Parity Games and Resolution

Arnold Beckmann

Department of Computer Science College of Science Swansea University, Wales, UK

SDF-60, 10 July 2013

(Joint work with Pavel Pudlák and Neil Thapen)

Overview

Parity Games

Weak Automatizability and Resultion

Bounded Arithmetic

Simple Graph Games Strategies

Parity Games

Arnold Beckmann Parity Games and Resolution

Simple Graph Games Strategies

Parity Games

Infinite two-player games played on finite directed leafless graphs.

Deciding winner in a parity game is significant

- in verification (ptime-equivalent to model checking problem for modal µ-calculus)
- in automata theory (ptime-equivalent to emptiness problem for alternating tree automata)
- From complexity-theoretic point of view (in NP ∩ coNP, not known to be in P)

Any parity game can be transformed (in linear time) into equivalent simple graph game.

Simple Graph Games Strategies

Simple Graph Games

Played on a directed graph with vertices

$$V = V_A \cup V_B = \{0, 1, \dots, n-1\}$$

owned by player A or B, with at least one outgoing edge for each vertex.

A **play** is an infinite sequence $0 = v_0, v_1, v_2, \dots$ with $v_i \rightarrow v_{i+1}$ chosen by the player owning v_i .

The **winner** of a play is the player owning the least vertex which is visited infinitely often in the play.

$$V_{A} = \{0, 2\}, V_{B} = \{1, 3\}$$

Simple Graph Games Strategies

Strategies

A **(positional) strategy** for A is a function $\sigma: V_A \rightarrow V$ defining A's moves.

(Similar $\tau: V_{\mathsf{B}} \to V$ for player **B**.)

A strategy is a **winning strategy** if player wins all plays when using their strategy.

Theorem (Memoryless Determinacy, Emerson'85)

For any simple graph game, one player has a positional winning strategy.

Corollary

Given a simple graph game, deciding whether A has a winning strategy is in NP \cap coNP.

Resolution Weak Automatizability Result

Weak Automatizability and Resolution

Resolution Weak Automatizability Result

$\operatorname{Res}(k)$ proof system

k-DNF: disjunction of conjunctions of literals, each conjunction of size $\leq k$.

Each line in Res(k)-proof is *k*-DNF, written as list of disjuncts.

axiom
$$\overline{a, \neg a}$$
 \land -intro $\frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \land B}$
weak $\frac{\Gamma}{\Gamma, \Delta}$ cut $\frac{\Gamma, a_1 \land \ldots \land a_m \quad \Gamma, \neg a_1, \ldots, \neg a_m}{\Gamma}$

Res(*k*) *refutation* of set of disjunctions Γ is sequence of disjunctions ending with the empty disjunction, s.t. each line in proof is either in Γ , or follows from earlier disjunctions by a rule.

Res(1) is called *resolution*, denoted Res.

Resolution Weak Automatizability Result

Weak Automatizability

Propositional proof system \mathcal{P} is *automatizable* if there is algorithm which, given a tautology, produces proof in time polynomial in size of its smallest proof.

Alekhnovich and Razborov (2008): Resolution not automatizable under reasonable assumption in parameterised complexity theory.

Weak automatizability: proofs of tautologies can be given in an arbitrary proof system, only time of finding proofs restricted to polynomial in size of smallest \mathcal{P} proof. Equivalently:

Definition

 \mathcal{P} is *weakly automatizable* if exists polynomial time algorithm which, given formula ϕ and string 1^m , accepts if ϕ satisfiable, and rejects if ϕ has \mathcal{P} refutation of size $\leq m$.

Resolution Weak Automatizability Result

Results on weak automatizability

Theorem (Atserias, Bonet, 2004)

For the following list of proof systems, either all or none are weakly automatizable:

Open Problem

Is Res weakly automatizable?

Resolution Weak Automatizability Result

Result

Theorem (B., Pudlák, Thapen, 2013)

If resolution is weakly automatizable, then parity games can be decided in polynomial time.

Resolution Weak Automatizability Result

Outline of proof

Formalise " σ is winning strategy for A in G" as Win_A(n, G, σ ,...) " τ is winning strategy for B in G" as Win_B(n, G, τ ,...)

Construct, for some *k*, polynomial size (in *n*) Res(*k*) refutations of Win_{*A*}(*n*, *G*, σ ,...) \land Win_{*B*}(*n*, *G*, τ ,...)

Result follows by considering

$$G \mapsto (\operatorname{Win}_{A}(|G|, G, \sigma, \dots), 1^{p(|G|)})$$

where |G| denotes number of vertices in *G*, and *p* the polynomial bound in "construct" part of proof outline above.

Bounded Arithmetic Paris-Wilkie Translation

Bounded Arithmetic

Bounded Arithmetic Paris-Wilkie Translation

Language

Language *L*: constant symbols 0 and 1, function and relation symbols. Only restriction: function symbol represent *polynomially bounded functions*.

 L^+ : Extend *L* by finitely many new relation symbols \overline{R} —will be used to stand for edges in a graph, or strategies in a game, etc.

Bounded Formulas:

$$U_1: \quad \forall x_1 \leq s_1 \varphi(x_1, y) \\ U_2: \quad \forall x_1 \leq s_1 \exists x_2 \leq s_2 \varphi(x_1, x_2, y)$$

with quantifier-free φ

Induction:

•

$$\begin{array}{lll} U_d \text{-Ind} : & \varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \forall x\varphi(x) \\ & & \text{where } \varphi \in U_d \end{array}$$

BASIC = a set of true open L-formulas.

n Parity Games and Resolution

Bounded Arithmetic Paris-Wilkie Translation

Paris-Wilkie Translation

Given assignment α , translate φ into propositional formula $\langle \varphi \rangle_{\alpha}$:

 $\begin{array}{ll} L^{+} \mbox{ formula } \varphi & \mbox{ propositional translation } \langle \varphi \rangle_{\alpha} \\ R(t) & \mbox{ propositional variable } p_{\langle t \rangle_{\alpha}} \\ \varphi \mbox{ in } L & \begin{cases} \top & \mbox{ if } \varphi \mbox{ is true} \\ \bot & \mbox{ o/w} \\ \neg \varphi & \neg \langle \varphi \rangle_{\alpha} \\ \varphi \lor \psi & \langle \varphi \rangle_{\alpha} \lor \langle \psi \rangle_{\alpha} \\ (\forall x \leq t) \varphi(x) & & \bigwedge_{i \leq \langle t \rangle_{\alpha}} \langle \varphi(i) \rangle_{\alpha} \end{cases}$

Bounded Arithmetic Paris-Wilkie Translation

Main Technical Result

Theorem (B., Pudlák, Thapen 2013)

Suppose $\phi_1(x), \ldots, \phi_\ell(x)$ are U_2 formulas, with x only free variable, such that U_2 -IND proves $\forall x \neg (\phi_1(x) \land \cdots \land \phi_\ell(x))$. Then for some $k \in \mathbb{N}$ the family

$$\Phi_n := \langle \phi_1(x) \rangle_{[x \mapsto n]} \cup \cdots \cup \langle \phi_\ell(x) \rangle_{[x \mapsto n]}$$

has polynomial size $\operatorname{Res}(k)$ refutations.

Further details on proof

Formalise simple graph game using second order relations V, V_A, V_B, E . Formalise strategies by relations E^{σ} and E^{τ} .

Idea: Consider $E^{\sigma} \cap E^{\tau}$: no choice, exactly one play possible, winner cannot be both players.

But: reachability in $E^{\sigma} \cap E^{\tau}$ cannot be defined or formalised.

Instead: Add further relations $R_{\min}^{\sigma}(x, y, z)$, intended meaning is *y* can be reached from *x* in E^{σ} by a path with minimum *z* similar R_{\min}^{τ} .

Consider $R^*(x, y) = \exists z (R^{\sigma}_{\min}(x, y, z) \land R^{\tau}_{\min}(x, y, z))$. It turns out that this is good enough approximation to $E^{\sigma} \cap E^{\tau}$. Argument formalises in U₂-IND.

Conclusion

We have reduced the decision problem for parity games to the question whether resolution is weakly automatizable. Main technical part was to construct polynomial size refutations of a suitable formalisation of the statement that both players have positional winning strategies.

Further results (not presented): Similar reductions of other games and proof systems (Mean payoff games and Simple Stochastic Games, and $PK_{1.}$)

Definition of game for which deciding whether a player has a positional winning strategy is equivalent to weak automatizability for resolution.

Open Problem

Can weak automatizability for resolution be reduced to the decision problem for parity games?