Rado's Conjecture, Saturation of NS_{ω_1} and Diamonds

Victor TORRES

ESI Workshop on Large Cardinals and Descriptive Set Theory Vienna, Austria

June 16^{th} , 2009

ヘロア 人間 アメヨア 人間 アー

æ

Outline

Principal definitions, some applications of RC and main theorem Main Theorem

Outline

Principal definitions, some applications of RC and main theorem

Saturation of NS_{ω_1} Rado's Conjecture Some applications of RC Diamonds

Main Theorem

Main Theorem statement Some tools used in the proof Key definition Construction of the sequence (Guessing trees) Saturation of NS implies $|\mathscr{G}_Z| \leq \aleph_1$ for every $Z \in [\lambda]^{\mu}$ RC implies $\langle \mathscr{G}_Z \rangle_{Z \in [\omega_2]^{\omega_1}}$ is a $\Diamond_{\omega_2} \{ \delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \}$ A more general result

 $\begin{array}{l} \mbox{Saturation of } NS_{\omega_1} \\ \mbox{Rado's Conjecture} \\ \mbox{Some applications of RC} \\ \mbox{Diamonds} \end{array}$

Saturation of NS_{ω_1}

Definition (Saturation of NS_{ω_1})

Let W be a collection of stationary sets in ω_1 such that for every S and T in W, $S \cap T$ is nonstationary. Then $|W| \leq \omega_1$.

 $\begin{array}{l} \mbox{Saturation of NS_{ω_1}} \\ \mbox{Rado's Conjecture} \\ \mbox{Some applications of RC} \\ \mbox{Diamonds} \end{array}$

Rado's Conjecture (RC)

Definition (Rado's Conjecture)

A family of intervals of a linearly ordered set is the union of countably many disjoint subfamilies (σ -disjoint) if and only if every subfamily of size \aleph_1 is σ -disjoint.

Definition (Rado's Conjecture in Todorčević's equivalent version, 1983)

A tree T of height ω_1 is the union of countably many antichains (special) if and only if every subtree of T of size \aleph_1 is special.

 $\begin{array}{l} \mbox{Saturation of NS_{ω_1}} \\ \mbox{Rado's Conjecture} \\ \mbox{Some applications of RC} \\ \mbox{Diamonds} \end{array}$

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

- 2. the Singular Cardinal Hypothesis,
- 3. $2^{\aleph_0} \leq \omega_2$,
- 4. \Box_{κ} fails for every uncountable cardinal κ .

Theorem (Feng, 1999)

Rado's Conjecture implies the presaturation of the nonstationary ideal on ω_1 .

 $\begin{array}{l} \mbox{Saturation of NS_{ω_1}} \\ \mbox{Rado's Conjecture} \\ \mbox{Some applications of RC} \\ \mbox{Diamonds} \end{array}$

Stationary sets in two cardinals version

Definition

We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary if for every function $f : \lambda^{<\omega} \to \lambda$, there is $X \in S$ such that $f[X^{<\omega}] \subseteq X$.

イロン イヨン イヨン イヨン

 $\begin{array}{l} \mbox{Saturation of NS_{ω_1}}\\ \mbox{Rado's Conjecture} \\ \mbox{Some applications of RC}\\ \mbox{Diamonds} \end{array}$

Diamond in two cardinals version

Definition Let $\langle \mathscr{G}_Z \rangle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $\mathscr{G}_Z \subseteq P(Z)$ and

 $|\mathscr{G}_{\mathsf{Z}}| \leq \mu$

for all $Z \in [\lambda]^{\mu}$. Then $\langle \mathscr{G}_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

$$\{Z \in [\lambda]^{\mu} : W \cap Z \in \mathscr{G}_{Z}\}$$

is stationary. The principle $\Diamond_{[\lambda]^{\mu}}$ states that there is a $\Diamond_{[\lambda]^{\mu}}\text{-sequence.}$

イロン イボン イモン イモン 三日

Main Theorem statement

Some tools used in the proof Key definition Construction of the sequence (Guessing trees) Saturation of NS implies $|\mathscr{G}_Z| \leq \aleph_1$ for every $Z \in [\lambda]^{\mu}$ RC implies $\langle \mathscr{G}_Z \rangle_{Z \in [\omega_2]} | \omega_1$ is a $\delta \omega_2 \{ \delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \}$ A more general result

Main Theorem

Theorem Rado's Conjecture together with the saturation of NS_{ω_1} imply $\Diamond_{\omega_2} \{ \delta < \omega_2 : cof(\delta) = \omega_1 \}.$

 $\begin{array}{l} \text{Main Theorem statement} \\ \textbf{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1\} \\ \text{A more general result} \end{array}$

Some tools used in the proof...

Notation

For an ordinal α , the set

$$\operatorname{lev}_{\alpha}(T) = \{t \in T : \operatorname{ht}_{T}(t) = \alpha\}$$

is the α -th level of T. The height of the tree T, ht(T) is the minimal ordinal α such that $lev_{\alpha}(T) = \emptyset$. For $E \subseteq Ord$ and a tree T, let

$$T|_{E} = \bigcup_{\alpha \in E} \operatorname{lev}_{\alpha}(T).$$

・ロト ・日ト ・ヨト ・ヨト

 $\begin{array}{l} \text{Main Theorem statement} \\ \textbf{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Some tools used in the proof...

Definition

Let T be a tree and $S \subseteq T$. A function $f : S \to T$ is *regressive* if for all $t \in S$ such that ht(t) > 0, we have $f(t) <_T t$.

Definition

For a tree T of height $\leq \omega_1$ and a set $E \subseteq \omega_1$ we say that E is *T*-nonstationary if there is a regressive mapping $f : T \models \to T$ such that $f^{-1}(t)$ is a special subtree of T for all $t \in T$. Let $NS_T = \{E \subseteq \omega_1 : E \text{ is } T\text{-nonstationary}\}.$

<ロ> (四) (四) (三) (三) (三)

 $\begin{array}{l} \text{Main Theorem statement} \\ \textbf{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Some tools used in the proof...

The follwoing two results are from Todorčević (1981):

Theorem

For every T of height ω_1 , NS_T is a normal ideal on ω_1 .

Theorem (Pressing Down Lemma for Trees)

For every nonspecial tree T and for any regressive function $f: T \rightarrow T$, there is a nonspecial subtree U of T such that $f|_U$ is constant.

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle \mathscr{G}_Z \rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Key definition

For every $Z\in [\lambda]^{\omega_1}$, we define the sequence:

 $\mathscr{G}_{Z} = \{Y \subseteq Z : \text{ there is a guessing subtree } T \subseteq T_{[Z]^{\omega}} \text{ that guesses } Y\}$

<ロ> <四> <四> <四> <三</td>

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]}^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Guessing trees

We will use the following theorem of Todorčević:

Theorem $\langle \lambda \rangle_{[\lambda]^{\omega}}$ holds for every cardinal $\lambda \geq \omega_2$.

イロン 不同 とくほど 不同 とう

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1\} \\ \text{A more general result} \end{array}$

Guessing trees

Let $\langle S_N : N \in [\lambda]^{\omega} \rangle$ be a $\Diamond_{[\lambda]^{\omega}}$ -sequence. Then for every set $W \subseteq \lambda$, the set

$$\mathscr{S}_{W} = \{ \mathsf{N} \in [\lambda]^{\omega} : W \cap \mathsf{N} = \mathsf{S}_{\mathsf{N}} \}$$

is a stationary (actually, it is a projective stationary) subset of $[\lambda]^{\omega}$.

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies} |\mathcal{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle \mathcal{G}_Z \rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Guessing trees

For a subset $\mathscr{S} \subseteq [\lambda]^{\omega}$, let $T_{\mathscr{S}}$ denote the tree built with countable continuously strictly increasing chains $t = \langle N_{\xi}^t : \xi \leq \alpha(t) \rangle$ of elements of \mathscr{S} , and such that for every $\xi < \eta$,

 $N_{\xi} \cap \omega_1 < N_{\eta} \cap \omega_1$

and

$$\sup(N_{\xi} \cap \lambda) < \sup(N_{\eta} \cap \lambda).$$

For $t = \langle N^t_{\xi} : \xi \leq \alpha(t) \rangle$, in order to have simpler notation, we let

$$N_t = N_{\alpha(t)}^t.$$

イロン イボン イモン イモン 三日

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1\} \\ \text{A more general result} \end{array}$

Guessing trees

For every $Z \in [\lambda]^{\omega_1}$, we fix

$$Z = \bigcup_{\gamma \in \omega_1} Z_{\gamma},$$

a continuous increasing decomposition of Z into countable sets Z_{γ} .

イロン イヨン イヨン イヨン

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies} |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle \mathscr{G}_Z \rangle_{Z \in [\omega_2]} |\omega_1 \text{ is a } \Diamond_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result if} \end{array}$

Guessing trees

Definition

For $Z\in [\lambda]^{\omega_1}$, we call a subtree $T\subseteq T_{[Z]^\omega}$ a $\ guessing \ subtree$ if

1. T is a nonspecial tree but for every $\alpha \in Z$

 $\{t \in T : \alpha \notin N_t\}$

is special.

2. $\forall u, t \in T \text{ and } \forall \gamma \in \omega_1$, if $N_u \supseteq Z_\gamma$, $N_t \supseteq Z_\gamma$, then

$$S_{N_u} \cap Z_{\gamma} = S_{N_t} \cap Z_{\gamma}.$$

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies} |\mathcal{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle \mathcal{G}_Z \rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

Guessing trees

Definition

Suppose T is a guessing subtree of $T_{[Z]^{\omega}}$ and $Y \subseteq Z$. We say that T guesses Y iff

$$(\forall \gamma < \omega_1)(\forall t \in T)N_t \supseteq Z_\gamma \rightarrow Y \cap Z_\gamma = S_{N_t} \cap Z_\gamma.$$

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies} \left\| \mathcal{G}_Z \right\|_{\mathcal{L}} \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies} \left\{ \mathcal{G}_Z \right\}_{Z \in [\omega_2]}^{\omega_1} \text{ is a } \delta_{\omega_2} \left\{ \delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \right\} \\ \text{A more general result} \end{array}$

Saturation of NS implies $|\mathscr{G}_Z| \leq \aleph_1$ for every $Z \in [\lambda]^{\mu}$

Proposition

Assume that NS_{ω_1} is a saturated ideal. Then $|\mathscr{G}_Z| \leq \aleph_1$ for every $Z \in [\lambda]^{\omega_1}$.

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathscr{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle\mathscr{G}_Z\rangle_{Z \in [\omega_2]} \omega_1 \text{ is a } \delta \omega_2 \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1\} \\ \text{A more general result} \end{array}$

RC implies $\langle \mathscr{G}_Z \rangle_{Z \in [\omega_2]^{\omega_1}}$ is actually a $\Diamond_{\omega_2} \{ \delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \}$

Proposition

For every $W \subseteq \omega_2$ and every $h: \omega_2^{<\omega} \to \omega_2$, there is $\delta \in \omega_2$ such that

1. $W \cap \delta \in \mathscr{G}_{\delta}$, 2. $h[\delta^{<\omega}] \subseteq \delta$ and 3. $cof(\delta) = \omega_1$.

 $\begin{array}{l} \text{Main Theorem statement} \\ \text{Some tools used in the proof} \\ \text{Key definition} \\ \text{Construction of the sequence (Guessing trees)} \\ \text{Saturation of NS implies } |\mathcal{G}_Z| \leq \aleph_1 \text{ for every } Z \in [\lambda]^{\mu} \\ \text{RC implies } \langle \mathcal{G}_Z \rangle_{Z \in [\omega_2]} |^{\omega_1} \text{ is a } \delta_{\omega_2} \{\delta < \omega_2 : \operatorname{cof}(\delta) = \omega_1 \} \\ \text{A more general result} \end{array}$

We got actually a more general result:

Theorem Rado's Conjecture together with the saturation of NS_{ω_1} imply $\langle \lambda_{[\lambda]^{\omega_1}}$ for $\omega_2 \leq \lambda < \omega_{\omega}$.

イロン 不同 とうほう 不同 とう