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PROBLEM

MM and PFA appears to produce models of set theory
in which every ""consistent” set of size Ny "exists”.

How to formulate this in a suitable form?
For example in this way:

Theorem 1 (VeliCkovi€) Assume MM. Let W be an
inner model such that wy’ = wp. Then P(w1) CW.

Theorem 2 (Caicedo, Vel.) AssumeW CV are mod-
els of BPFA such that wy = wo. Then P(wy) C W.
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We would like to extend these results all over the car-
dinals:

Conjecture 1 (Caicedo, Velickovi¢) Assume W C V
are models of MM with the same cardinals. Then [Ord]S%1 C
W.

This is almost best possible, since:

e There exist W C V models of MM with the same
cardinals such that [Ord]®2 ¢ W.

e Using stationary tower forcing it is possible to pro-
duce two models of MM, W C V such that [Ord]=N1 ¢
W. However the two models have different cardi-
nals.



FIRST PROBLEM TO MATCH: FIXING THE
COFINALITIES.

This is solved by the following result which expands
over works of Cummings, Schimmerling, TodorcCevicC,
Dzamonja, Shelah.

Theorem 3 (V.) Assume MM. Let s be singular (and
strong limit). Let W be an inner model such that k is
regular in W and kt = (¢ )W'. Then cf(k) > wq.

Corollary 4 Let V be a model of MM (such that every
limit cardinal is strong limit). Let W be an inner model
with the same cardinals.

If x is regular in W, cf(k) > w1q.



Back to the conjecture, the best result I have to time
is the following:

Corollary 5 Assume W C V are models of ZFC with the
same cardinals and:

e V models MM,

e every limit cardinal is strong limit,

e V js a set-forcing extension of W.

Then [Ord]S*1 C W.



Sketch of proof: if V.= W|[G] with G P-generic filter for
some set P € W of size k, new sets of ordinals appear
already as subsets of k.

The assumptions entail that W and V have the same
ordinals of cofinality at most Nj.

Now the xkt-cc of P entails that W-stationary subsets
of kT remain stationary in V. Fix in W:

E={Sq:a<krTleWw

partition of E:+ in W-stationary sets.



In V this remains a partition in stationary sets of points
of countable cofinality.

Now let X € []=N1 in V,

Apply MM in V to find an ordinal § of cofinality &7 such
that:

Sq reflects on 6 iffa € X.

Now ¢ has cofinality Ry also in W and P(w1) C W.

This is enough to get that the above property holds
alsoin W. Thus X € W. []



The first natural approach is to follow the same pat-
tern of the proof of the previous theorem. In order to
run the argument we need to find a way of generating
indestructible partitions of stationary sets:

Definition 6 Let A\ be a regular cardinal and I a prop-
erty.

S is al -indestructibly stationary subset of X\ if it remains
stationary in any outer model where the property [
holds.

Let S be a stationary subset of \.

IP(I", x,S)-holds if S carries a partition in k-many dis-
Jjoint I -indestuctibly stationary subsets.



We shall be interested in the following properties:
e [ = Reg()\): X is a regular cardinal

o I = scale(F,0T): for some increasing family (6; :
i < k) of regular cardinals,

F:{fa:a<9+}

is @ scale on [[;«,0; and 0 = sup;. 0;.



Problem 1 Let k be an arbitrarily large cardinal.
Does IP(Reg(\), k, EY) holds for some A\ > k7

Assume the answer is yes and let V be a model of MM
and W be an inner model with the same cardinals.

We can use this property to show [Ord]fN1 C W running
the same proof sketched before.

We appeal to IP(Reg()), k, EY) to get a partition in W
of Ef\" into k-many stationary subsets of V.

We then argue by induction on k, that for no x new
elements of [k]=%1 are added.



T his leads us to partition relations:
Definition 7 Let F be a filter on &

X —r [K]3

holds if for every f : [\]2 — k, there is H C \ of size \
such that f[[H]?] ¢ F.

We are interested in the failure of this partition relation
for the filter of cobounded subsets of k.
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Definition 8
A A (KIS

If there is f : [A\]? — k which witness the failure of the
partition relation in every outer model in which I holds.

To avoid too many subscripts we shall not mention F
when F is the filter of cobounded subsets of k.

This is a slight abuse of notation...
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We are interested in this partition relation mainly for
this observation:

Lemma 9 Larson? Assume

A AT K]S

Then|P(I", k,S) holds for any I -indestructibly stationary
subset S of .
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Moreover our approach is not without hope since:

Theorem 10 TodorcCevic

on R0 (L2,

Basic observations coming from pcf-theory give also:

Fact 1 If 0 is singular, then:

o+ 7L>Scal€(.7'—,9+) [Cf(g)]ng.
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As a corollary of the fact we get....

Corollary 11 Assume W C V are models of ZFC with
the same cardinals and:

e V models MM,
e every limit cardinal is strong limit,

e [ here are arbitrarily large cardinals x such that for
some increasing sequence (0; . i < k) € W of regular
cardinals larger than k, there is F € W scale on
[[ick0i iInV.

Then [Ord]S*1 C W.
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Proof: For arbitrarily large x we get that scale(F, \)
holds in V for some F € W and for some A\ successor
of a singular cardinal of cofinality k. This is enough to
run the usual arguments. []

Corollary 12 Assume V models MM and W is an inner
model with the same cardinals such that [k]=%1 ¢ W.
Then any F € W scale in W on [];,..0; € W increasing
sequence of regular cardinals has a new exact upper
bound in'V.
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On the other hand: for club many singular 6 of cofinality
at most Nq there are scales F € W of type 0T which
remain scales in V.

Fact 2 (Silver?, Shelah?) Assume k is regular and {6, :
i < Kk} is a club of singular cardinals larger than k. Let

F={fa:a<0T}ycC [ 6}
1<K
be a family of functions increasing modulo bounded.

Then there is D club subset of k such that
FID={falD:a<0t}C [0
1<K
has exact upper bound [[;cp 0;".
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Thus:

If Kk > Ry is regular and (6; : i < k) € W is a sequence
of reqular cardinals larger than k, there is F €¢ W and
D €V club subset of k such that F | D is a scale in'V

on HiED HZ

So if V and W witness the failure of the conjecture, on
one hand the pcf-structure of W and V diverge com-
pletely, while on the other hand the two pcf-structures
must still be very close to each other.



Other approaches to solve the conjecture
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Fact 3 Assume the conjecture fails for W CV and k is
the least such that [k]SN1 € W. Then for any finite set
{\; i < n} of regular cardinals larger than  there is:

j: N — H(An—l)W
elementary and such that:
° [N]SNl C N,
o wr < crit(j) < k,

e j(k) =k and j(\;) = \; for all i < n,

e for each i < n the set of § < \; such that j(§) =6
is closed under all sequences of length at most N;.
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One may try to argue that if W is a " nice’” inner model,
then it is the case that N = H(\,,_1)W.

Ideas coming from inner model theory may then lead
to a contradiction.



