Some questions on the models of MM

Matteo Viale Università di Torino

1

PROBLEM

MM and PFA appears to produce models of set theory in which every "consistent" set of size \aleph_1 "exists".

How to formulate this in a suitable form?

For example in this way:

Theorem 1 (Veličković) Assume MM. Let W be an inner model such that $\omega_2^W = \omega_2$. Then $P(\omega_1) \subseteq W$.

Theorem 2 (Caicedo, Vel.) Assume $W \subseteq V$ are models of BPFA such that $\omega_2^W = \omega_2$. Then $P(\omega_1) \subseteq W$.

We would like to extend these results all over the cardinals:

Conjecture 1 (Caicedo, Veličković) Assume $W \subseteq V$ are models of MM with the same cardinals. Then $[Ord]^{\leq \aleph_1} \subseteq W$.

This is almost best possible, since:

- There exist $W \subseteq V$ models of MM with the same cardinals such that $[Ord]^{\aleph_2} \not\subseteq W$.
- Using stationary tower forcing it is possible to produce two models of MM, $W \subseteq V$ such that $[Ord]^{\leq \aleph_1} \not\subseteq W$. However the two models have different cardinals.

FIRST PROBLEM TO MATCH: FIXING THE COFINALITIES.

This is solved by the following result which expands over works of Cummings, Schimmerling, Todorčević, Dzamonja, Shelah.

Theorem 3 (V.) Assume MM. Let κ be singular (and strong limit). Let W be an inner model such that κ is regular in W and $\kappa^+ = (\kappa^+)^W$. Then $cf(\kappa) > \omega_1$.

Corollary 4 Let V be a model of MM (such that every limit cardinal is strong limit). Let W be an inner model with the same cardinals. If κ is regular in W, cf(κ) > ω_1 . Back to the conjecture, the best result I have to time is the following:

Corollary 5 Assume $W \subseteq V$ are models of ZFC with the same cardinals and:

• V models MM,

• every limit cardinal is strong limit,

• V is a set-forcing extension of W.

Then $[Ord]^{\leq \omega_1} \subseteq W$.

Sketch of proof: if V = W[G] with $G \mathbb{P}$ -generic filter for some set $\mathbb{P} \in W$ of size κ , new sets of ordinals appear already as subsets of κ .

The assumptions entail that W and V have the same ordinals of cofinality at most \aleph_1 .

Now the κ^+ -cc of P entails that W-stationary subsets of κ^+ remain stationary in V. Fix in W:

$$\mathcal{E} = \{S_{\alpha} : \alpha < \kappa^+\} \in W$$

partition of $E_{\kappa^+}^{\omega}$ in W-stationary sets.

In V this remains a partition in stationary sets of points of countable cofinality.

Now let $X \in [\kappa]^{\leq \aleph_1}$ in V,

Apply MM in V to find an ordinal δ of cofinality \aleph_1 such that:

 S_{α} reflects on δ iff $\alpha \in X$.

Now δ has cofinality \aleph_1 also in W and $P(\omega_1) \subseteq W$.

This is enough to get that the above property holds also in W. Thus $X \in W$.

The first natural approach is to follow the same pattern of the proof of the previous theorem. In order to run the argument we need to find a way of generating indestructible partitions of stationary sets:

Definition 6 Let λ be a regular cardinal and Γ a property.

S is a Γ -indestructibly stationary subset of λ if it remains stationary in any outer model where the property Γ holds.

Let S be a stationary subset of λ .

IP(Γ, κ, S)-holds if S carries a partition in κ -many disjoint Γ -indestuctibly stationary subsets.

We shall be interested in the following properties:

- $\Gamma = Reg(\lambda)$: λ is a regular cardinal
- $\Gamma = scale(\mathcal{F}, \theta^+)$: for some increasing family (θ_i : $i < \kappa$) of regular cardinals,

$$F = \{f_{\alpha} : \alpha < \theta^+\}$$

is a scale on $\prod_{i < \kappa} \theta_i$ and $\theta = \sup_{i < \kappa} \theta_i$.

Problem 1 Let κ be an arbitrarily large cardinal.

Does IP($Reg(\lambda), \kappa, E_{\lambda}^{\omega}$) holds for some $\lambda \geq \kappa$?

Assume the answer is yes and let V be a model of MM and W be an inner model with the same cardinals.

We can use this property to show $[Ord]^{\leq\aleph_1} \subseteq W$ running the same proof sketched before.

We appeal to $P(Reg(\lambda), \kappa, E_{\lambda}^{\omega})$ to get a partition in W of E_{λ}^{ω} into κ -many stationary subsets of V.

We then argue by induction on κ , that for no κ new elements of $[\kappa]^{\leq \aleph_1}$ are added.

This leads us to partition relations:

Definition 7 Let \mathcal{F} be a filter on κ

 $\lambda \to_{\mathcal{F}} [\kappa]^2_{\lambda}$

holds if for every $f : [\lambda]^2 \to \kappa$, there is $H \subseteq \lambda$ of size λ such that $f[[H]^2] \notin \mathcal{F}$.

We are interested in the failure of this partition relation for the filter of cobounded subsets of κ .

Definition 8

$$\lambda \not\rightarrow^{\mathsf{F}}_{\mathcal{F}} [\kappa]^2_{\lambda}$$

If there is $f : [\lambda]^2 \to \kappa$ which witness the failure of the partition relation in every outer model in which Γ holds.

To avoid too many subscripts we shall not mention \mathcal{F} when \mathcal{F} is the filter of cobounded subsets of κ .

This is a slight abuse of notation...

We are interested in this partition relation mainly for this observation:

Lemma 9 Larson? Assume

 $\lambda \not\rightarrow^{\mathsf{\Gamma}} [\kappa]^2_{\lambda}.$

Then IP(Γ, κ, S) holds for any Γ -indestructibly stationary subset S of λ .

Moreover our approach is not without hope since:

Theorem 10 Todorčević

$$\omega_1 \not\rightarrow^{Reg(\omega_1)} [\omega]^2_{\omega_1}.$$

Basic observations coming from pcf-theory give also:

Fact 1 If θ is singular, then:

$$\theta^+ \not\rightarrow^{scale(\mathcal{F},\theta^+)} [cf(\theta)]_{\theta^+}^2.$$

As a corollary of the fact we get....

Corollary 11 Assume $W \subseteq V$ are models of ZFC with the same cardinals and:

- V models MM,
- every limit cardinal is strong limit,
- There are arbitrarily large cardinals κ such that for some increasing sequence $(\theta_i : i < \kappa) \in W$ of regular cardinals larger than κ , there is $\mathcal{F} \in W$ scale on $\prod_{i < \kappa} \theta_i$ in V.

Then $[Ord]^{\leq \omega_1} \subseteq W$.

Proof: For arbitrarily large κ we get that $scale(\mathcal{F}, \lambda)$ holds in V for some $\mathcal{F} \in W$ and for some λ successor of a singular cardinal of cofinality κ . This is enough to run the usual arguments.

Corollary 12 Assume V models MM and W is an inner model with the same cardinals such that $[\kappa]^{\leq \aleph_1} \not\subseteq W$. Then any $\mathcal{F} \in W$ scale in W on $\prod_{i < \kappa} \theta_i \in W$ increasing sequence of regular cardinals has a new exact upper bound in V. On the other hand: for club many singular θ of cofinality at most \aleph_1 there are scales $\mathcal{F} \in W$ of type θ^+ which remain scales in V.

Fact 2 (Silver?, Shelah?) Assume κ is regular and $\{\theta_i : i < \kappa\}$ is a club of singular cardinals larger than κ . Let

$$\mathcal{F} = \{ f_{\alpha} : \alpha < \theta^+ \} \subseteq \prod_{i < \kappa} \theta_i^+$$

be a family of functions increasing modulo bounded.

Then there is D club subset of κ such that

$$\mathcal{F} \upharpoonright D = \{ f_{\alpha} \upharpoonright D : \alpha < \theta^+ \} \subseteq \prod_{i < \kappa} \theta_i^+$$

has exact upper bound $\prod_{i \in D} \theta_i^+$.

Thus:

If $\kappa \geq \aleph_1$ is regular and $(\theta_i : i < \kappa) \in W$ is a sequence of regular cardinals larger than κ , there is $\mathcal{F} \in W$ and $D \in V$ club subset of κ such that $\mathcal{F} \upharpoonright D$ is a scale in Von $\prod_{i \in D} \theta_i$.

So if V and W witness the failure of the conjecture, on one hand the pcf-structure of W and V diverge completely, while on the other hand the two pcf-structures must still be very close to each other. Other approaches to solve the conjecture

Fact 3 Assume the conjecture fails for $W \subseteq V$ and κ is the least such that $[\kappa]^{\leq \aleph_1} \not\subseteq W$. Then for any finite set $\{\lambda_i : i < n\}$ of regular cardinals larger than κ there is:

$$j: N \to H(\lambda_{n-1})^W$$

elementary and such that:

- $[N]^{\leq \aleph_1} \subseteq N$,
- $\omega_2 < crit(j) < \kappa$,
- $j(\kappa) = \kappa$ and $j(\lambda_i) = \lambda_i$ for all i < n,
- for each i < n the set of $\delta < \lambda_i$ such that $j(\delta) = \delta$ is closed under all sequences of length at most \aleph_1 .

One may try to argue that if W is a "nice" inner model, then it is the case that $N = H(\lambda_{n-1})^W$.

Ideas coming from inner model theory may then lead to a contradiction.