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Measure preserving transformations

Let (X , µ) denote a standard Borel probability space, e.g.
([0, 1], λ), λ =Lebesgue measure.

A Borel bijection T : X → X is measure preserving (m.p.) if
µ(T (A)) = µ(A) for all Borel A ⊆ X .

We identify measure preserving Borel bijections that agree µ-a.e.
The equivalence class

[T ] = {S : X → X : S is m.p. and T = S a.e.}

is called a measure preserving transformation or automorphism of
(X , µ).

Warning: We usually write T for [T ] if there is no danger of
confusion.
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The group of measure preserving transformations

The measure preserving transformations of (X , µ) form a group,
denoted Aut(X , µ), with the obvious notion of composition.

Aut(X , µ) is a Polish group in the topology induced by the
sub-neighbourhood basis

N(T0, ε,A) = {T ∈ Aut(X , µ) : µ(T (A)4T0(A)) < ε}

where A ⊆ X is Borel, ε > 0 and T0 ∈ Aut(X , µ).
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Near actions vs. spatial actions, I

Measure preserving group actions is the central object of Ergodic
Theory. One distinguishes between actions that are defined almost
everywhere, and those that are really defined everywhere:

Definition. (1) A m.p. near-action of a group G on (X , µ) is a
homomorphism h : G → Aut(X , µ).

(2) A spatial model for a near action h is an (actual, pointwise)
action σ : G × X → X such that for each g ∈ G

x 7→ σ(g , x)

is a representative of h(g).

Nb. If G is a topological group, then in (1) it is natural to require
that h be continuous or Borel (i.e. continuous near-action, Borel
near-action).Likewise in (2), we could require σ to be continuous
or Borel (i.e. continuous spatial model, Borel spatial model).
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Near actions vs. spatial actions, II

Question: Does every near action have a spatial model?

In some form, the question goes back (at least) to von Neumann,
who proved that any continuous near-action of R has a continuous
spatial model.

This was generalized by Mackey (circa 1960), who showed the
same for all locally compact 2nd countable groups.

Very recently Kwiatkowska and Solecki (2009) have generalized
this to a new and much larger class of groups.
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Near actions vs. spatial actions, III

Running counter to this is the following:

Theorem. (Glasner-Tsirelson-Weiss, 2004). There are (many)
Polish groups for which no ”non-trivial” Borel near-action admits a
Borel spatial model. In particular, the near-action of Aut(X , µ) on
(X , µ) does not admit a Borel spatial model.

The purpose of this talk is to discuss the situation if we drop the
assumption of the spatial model being Borel. Specifically:

Theorem 1. (T., 2009) If CH holds, then the near-action of
Aut(X , µ) on (X , µ) has a spatial model.

Thus under CH every near-action has a spatial model.
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The lifting problem for the measure algebra, I

The problem is at least superficially similar to the classical lifting
problem for the measure algebra:

Recall that h : MALG(X , µ)→ B(X ) is a “lifting” if

(1) h is a Boolean algebra homomorphism into the σ-algebra of
Borel sets on X ;

(2) h(A) ∈ A for all A ∈ MALG(X , µ).

i.e, h splits the identity Id : MALG(X , µ)→ MALG(X , µ):

Id = κ ◦ h,

where κ : B(X )→ MALG(X , µ) is the canonical homomorphism
with ker(κ) = Imz =the ideal of measure zero sets.
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The lifting problem for the measure algebra, II

In the context of the measure algebra the main results are:

Theorem (von Neumann-Stone, 1935) If CH holds, then the
identity homomorphism Id : MALG(X , µ)→ MALG(X , µ) splits.

Theorem (Shelah, circa 1980) There is a model of ZFC in which
Id : MALG(X , µ)→ MALG(X , µ) does not split.
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The lifting problem for Aut(X , µ), I

Let G (X , µ) denote the group of measure preserving Borel
bijections, and I (X , µ) the (normal) subgroup of those
T ∈ G (X , µ) such that T (x) = x a.e.

The existence of a spatial model of the near-action of Aut(X , µ)
on (X , µ) is equivalent to the existing of a lifting
h : Aut(X , µ)→ G (X , µ), i.e. a map such that

(1) h(T ) ∈ T for all T

(2) h splits the identity Id : Aut(X , µ)→ Aut(X , µ) as follows:

Id = κ ◦ h,

where κ : G (X , µ)→ Aut(X , µ) is the canonical homomorphism
with ker(κ) = I (X , µ).
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The lifting problem for Aut(X , µ), II

In this terminology Theorem 1 takes the form

Theorem 1’.Assuming CH, the identity homomorphism
Id : Aut(X , µ)→ Aut(X , µ) splits.

Sketch of the proof of Theorem 1. The proof of Theorem 1,
predictably, is by induction on ω1.Let (Tα : α < ω1) enumerate
Aut(X , µ) and define

Hα = 〈Tβ : β < α〉,

(the group generated by the Tβ, β < α < ω1; for convenience,
H0 = {IdX}.)

W.m.a. β < α =⇒ Hβ ( Hα, after possibly thinning out the
sequence (Tα : α < ω1).Also, we assume that |H1| = ℵ0.
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Proof of Theorem 1

We will define hα : Hα → G (X , µ) that is a lifting on Hα, for
α < ω1.

We will make sure that β < α =⇒ hα � Hβ = hβ.

At first one might try to arbitrarily choose some g0 ∈ T0, and let
h1(T0) = g0. But if we then choose g1 ∈ T1 arbitrarily and let
h2(T1) = g1, then h2 will most likely only induce an action of H2

almost everywhere, but fail to induce a H2 action everywhere.

The idea is to make sure that we have chosen the gβ, β < α, in
such a way that for a given choice of g ∈ Tα, there is some
reasonably easy way to adjust g on a null-set so that it becomes
fully compatible with hα : Hα → G (X , µ), thus allowing the
induction to proceed.
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fully compatible with hα : Hα → G (X , µ), thus allowing the
induction to proceed.
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Master actions, I

The main tool for keeping the induction going is the notion of
master actions.

Let LO denote the set of linear orders on N, GP the set of groups
with underlying set N.

Definition. For α < ω1 we define Sα ⊆ LO×GP to consists of all
(<∗,G ) ∈ LO×GP such that

(i) For some n ∈ N, the initial segment {m : m <∗ n} is
isomorphic to α;

(ii) There is a monomorphism ϕ : Hα → G such that
rank<∗(ϕ(Tβ)) = β.
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Master actions, II

Lemma. The set Sα is Borel for all α < ω1.

For (<∗,G ) ∈ Sα, the unique monomorphism ϕ : Hα → G
satisfying (ii) in the definition of Sα will be called the canonical
monomorphism Hα → G .

Thus for (<∗,G ) ∈ Sα, we may identify Hα with a subgroup of G
in a canonical way.

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)
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Master actions, III

Definition. For α < ω1, the α’th master action σα : Hα yMα is
defined by

(1) Mα = Sα × (2N)N;

(2) For β < ω1,

σα(Tβ)(<∗0,G0, x) = (<∗1,G1, y) ⇐⇒
<∗0=<∗1 ∧G0 = G1∧

(∀m) rank<∗
0
(m) = β =⇒ (∀n)y(n) = x(m−1 ·G0 n)).

That is: For every (<∗,G ) ∈ Sα, we identify Hα with a subgroup
of G , and let Hα act on (2N)N by a left-shift (where we think of
(2N)N as (2N)G .)

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)



Master actions, III

Definition. For α < ω1, the α’th master action σα : Hα yMα is
defined by

(1) Mα = Sα × (2N)N;

(2) For β < ω1,

σα(Tβ)(<∗0,G0, x) = (<∗1,G1, y) ⇐⇒
<∗0=<∗1 ∧G0 = G1∧

(∀m) rank<∗
0
(m) = β =⇒ (∀n)y(n) = x(m−1 ·G0 n)).

That is: For every (<∗,G ) ∈ Sα, we identify Hα with a subgroup
of G , and let Hα act on (2N)N by a left-shift (where we think of
(2N)N as (2N)G .)

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)



Master actions, III

Definition. For α < ω1, the α’th master action σα : Hα yMα is
defined by

(1) Mα = Sα × (2N)N;

(2) For β < ω1,

σα(Tβ)(<∗0,G0, x) = (<∗1,G1, y) ⇐⇒
<∗0=<∗1 ∧G0 = G1∧

(∀m) rank<∗
0
(m) = β =⇒ (∀n)y(n) = x(m−1 ·G0 n)).

That is: For every (<∗,G ) ∈ Sα, we identify Hα with a subgroup
of G , and let Hα act on (2N)N by a left-shift (where we think of
(2N)N as (2N)G .)

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)



Master actions, III

Definition. For α < ω1, the α’th master action σα : Hα yMα is
defined by

(1) Mα = Sα × (2N)N;

(2) For β < ω1,

σα(Tβ)(<∗0,G0, x) = (<∗1,G1, y) ⇐⇒
<∗0=<∗1 ∧G0 = G1∧

(∀m) rank<∗
0
(m) = β =⇒ (∀n)y(n) = x(m−1 ·G0 n)).

That is: For every (<∗,G ) ∈ Sα, we identify Hα with a subgroup
of G , and let Hα act on (2N)N by a left-shift (where we think of
(2N)N as (2N)G .)

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)



Master actions, IV

We can think of the master action σα as a Borel action of Hα that
contains a copy of all shift-actions of Hα on (2N)G , for any
countable group G containing Hα.

A key property of the master actions is:

Lemma
If α < ω1 is a limit ordinal, it holds for the master action σα that

σα =
⋃
β<α

σβ �Mα
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Universality property

The next idea for the proof of Theorem 1 is now to use the
following universality property of shift actions:

Universality Property. (Folklore.) If Λ ≤ Γ are countable groups
and τ : Λ y X is a Borel action of Λ on a standard Borel space,
then there is a shift invariant Borel set B ⊆ (2N)Γ and a Borel
bijection ψ : X → B such that

(∀g ∈ Λ)ψ(σ(g)(x)) = β(g)(ψ(x)),

where β denotes the shift-action β : Γ y (2N)Γ.
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One step extensions, I

Given a pair of countable groups Λ ≤ Γ, and a Borel action
σ : Λ y X on a standard Borel space X , the Universality Property
gives us a way of extending the action: Embed X into (2N)Γ using
ψ. Unfortunately, ψ(X ) ( (2N)Γ may happen.

If, however, X = X0 t X1 t X2 t · · · and σ|Xi ' β : Λ y (2N)Γ for
all i > 0, then we may:

(i) map X0 into Xi using some ψi that conjugates the action

(ii) extend the Λ-action to Γ on X0 t X1 \ ψ1(X0)

(iii) extend the Λ-action to Γ on ψ1(X0) t X2 \ ψ2(X0)

(iv) etc...

More precisely:
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One step extensions, II

One step extension Lemma. Let Λ < Γ be countable groups
such that there is an element γ ∈ Γ \ Λ such that Γ = 〈Λ ∪ {γ0}〉,
and suppose there are countable groups Γi , i ∈ N such that Γ ≤ Γi

for all i .

Let X be a standard Borel space which is partitioned into
Borel pieces,

X = X0 t
⊔
i∈N

(2N)Γi ,

that is, X is the disjoint union of X0 and (2N)Γi , (i ∈ N), X0 is
Borel, and (2N)Γi carries its usual Borel structure for all i ∈ N.
Suppose ρ : Λ y X is a Borel action of Λ such that

ρ � Λ× (2N)Γi

is the shift action. Then there is a Borel action ρ̂ : Γ y X such
that ρ̂ � Λ× X = ρ.

Asger Törnquist (Vienna) The lifting problem for Aut(X , µ)
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Finishing Theorem 1.

We can now put the pieces together.

Let X = X0 t 2N ×M0 (disjoint union) and let µ be a measure
such that µ(X0) = 1.We construct by induction on α < ω1

homomorphisms hα : Hα → G (X , µ) and uncountable Borel sets
Yα ⊆ 2N such that

(1) h0(I ) = Id, Y0 = 2N;

(2) hα : Hα → G (X , µ) is a homomorphism such that hα(T ) ∈ T
for all T ∈ Hα;

(3) If β < α then Yβ ⊇ Yα and Yβ \ Yα is countable;

(4) For (y , x) ∈ Yα ×Mα we have hα(T )(y , x) = (y , σα(T )(x))
for all T ∈ Hα;

(5) If β < α then hβ = hα � Hβ.

If this can be done then we get a lifting h : Aut(X , µ)→ G (X , µ)
by letting

h =
⋃
α<ω1

hα.
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Finishing Theorem 1..

If α is a limit ordinal then hα =
⋃
β<α hβ may easily be seen to

work, using the fact that

σα =
⋃
β<α

σβ �Mα.

In this case, we let
Yα =

⋂
β<α

Yβ
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Finishing Theorem 1...

So assume that α = β + 1.

First find some Z ⊆ X0 of full measure and θ ∈ Tβ such that Z is
hβ(Hβ) ∪ {θ}-invariant, and hβ � Z , θ � Z implements an action of
Hα.
Pick a countable sequence (yi ∈ Yβ : i ∈ N) of distinct elements in
Yβ. Also pick a sequence (<∗i ,Gi ) ∈ Sα, i ∈ N, distinct. Let
Yα = Yβ \ {yi : y ∈ N}, and let

W = X \ (Z ∪ Yα ×Mα).

Then on W the action of induced by hβ has the form required in
the one step extension Lemma to be extended to a Hα-action.
Finally, we let hα act like the master-action along each section on
Yα ×Mα.
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A burning question, I

Recall that Shelah showed that in the case of the measure algebra
that there is a model of ZFC in which there is no lifting
h : MALG(X , µ)→ B(X ).

Glasner-Tsirelson-Weiss’ result shows that in the case of Aut(X , µ),
there is no uniformly Borel lifting. So it is natural to ask:

Question 1. Is there a model of ZFC in which there is no lifting of
h : Aut(X , µ)→ G (X , µ)?
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A burning question, II

One can go a step further. Glasner, Tsirelson and Weiss showed
that a so-called Lévy groups cannot act pointwise in a (uniformly)
Borel way and induce a non-trivial measure preserving action.

Some examples of Levy groups are: Aut(X , µ), Inn(E0), U(`2(N)),
L0([0, 1],T).

Question 2.Is it consistent with ZFC that no Lévy group admits a
non-trivial spatial measure preserving action (by Borel
automorphisms, non-uniformly)?
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Another question

While Question 1 is undoubtedly the most important, it should be
noted that the construction of the lifting in the proof of Theorem 1
gives us Borel automorphisms of arbitrarily high rank in the Borel
hierarchy.

This prompts the question:

Question 3. Is it consistent with ZFC that there is some fixed
γ < ω1 and a lifting h : Aut(X , µ)→ G (X , µ) such that
h(T ) ∈ Π0

γ for all T ∈ Aut(X , µ)? Or must any lifting have
unbounded range in the Borel hierarchy?

In any case, what can be proved from CH?
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Thank you!
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