Some questions on the models of MM

Matteo Viale
Università di Torino
PROBLEM

MM and PFA appears to produce models of set theory in which every "consistent" set of size \aleph_1 "exists".

How to formulate this in a suitable form?

For example in this way:

Theorem 1 (Veličković) Assume MM. Let W be an inner model such that $\omega_2^W = \omega_2$. Then $P(\omega_1) \subseteq W$.

Theorem 2 (Caicedo, Vel.) Assume $W \subseteq V$ are models of BPFA such that $\omega_2^W = \omega_2$. Then $P(\omega_1) \subseteq W$.
We would like to extend these results all over the cardinals:

Conjecture 1 (Caicedo, Veličković) Assume $W \subseteq V$ are models of MM with the same cardinals. Then $[\text{Ord}]^\leq\aleph_1 \subseteq W$.

This is almost best possible, since:

- There exist $W \subseteq V$ models of MM with the same cardinals such that $[\text{Ord}]^{\aleph_2} \not\subseteq W$.

- Using stationary tower forcing it is possible to produce two models of MM, $W \subseteq V$ such that $[\text{Ord}]^{\leq\aleph_1} \not\subseteq W$. However the two models have different cardinals.
FIRST PROBLEM TO MATCH: FIXING THE COFINALITIES.

This is solved by the following result which expands over works of Cummings, Schimmerling, Todorčević, Dzamonja, Shelah.

Theorem 3 (V.) Assume MM. Let κ be singular (and strong limit). Let W be an inner model such that κ is regular in W and $\kappa^+ = (\kappa^+)^W$. Then $\text{cf}(\kappa) > \omega_1$.

Corollary 4 Let V be a model of MM (such that every limit cardinal is strong limit). Let W be an inner model with the same cardinals. If κ is regular in W, $\text{cf}(\kappa) > \omega_1$.
Back to the conjecture, the best result I have to time is the following:

Corollary 5 Assume $W \subseteq V$ are models of ZFC with the same cardinals and:

- V models MM,
- every limit cardinal is strong limit,
- V is a set-forcing extension of W.

Then $[\text{Ord}]_{\leq \omega_1} \subseteq W$.
Sketch of proof: if \(V = W[G] \) with \(G \) \(P \)-generic filter for some set \(P \in W \) of size \(\kappa \), new sets of ordinals appear already as subsets of \(\kappa \).

The assumptions entail that \(W \) and \(V \) have the same ordinals of cofinality at most \(\aleph_1 \).

Now the \(\kappa^+ \)-cc of \(P \) entails that \(W \)-stationary subsets of \(\kappa^+ \) remain stationary in \(V \). Fix in \(W \):

\[
\mathcal{E} = \{ S_\alpha : \alpha < \kappa^+ \} \in W
\]

partition of \(E^\omega_{\kappa^+} \) in \(W \)-stationary sets.
In V this remains a partition in stationary sets of points of countable cofinality.

Now let $X \in [\kappa]^{\leq \aleph_1}$ in V,

Apply MM in V to find an ordinal δ of cofinality \aleph_1 such that:

\[S_\alpha \text{ reflects on } \delta \text{ iff } \alpha \in X. \]

Now δ has cofinality \aleph_1 also in W and $P(\omega_1) \subseteq W$.

This is enough to get that the above property holds also in W. Thus $X \in W$. \qed
The first natural approach is to follow the same pattern of the proof of the previous theorem. In order to run the argument we need to find a way of generating indestructible partitions of stationary sets:

Definition 6 Let λ be a regular cardinal and Γ a property.

S is a Γ-indestructibly stationary subset of λ if it remains stationary in any outer model where the property Γ holds.

Let S be a stationary subset of λ.

$\text{IP}(\Gamma, \kappa, S)$-holds if S carries a partition in κ-many disjoint Γ-indestructibly stationary subsets.
We shall be interested in the following properties:

- $\Gamma = \text{Reg}(\lambda)$: λ is a regular cardinal

- $\Gamma = \text{scale}(\mathcal{F}, \theta^+)$: for some increasing family $(\theta_i : i < \kappa)$ of regular cardinals, $\mathcal{F} = \{f_\alpha : \alpha < \theta^+\}$ is a scale on $\prod_{i<\kappa} \theta_i$ and $\theta = \sup_{i<\kappa} \theta_i$.
Problem 1 Let κ be an arbitrarily large cardinal.

Does $\text{IP}(\text{Reg}(\lambda), \kappa, E^\omega_\lambda)$ holds for some $\lambda \geq \kappa$?

Assume the answer is yes and let V be a model of MM and W be an inner model with the same cardinals.

We can use this property to show $[\text{Ord}]^{\leq \aleph_1} \subseteq W$ running the same proof sketched before.

We appeal to $\text{IP}(\text{Reg}(\lambda), \kappa, E^\omega_\lambda)$ to get a partition in W of E^ω_λ into κ-many stationary subsets of V.

We then argue by induction on κ, that for no κ new elements of $[\kappa]^{\leq \aleph_1}$ are added.
This leads us to partition relations:

Definition 7 Let \mathcal{F} be a filter on κ

$$
\lambda \rightarrow_{\mathcal{F}} [\kappa]_\lambda^2
$$

holds if for every $f : [\lambda]^2 \rightarrow \kappa$, there is $H \subseteq \lambda$ of size λ such that $f[[H]^2] \not\in \mathcal{F}$.

We are interested in the failure of this partition relation for the filter of cobounded subsets of κ.
Definition 8

\[\lambda \not\rightarrow_{\mathcal{F}}^{\Gamma} [\kappa]^2_{\lambda} \]

If there is \(f : [\lambda]^2 \to \kappa \) *which witness the failure of the partition relation in every outer model in which* \(\Gamma \) *holds.*

To avoid too many subscripts we shall not mention \(\mathcal{F} \) when \(\mathcal{F} \) is the filter of cobounded subsets of \(\kappa \).

This is a slight abuse of notation...
We are interested in this partition relation mainly for this observation:

Lemma 9 *Larson? Assume* \[\lambda \not
ightarrow_{[\kappa]^2_\lambda}. \]

Then IP(\Gamma, \kappa, S) holds for any \Gamma\text{-indestructibly stationary subset } S \text{ of } \lambda.
Moreover our approach is not without hope since:

Theorem 10 Todorčević

$$\omega_1 \not\leadsto^{\text{Reg} (\omega_1)} [\omega]_{\omega_1}^2.$$

Basic observations coming from pcf-theory give also:

Fact 1 *If θ is singular, then:*

$$\theta^+ \not\leadsto^{\text{scale} (\mathcal{F}, \theta^+)} [\text{cf} (\theta)]_{\theta^+}^2.$$

13
As a corollary of the fact we get....

Corollary 11 Assume $W \subseteq V$ are models of ZFC with the same cardinals and:

- V models MM,
- every limit cardinal is strong limit,
- There are arbitrarily large cardinals κ such that for some increasing sequence $(\theta_i : i < \kappa) \in W$ of regular cardinals larger than κ, there is $F \in W$ scale on $\prod_{i<\kappa} \theta_i$ in V.

Then $[\text{Ord}]^{\leq \omega_1} \subseteq W$.
Proof: For arbitrarily large κ we get that $scale(\mathcal{F}, \lambda)$ holds in V for some $\mathcal{F} \in W$ and for some λ successor of a singular cardinal of cofinality κ. This is enough to run the usual arguments. □

Corollary 12 Assume V models MM and W is an inner model with the same cardinals such that $[\kappa]^{\aleph_1} \not\subseteq W$. Then any $\mathcal{F} \in W$ scale in W on $\prod_{i<\kappa} \theta_i \in W$ increasing sequence of regular cardinals has a new exact upper bound in V.

15
On the other hand: for club many singular \(\theta \) of cofinality at most \(\aleph_1 \) there are scales \(F \in W \) of type \(\theta^+ \) which remain scales in \(V \).

Fact 2 (Silver?, Shelah?) Assume \(\kappa \) is regular and \(\{ \theta_i : i < \kappa \} \) is a club of singular cardinals larger than \(\kappa \). Let

\[
F = \{ f_\alpha : \alpha < \theta^+ \} \subseteq \prod_{i<\kappa} \theta_i^+
\]

be a family of functions increasing modulo bounded.

Then there is \(D \) club subset of \(\kappa \) such that

\[
F \upharpoonright D = \{ f_\alpha \upharpoonright D : \alpha < \theta^+ \} \subseteq \prod_{i<\kappa} \theta_i^+
\]

has exact upper bound \(\prod_{i \in D} \theta_i^+ \).
Thus:

If \(\kappa \geq \aleph_1 \) *is regular and* \((\theta_i : i < \kappa) \in W\) is a sequence of regular cardinals larger than \(\kappa \), *there is* \(F \in W \) *and* \(D \in V \) *club subset of* \(\kappa \) *such that* \(F \upharpoonright D \) *is a scale in* \(V \) *on* \(\prod_{i \in D} \theta_i \).

So if \(V \) and \(W \) witness the failure of the conjecture, on one hand the pcf-structure of \(W \) and \(V \) diverge completely, while on the other hand the two pcf-structures must still be very close to each other.
Other approaches to solve the conjecture
Fact 3 Assume the conjecture fails for $W \subseteq V$ and κ is the least such that $[\kappa]^{\aleph_1} \not\subseteq W$. Then for any finite set $\{\lambda_i : i < n\}$ of regular cardinals larger than κ there is:

$$j : N \to H(\lambda_{n-1})^W$$

elementary and such that:

- $[N]^{\aleph_1} \subseteq N$,

- $\omega_2 < \text{crit}(j) < \kappa$,

- $j(\kappa) = \kappa$ and $j(\lambda_i) = \lambda_i$ for all $i < n$,

- for each $i < n$ the set of $\delta < \lambda_i$ such that $j(\delta) = \delta$ is closed under all sequences of length at most \aleph_1.
One may try to argue that if W is a "nice" inner model, then it is the case that $N = H(\lambda_{n-1})^W$.

Ideas coming from inner model theory may then lead to a contradiction.