

Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X. Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not weakly universal.
Proof of Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a Borel probability measure on X.
- Let $\theta : 2^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ be the Borel map defined earlier.
- By the Feldman-Moore Theorem, there exists a Borel map $\psi : 2^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ such that if $r \equiv_T s$, then $\theta(s) \leq^* \psi(r)$.
- Let $\varphi : X \rightarrow 2^\mathbb{N}$ be a weak Borel reduction from E to \equiv_T and let $\pi : X \rightarrow \mathbb{N}^\mathbb{N}$ be the Borel map defined by $\pi = \psi \circ \varphi$.
- Then there exists a function $h \in \mathbb{N}^\mathbb{N}$ such that the Borel set $Y = \{ x \in X \mid \pi(x) \leq^* h \}$ satisfies $\mu(Y) = 1$.
- Since the Borel set $Z = [\varphi(Y)]_{\equiv_T}$ satisfies $Z \cap D_h = \emptyset$, it follows that $\equiv_T \upharpoonright Z$ is not weakly universal.
- Since $(E \upharpoonright Y) \leq^w_B (\equiv_T \upharpoonright Z)$, it follows that $E \upharpoonright Y$ is not weakly universal.
Some Open Problems

Problem

Prove that \equiv_T is E_0-m-ergodic.

Problem

Find a naturally occurring classes of degree $D \subseteq 2^\mathbb{N}$ such that

$\equiv_T | D$ is not weakly universal.

For example, how about the classes of minimal degrees,
hyperimmune-free degrees, ... ?