CCC without random reals

Teruyuki Yorioka Shizuoka Univeristy

June 18, 2009

A topic and goal of this talk

Notation. For a forcing notion \mathbb{P} , let $a(\mathbb{P})$ be the forcing notion consists of finite antichains in \mathbb{P} ,

$$\sigma \leq_{a(\mathbb{P})} \tau :\iff \sigma \supseteq \tau.$$

Theorem (Zapletal). Let T be an Aronszajn tree, N a countable elementary submodel N of $H(\theta)$ which has the set $\{T\}$, $\sigma \in a(T) \cap N$, and $f \in \omega^{\omega}$. If f is not captured by any slalom in N, then there exists $\tau \leq_{a(T)} \sigma$ which is (N, a(T))-generic such that

 $\tau \Vdash_{a(T)}$ "f is not captured by any slalom in N".

That is, a(T) keeps $add(\mathcal{N})$ small (by the countable support iterations).

We argue that a(T) doesn't add random reals, so it keeps $cov(\mathcal{N})$ small.

Known examples of ccc forcing notions not adding random reals

There are many kinds of non-ccc forcing notions not adding random reals. But it seems that we don't know ccc forcing notions not adding random reals so much.

The following forcing notions are such examples.

- σ -centered forcing notions
- Suslin algebras (ccc complete Boolean algebras not adding new reals)
- ccc forcing notions with the Sacks property
- ? Talagrand's counterexample of the Control Measure Problem ?

Note that for a Suslin tree T, a(T) doesn't have the property K, and we will see an example of the form $a(\mathbb{P})$ which doesn't add random reals and not ω^{ω} -bounding.

Properties of Aronszajn trees

Proposition. For an ω_1 -tree T, T is Aronszajn iff

```
 \forall I \in [T]^{\aleph_1} \\ \exists s_0, s_1 \in T \text{ such that } s_0 \perp_T s_1 \text{ and} \\ \text{ both } \{u \in I; s_0 \leq_T u\} \text{ and } \{u \in I; s_1 \leq_T u\} \text{ are uncountable.}
```

Proof. If T is not Aronszajn, i.e. there exists an uncountable branch I through T, then for any s_0 and s_1 in T with $s_0 \perp_T s_1$, at least one of the sets $\{u \in I; s_0 \leq_T u\}$ and $\{u \in I; s_1 \leq_T u\}$ have to be countable.

If there exists an uncountable branch I through T such that for any s_0 and s_1 in T with $s_0 \perp_T s_1$, at least one of the sets $\{u \in I; s_0 \leq_T u\}$ and $\{u \in I; s_1 \leq_T u\}$ is countable, then the set

 $\{t \in T; \{u \in I; t \leq_T u\}$ is uncountable}

forms an uncountable branch thorugh T, so T is not Aronszajn.

Properties of Aronszajn trees

Proposition. For an ω_1 -tree T, T is Aronszajn iff

```
 \forall I \in [T]^{\aleph_1} \\ \exists s_0, s_1 \in T \text{ such that } s_0 \perp_T s_1 \text{ and} \\ \text{ both } \{u \in I; s_0 \leq_T u\} \text{ and } \{u \in I; s_1 \leq_T u\} \text{ are uncountable.}
```

Corollary. For an Aronszajn tree T,

 $\forall I \in [T]^{\aleph_1} \; \forall J \in [T]^{\aleph_1}$ $\exists I' \in [I]^{\aleph_1} \; \exists J' \in [J]^{\aleph_1} \; \text{ such that } \forall p \in I', \; \forall q \in J', \; p \perp_T q.$

Proof. For I and J in $[T]^{\aleph_1}$, there are s_0 , s_1 , t_0 and t_1 in T such that $s_0 \perp_T s_1$, $t_0 \perp_T t_1$ and for each $i \in \{0, 1\}$, both $\{u \in I; s_i \leq_T u\}$ and $\{u \in J; t_i \leq_T u\}$ are uncountable.

Then there are $i \in \{0, 1\}$ and $j \in \{0, 1\}$ such that $s_i \perp_T t_j$, and then let

$$I' := \{ u \in I; s_i \leq_T u \}$$
 and $J' := \{ u \in J; t_i \leq_T u \}.$

Definition (Y.). A forcing notion \mathbb{P} has the anti-rectangle refining property (arec) if \mathbb{P} is uncountable and

 $\forall I \in [\mathbb{P}]^{\aleph_1} \; \forall J \in [\mathbb{P}]^{\aleph_1} \\ \exists I' \in [I]^{\aleph_1} \; \exists J' \in [J]^{\aleph_1} \; \text{ such that } \forall p \in I', \; \forall q \in J', \; p \perp_{\mathbb{P}} q.$

Proposition. If \mathbb{P} has the arec, then

 $\forall I \in [a(\mathbb{P})]^{\aleph_1} \ \forall J \in [a(\mathbb{P})]^{\aleph_1}, \text{ if } I \cup J \text{ forms } a \ \Delta\text{-system},$ then $\exists I' \in [I]^{\aleph_1} \ \exists J' \in [J]^{\aleph_1}$ such that $\forall \sigma \in I' \ \forall \tau \in J', \ \sigma \not\perp_{a(\mathbb{P})} \tau$.

Proof. Let I and J in $[a(\mathbb{P})]^{\aleph_1}$ be such that $I \cup J$ forms a Δ -system with root ν . By shrinking I and J if necessary, we may assume that there are $m, n \in \omega$ such that for every $\sigma \in I$ and $\tau \in J$, $|\sigma \setminus \nu| = m$ and $|\tau \setminus \nu| = n$.

Using the arec $m \cdot n$ many times, we can find $I' \in [I]^{\aleph_1}$ and $J' \in [J]^{\aleph_1}$ such that for every $\sigma \in I'$, $\tau \in J'$, $i \in m$ and $j \in n$,

(*i*-th member of $\sigma \setminus \nu$) $\perp_{\mathbb{P}} (j$ -th member of $\tau \setminus \nu$).

Proposition. For an ω_1 -tree T, T is Aronszajn iff

```
 \forall I \in [T]^{\aleph_1} \\ \exists s_0, s_1 \in T \text{ such that } s_0 \perp_T s_1 \text{ and} \\ \text{ both } \{u \in I; s_0 \leq_T u\} \text{ and } \{u \in I; s_1 \leq_T u\} \text{ are uncountable.}
```

Corollary. For an Aronszajn tree T,

 \forall countable $N \prec H(\aleph_2)$ with $T \in N \quad \forall I \in [T]^{\aleph_1} \cap N \quad \forall p \in T \setminus N$ $\exists I' \in [I]^{\aleph_1} \cap N$ such that $\forall q \in I', p \perp_T q$.

Definition (Y.). A forcing notion \mathbb{P} has the anti- R_{1,\aleph_1} (the anti-R) if \mathbb{P} is uncountable and

 \forall countable $N \prec H(\aleph_2)$ with $\mathbb{P} \in N \quad \forall p \in \mathbb{P} \setminus N \quad \forall I \in [\mathbb{P}]^{\aleph_1} \cap N$ $\exists I' \in [I]^{\aleph_1} \cap N$ such that $\forall q \in I', p \perp_{\mathbb{P}} q.$

Proposition. If \mathbb{P} has the anti-R, then

 \forall countable $N \prec H(\aleph_2)$ with $\mathbb{P} \in N \ \forall \sigma \in a(\mathbb{P}) \setminus N$ $\forall I \in [a(\mathbb{P})]^{\aleph_1} \cap N$ which forms a Δ -system with root $\sigma \cap N$ $\exists I' \in [I]^{\aleph_1} \cap N$ such that $\forall \tau \in I', \sigma \not\perp_{a(\mathbb{P})} \tau$. **Definition** (Larson–Todorčević). A partition $K_0 \cup K_1$ on $[\omega_1]^2$ has the rectangle refining property if

 $\forall I \in [\omega_1]^{\aleph_1} \ \forall J \in [\omega_1]^{\aleph_1} \\ \exists I' \in [I]^{\aleph_1} \ \exists J' \in [J]^{\aleph_1} \ such \ that \ \forall \alpha \in I' \ \forall \beta \in J' \ if \ \alpha < \beta, \\ then \ \{\alpha, \beta\} \in K_0.$

Theorem (Y.). TFAE:

- Every partition $K_0 \cup K_1$ on $[\omega_1]^2$ with the rectangle refining property has an uncountable K_0 -homogeneous subset of ω_1 .
- For every forcing notion \mathbb{P} with the arec, $a(\mathbb{P})$ has the property K.

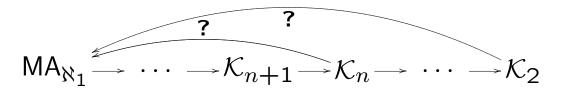
This partially answers a question of Todorčević's fragments of MA_{\aleph_1} : If every ccc partition on $[\omega_1]^2$ has an uncountable homogeneous sets, then every ccc forcing notion has the property K?

Motivations of two properties

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and for every \mathbb{P} with the anti-R, $a(\mathbb{P})$ has precaliber \aleph_1 , i.e.

 $\forall I \in [a(\mathbb{P})]^{\aleph_1}$ $\exists I' \in [I]^{\aleph_1}$ with the finite compatibility property, i.e. any finite subsets of I' has a common extension.

This partially answers a question of Todorčević's fragments of MA_{\aleph_1} :



where a forcing notion \mathbb{Q} has the property K_n if

 $\forall I \in [\mathbb{Q}]^{\aleph_1} \\ \exists I' \in [I]^{\aleph_1} n \text{-linked i.e.} \\ \text{any subset of } I' \text{ of size } n \text{ has a common extension in } \mathbb{Q},$

and \mathcal{K}_n says that every ccc forcing notion has the property K_n .

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and for every \mathbb{P} with the anti-R, $a(\mathbb{P})$ has precaliber \aleph_1 , i.e.

 $\forall I \in [a(\mathbb{P})]^{\aleph_1}$ $\exists I' \in [I]^{\aleph_1}$ with the finite compatibility property, i.e. any finite subsets of I' has a common extension.

Theorem (Todorčević–Veličković). MA_{\aleph_1} is equivalent to the statement that every ccc forcing notion has precaliber \aleph_1 .

Examples: (ω_1, ω_1) -gaps

Definition. An (ω_1, ω_1) -pregap is a sequence $\langle a_\alpha, b_\alpha; \alpha \in \omega_1 \rangle$ of infinite sets of natural numbers such that

• $\forall \alpha < \beta$, $a_{\alpha} \subseteq^* a_{\beta}$ and $b_{\alpha} \subseteq^* b_{\beta}$, and both $a_{\alpha} \cap b_{\beta}$ and $a_{\beta} \cap b_{\alpha}$ are finite,

• for every
$$\alpha \in \omega_1$$
, $a_\alpha \cap b_\alpha = \emptyset$,

• it is closed under finite modifications, that is,

 $\forall \alpha \in \omega_1 \ \forall \langle c, d \rangle$, if $c \setminus n = a_\alpha \setminus n$ and $d \setminus n = b_\alpha \setminus n$ for some $n \in \omega$, then $\exists \beta$ such that $\langle c, d \rangle = \langle a_\beta, b_\beta \rangle$,

and an (ω_1, ω_1) -pregap is called a gap if there are no $c \subseteq \omega$ such that

$$\forall \alpha \in \omega_1, a_{\alpha} \subseteq^* c \text{ and } b_{\alpha} \cap c \text{ finite.}$$

Definition. For an (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B}) = \langle a_\alpha, b_\alpha; \alpha \in \omega_1 \rangle$, the forcing notion $\mathcal{S}(\mathcal{S}, \mathcal{B}) := (\omega_1, \leq_{\mathcal{S}(\mathcal{A}, \mathcal{B})})$ is defined such that

$$\alpha \leq_{\mathcal{S}(\mathcal{A},\mathcal{B})} \beta : \iff a_{\beta} \subseteq a_{\alpha} \text{ and } b_{\beta} \subseteq b_{\alpha}.$$

Examples: (ω_1, ω_1) -gaps

Definition. For an (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B}) = \langle a_\alpha, b_\alpha; \alpha \in \omega_1 \rangle$, the forcing notion $\mathcal{S}(\mathcal{S}, \mathcal{B}) := (\omega_1, \leq_{\mathcal{S}(\mathcal{A}, \mathcal{B})})$ is defined such that

$$\alpha \leq_{\mathcal{S}(\mathcal{A},\mathcal{B})} \beta : \iff a_{\beta} \subseteq a_{\alpha} \text{ and } b_{\beta} \subseteq b_{\alpha}.$$

Proposition (Y.). For an (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B})$, $(\mathcal{A}, \mathcal{B})$ is a gap iff $\mathcal{S}(\mathcal{A}, \mathcal{B})$ has the arec iff $\mathcal{S}(\mathcal{A}, \mathcal{B})$ has the anti-R.

We note that $a(\mathcal{S}(\mathcal{A}, \mathcal{B}))$ is a forcing notion adds an uncountable subset I of ω_1 such that for every α and β in I with $\alpha \neq \beta$,

$$(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) \neq \emptyset,$$

i.e. $a(\mathcal{S}(\mathcal{A},\mathcal{B}))$ forces $(\mathcal{A},\mathcal{B})$ to be indestructible.

Example: Unbounded families

Theorem (Todorčević). For an <*-increasing sequence $F = \langle f_{\alpha}; \alpha \in \omega_1 \rangle$ of members of $\omega^{\uparrow \omega}$, if F is unbounded, then the following partition $K_0 \cup K_1$ on $[\omega_1]^2$ is ccc

 $\{\alpha,\beta\} \in K_0 : \iff \alpha < \beta \text{ and } \exists n \in \omega \text{ such that } f_\alpha(n) > f_\beta(n)$ Therefore \mathcal{K}_2 (for partitions) implies $\mathfrak{b} > \aleph_1$.

Theorem (Y.). For an <*-increasing sequence $F = \langle f_{\alpha}; \alpha \in \omega_1 \rangle$ of members of $\omega^{\uparrow \omega}$, define the forcing notion (ordered by superset)

$$\mathbb{P}(F) := \left\{ \sigma \in [\omega_1]^{<\aleph_0} ; \forall \alpha \in \sigma \ \forall n \in \omega \right.$$
$$\max\left\{ f_{\xi}(n); \xi \in \sigma \cap \alpha \right\} < f_{\alpha}(n) \text{ or } f_{\alpha}(n) \in \left\{ f_{\xi}(n); \xi \in \sigma \cap \alpha \right\} \right\}.$$

Then F is unbounded, then $\mathbb{P}(F)$ has the arec and the anti-R and ccc. Therefore, e.g. $\mathcal{K}_2(\text{rec})$ implies $\mathfrak{b} > \aleph_1$.

Example: Unbounded families

Theorem (Todorčević). For an <*-increasing sequence $F = \langle f_{\alpha}; \alpha \in \omega_1 \rangle$ of members of $\omega^{\uparrow \omega}$, if F is unbounded, then the following partition $K_0 \cup K_1$ on $[\omega_1]^2$ is ccc

 $\{\alpha, \beta\} \in K_0 : \iff \alpha < \beta \text{ and } \exists n \in \omega \text{ such that } f_\alpha(n) > f_\beta(n)$ Therefore \mathcal{K}_2 (for partitions) implies $\mathfrak{b} > \aleph_1$.

Theorem (Y.). For an <*-increasing sequence $F = \langle f_{\alpha}; \alpha \in \omega_1 \rangle$ of members of $\omega^{\uparrow \omega}$, define the forcing notion (ordered by superset)

$$\mathbb{P}(F) := \left\{ \sigma \in [\omega_1]^{<\aleph_0} ; \forall \alpha \in \sigma \ \forall n \in \omega \right.$$
$$\max\left\{ f_{\xi}(n); \xi \in \sigma \cap \alpha \right\} < f_{\alpha}(n) \text{ or } f_{\alpha}(n) \in \left\{ f_{\xi}(n); \xi \in \sigma \cap \alpha \right\} \right\}.$$

Then F is unbounded, then $\mathbb{P}(F)$ has the arec and the anti-R and ccc. Therefore, e.g. $\mathcal{K}_2(\text{rec})$ implies $\mathfrak{b} > \aleph_1$.

Question. What is any other example of forcing notions with the arec or the anti-R? And are the arec and the anti-R different?

Theorems

Theorem (Y.). Let \mathbb{P} be a forcing notion with the arec or the anti-R, N a countable elementary submodel N of $H(\theta)$ which has the set $\{\mathbb{P}\}$, $\sigma \in a(\mathbb{P}) \cap N$, and $f \in \omega^{\omega}$.

If f is not captured by any slalom in N, then there exists $\tau \leq_{a(\mathbb{P})} \sigma$ which is $(N, a(\mathbb{P}))$ -generic such that

 $\tau \Vdash_{a(\mathbb{P})}$ "f is not captured by any slalom in N".

That is, $a(\mathbb{P})$ keeps $add(\mathcal{N})$ small (by the countable support iterations).

Theorem (Y.). Let \mathbb{P} be a forcing notion with the arec or the anti-R. Then $a(\mathbb{P})$ doesn't add random reals.

Let \mathbb{P} be a forcing notion $\langle \omega_1, \leq_{\mathbb{P}} \rangle$ with the arec or the anti-R, \dot{r} be an $a(\mathbb{P})$ -name for a real in 2^{ω} , and $\sigma \in a(\mathbb{P})$.

Let N be a countable elementary submodel of $H(\aleph_2)$ with $\{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N$, and $\langle U_n; n \in \omega \rangle$ a sequence of open subsets of 2^{ω} such that for each $n \in \omega$, the Lebesgue measure of U_n is less than 2^{-n} and

$$2^{\omega} \cap N \subseteq \bigcap_{n \in \omega} \bigcup_{m \ge n} U_m.$$

We show that

$$\sigma \not\Vdash_{a(\mathbb{P})} " \dot{r} \not\in \bigcap_{n \in \omega} \bigcup_{m \ge n} U_m ".$$

$\mathbb{P} = \langle \omega_1, \leq_{\mathbb{P}} \rangle, \ \dot{r} \colon a(\mathbb{P}) \text{-name, } \sigma \in a(\mathbb{P}), \ \{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N, \ 2^{\omega} \cap N \subseteq \bigcap_{n \in \omega} \bigcup_{m \ge n} U_m.$

$\mathbb{P} = \langle \omega_1, \leq_{\mathbb{P}} \rangle, \ \dot{r} \colon a(\mathbb{P}) \text{-name, } \sigma \in a(\mathbb{P}), \ \{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N, \ 2^{\omega} \cap N \subseteq \bigcap_{n \in \omega} \bigcup_{m \ge n} U_m.$

Suppose that

$$\sigma \Vdash_{a(\mathbb{P})} " \dot{r} \notin \bigcap_{n \in \omega} \bigcup_{m \ge n} U_m ",$$

and take $\tau \leq_{a(\mathbb{P})} \sigma$ and $n \in \omega$ such that

$$\tau \Vdash_{a(\mathbb{P})} " \forall m \ge n \ (\dot{r} \notin U_m) ".$$

Then, $n \in N$ and $\tau \cap N \in N$, and maybe $\tau \notin N$. So by strengthning τ if necessary, we may assume that $\tau \notin N$.

Let for each $k \in N$,

$$S_k := \left\{ s \in 2^k; \exists \alpha \in \omega_1 \text{ such that } \forall \mu \in a(\mathbb{P}) \text{ with } \mu \supseteq \tau \cap N, \\ \text{ if } \mu \Vdash_{a(\mathbb{P})} \text{ "} \dot{r} \restriction k \neq s \text{ ", then } \min(\mu \setminus (\tau \cap N)) \leq \alpha \right\}.$$

Note that $\langle S_k; k \in \omega \rangle \in N.$

$$\begin{split} \mathbb{P} &= \langle \omega_1, \leq_{\mathbb{P}} \rangle, \, \dot{r} \colon a(\mathbb{P}) \text{-name, } \sigma \in a(\mathbb{P}), \, \{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N, \, 2^{\omega} \cap N \subseteq \cap_{n \in \omega} \bigcup_{m \geq n} U_m. \\ \tau &\leq_{a(\mathbb{P})} \sigma, \, \tau \not\in N, \, \tau \Vdash_{a(\mathbb{P})} \, `` \, \forall m \geq n \, (\dot{r} \notin U_m) \, ''. \\ S_k &:= \Big\{ s \in 2^k; \, \exists \alpha \in \omega_1 \text{ such that } \forall \mu \in a(\mathbb{P}) \text{ with } \mu \supseteq \tau \cap N, \\ & \text{ if } \mu \Vdash_{a(\mathbb{P})} \, `` \, \dot{r} \restriction k \neq s \, `', \text{ then } \min(\mu \setminus (\tau \cap N)) \leq \alpha \Big\}. \end{split}$$

$$\begin{split} \mathbb{P} &= \langle \omega_1, \leq_{\mathbb{P}} \rangle, \, \dot{r} \colon a(\mathbb{P})\text{-name, } \sigma \in a(\mathbb{P}), \, \{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N, \, 2^{\omega} \cap N \subseteq \cap_{n \in \omega} \bigcup_{m \geq n} U_m. \\ \tau \leq_{a(\mathbb{P})} \sigma, \, \tau \not\in N, \, \tau \Vdash_{a(\mathbb{P})} " \, \forall m \geq n \, (\dot{r} \notin U_m) " \, . \\ S_k &:= \Big\{ s \in 2^k; \, \exists \alpha \in \omega_1 \text{ such that } \forall \mu \in a(\mathbb{P}) \text{ with } \mu \supseteq \tau \cap N, \\ & \text{ if } \mu \Vdash_{a(\mathbb{P})} " \, \dot{r} \restriction k \neq s " \, , \, \text{then } \min(\mu \setminus (\tau \cap N)) \leq \alpha \Big\}. \end{split}$$

Claim. For every $k \in \omega$, S_k is not empty.

Proof of Claim. If S_k is empty, i.e.

 $\forall s \in 2^k \forall \alpha \exists \mu \in a(\mathbb{P}) \Big(\mu \supseteq \tau \cap N \& \mu \Vdash_{a(\mathbb{P})} "\dot{r} \upharpoonright k \neq s " \& \min(\mu \setminus (\tau \cap N)) > \alpha \Big),$ then construct uncountable subsets $\langle I_s; s \in 2^k \rangle$ of $a(\mathbb{P})$ in N such that

- the set $\bigcup_{s \in 2^k} I_s$ forms a Δ -system with root $\tau \cap N$, and
- for any $s \in 2^k$ and $\mu \in I_s$, $\mu \Vdash_{a(\mathbb{P})}$ " $\dot{r} \upharpoonright k \neq s$ ".

By the property of \mathbb{P} , we can find $\langle \mu_s; s \in 2^k \rangle \in \prod_{s \in 2^k} I_s$ such that $\bigcup_{s \in 2^k} \mu_s \in a(\mathbb{P})$. And then

$$\bigcup_{s\in 2^k}\mu_s\Vdash_{a(\mathbb{P})} "\dot{r}\upharpoonright k \notin 2^k ",$$

which is a contradiction.

Remember that

Proposition. If \mathbb{P} has the arec, then

 $\forall I \in [a(\mathbb{P})]^{\aleph_1} \ \forall J \in [a(\mathbb{P})]^{\aleph_1}, \text{ if } I \cup J \text{ forms } a \ \Delta\text{-system},$ then $\exists I' \in [I]^{\aleph_1} \ \exists J' \in [J]^{\aleph_1} \text{ such that } \forall \sigma \in I' \ \forall \tau \in J', \ \sigma \not\perp_{a(\mathbb{P})} \tau$.

Proposition. If \mathbb{P} has the anti-R, then

 $\forall \text{ countable } N \prec H(\aleph_2) \text{ with } \mathbb{P} \in N \forall \sigma \in a(\mathbb{P}) \setminus N$ $\forall I \in [a(\mathbb{P})]^{\aleph_1} \cap N \text{ which forms } a \Delta \text{-system with root } \sigma \cap N$ $\exists I' \in [I]^{\aleph_1} \cap N \text{ such that } \forall \tau \in I', \sigma \not\perp_{a(\mathbb{P})} \tau.$

$$\begin{split} \mathbb{P} &= \langle \omega_1, \leq_{\mathbb{P}} \rangle, \, \dot{r} \colon a(\mathbb{P})\text{-name, } \sigma \in a(\mathbb{P}), \, \{\mathbb{P}, \dot{r}, \sigma, \omega_1\} \in N, \, 2^{\omega} \cap N \subseteq \cap_{n \in \omega} \bigcup_{m \geq n} U_m. \\ \tau \leq_{a(\mathbb{P})} \sigma, \, \tau \not\in N, \, \tau \Vdash_{a(\mathbb{P})} " \, \forall m \geq n \, (\dot{r} \notin U_m) " \, . \\ S_k &:= \Big\{ s \in 2^k; \, \exists \alpha \in \omega_1 \text{ such that } \forall \mu \in a(\mathbb{P}) \text{ with } \mu \supseteq \tau \cap N, \\ & \text{ if } \mu \Vdash_{a(\mathbb{P})} " \, \dot{r} \upharpoonright k \neq s " \, , \, \text{ then } \min(\mu \setminus (\tau \cap N)) \leq \alpha \Big\}. \end{split}$$

So $\bigcup_{k \in \omega} S_k$ forms an infinite subtree of 2^{ω} in N.

Take $u \in 2^{\omega} \cap N$ such that for every $k \in \omega$, $u \upharpoonright k \in S_k$, and let $m \ge n$ and $k \ge m$ such that $[u \upharpoonright k] := \{v \in 2^{\omega}; u \upharpoonright k \subseteq v\} \subseteq U_m$.

Then there exists $\alpha \in \omega_1 \cap N$ such that for every $\mu \in a(\mathbb{P})$ with $\mu \supseteq \tau \cap N$, if $\mu \Vdash_{a(\mathbb{P})}$ " $\dot{r} \upharpoonright k \neq u \upharpoonright k$ ", then $\min(\mu \setminus (\tau \cap N)) \leq \alpha$.

Since $\min(\tau \setminus (\tau \cap N)) \ge \omega_1 \cap N > \alpha$, $\tau \not\models_{a(\mathbb{P})}$ " $\dot{r} \restriction k \neq u \restriction k$ ". Thus there is $\nu \le_{a(\mathbb{P})} \tau$ such that $\nu \Vdash_{a(\mathbb{P})}$ " $\dot{r} \restriction k = u \restriction k$ ". Then since $\nu \Vdash_{a(\mathbb{P})}$ " $[\dot{r} \restriction k] = [u \restriction k] \subseteq U_m$ ", it follows that $\nu \Vdash_{a(\mathbb{P})}$ " $\dot{r} \in U_m$ ", which is a contradiction.