
Clause Learning

On Clause Learning Algorithms for Satisfiability

Sam Buss

SDF@60
Kurt Gödel Research Center

Vienna
July 13, 2013

Clause Learning

Satisfiability

Satisfiability (Sat)

An instance of Satisfiability (Sat) is a set Γ of clauses,
interpreted as a conjunction of disjunction of literals, i.e. a CNF
formula in propositional logic.

The Sat problem is the question of whether Γ is satisfiable.

Sat is well-known to be NP-complete. Indeed, most canonical
NP-complete problems, including the “k-step NTM acceptance
problem” are efficiently many-one reducible to Sat, namely by
quasilinear time reductions. Therefore Sat is in some sense the
hardest NP-complete problem.

Clause Learning

Satisfiability

So it is not surprising that Sat can be used to express many types
of problems from industrial applications. What is surprising is how
efficiently these kinds of problems can be solved.
Conflict Driven Clause Learning SAT algorithms are
remarkably successful:

◮ Routinely solve industrial problems with ≥100,000’s of
variables. Find satisfying assignment or generate a resolution
refutation.

◮ Most use depth-first search [Davis–Logemann–Loveland’62],
and conflict-driven clause learning (CDCL)
[Marques-Silva–Sakallah’99]

◮ Use a suite of other methods to speed search: fast
backtracking, restarts, 2-clause methods, self-subsumption,
lazy data structures, etc.

◮ Algorithms lift to a useful fragments of first-order logic.
(SMT “Satisfiability Modulo Theory” solvers.)

Clause Learning

DPLL algorithms

DPLL algorithm

Input: set Γ of clauses.

Algorithm:
- Initialize ρ to be the empty partial truth assignment

- Recursively do:
- If ρ falsifies any clause, then return.
- If ρ satisfies all clauses, then halt. Γ is satisfiable.
- Choose literal x /∈ dom(ρ).
- Set ρ(x) = True and do a recursive call.
- Set ρ(x) = False and do a recursive call.
- Restore the assignment ρ and return.

- If return from top level, Γ is unsatisfiable.

Clause Learning

DPLL algorithms

DPLL algorithm with unit propagation and CDCL

Input: set Γ of clauses.

Algorithm:
- Initialize ρ to be the empty partial truth assignment

- Recursively do:
- Extend ρ by unit propagation as long as possible.
- If a clause is falsified by ρ, then

analyze the conflict to learn new clauses implied by Γ,
add these clauses to Γ, and return.

- If ρ satisfies all clauses, then halt. Γ is satisfiable.
- Choose literal x /∈ dom(ρ).
- Set ρ(x) = True and do a recursive call.
- Set ρ(x) = False and do a recursive call.
- Restore the assignment ρ and return.

- If return from top level, Γ is unsatisfiable.

Example of clause learning

Decision literal p Contradiction First UIP

Blue for top level Yellow for lower level literal

b

a

w
v

u

t

s

r

p

q

z

y

~x

x

Clauses: {~y,~z, x}, {~p,~a,r}, etc. (One per unit propagation.)
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Whole top level learned clause: {~p,~a,~u,~b,~w,~v}.
With First-UIP: Both p and s can be set false when backtracking.
New level of ~s is set to max. level of u,v,w.

First UIP Cut

Clause Learning

DPLL algorithms

Experiments with Pigeonhole Principles

Clause Learning No Clause Learning

Formula Steps Time (s) Steps Time (s)

PHP
4
3 5 0.0 5 0.0

PHP
7
6 129 0.0 719 0.0

PHP
9
8 769 0.0 40319 0.3

PHP
10
9 1793 0.5 362879 2.5

PHP
11
10 4097 2.7 3628799 32.6

PHP
12
11 9217 14.9 39916799 303.8

PHP
13
12 20481 99.3 479001599 4038.1

“Steps” are decision literals set. (Equals n!−1 with no learning).
Variables selected in “clause greedy order”.
Software: SatDiego 1.0 (an older, much slower version).
Improvements strikingly good, even though PHP is not particularly
well-suited to clause learning.

Clause Learning

Relation to resolution

Resolution is the inference rule

C , x D, x

C ∪ D

A resolution refutation of Γ is a derivation of the empty clause �

from Γ.

[Davis-Putnam’60]: Resolution is complete.

Observation: All DPLL-style methods for showing Γ unsatisfiable
(implicitly) generate resolution refutations. Thus resolution
refutations encompass all DPLL-style methods for proving
satisfiability with only a polynomial increase in refutation size.

Clause Learning

Relation to resolution

Relationship to resolution?

Open problem: Can a DPLL search procedure, for unsatisfiable Γ
polynomially simulate resolution? (This is without restarts.)

Theorem [Beame-Kautz-Sabharwal’04] Non-greedy DPLL with
clause learning and restarts simulates full resolution.

Proof idea: Simulate a resolution refutation, using a new restart
for each clause in the refutation. Ignore contradictions (hence:
non-greedy) until able to learn the desired clause. �

Theorem [Pipatsrisawat-Darwiche’10] (Greedy) DPLL with clause
learning and (many) restarts simulates full resolution.

This built on [Atserias-Fichte-Thurley’11].

Clause Learning

Relation to resolution

DPLL and clause learning without restarts:

[BKS ’04; Baachus-Hertel-Pitassi-van Gelder’08;
Buss-Hoffmann-Johannsen’08] It is possible to add new variables
and clauses that syntactically preserve (un)satisfiability, so that
DPLL with clause learning can refute the augmented set of clauses
in time polynomially bounded by a resolution refutation of the
original set of clauses.

In this way, DPLL with clause learning can “effectively p-simulate”
resolution.

These new variables and clauses are proof trace extensions or
variable extensions.

Drawback:

◮ The variable extensions yields contrived sets of clauses, and
the resulting DPLL executions are unnatural.

Clause Learning

Pool resolution

[Van Gelder, 2005] introduced “pool resolution” as a system that
can simulate DPLL clause learning without restarts. Pool
resolution consists of:

a. A degenerate resolution inference rule, where the resolution
literal may be missing from either hypothesis. If so, the
conclusion is equal to one of the hypotheses.

b. A dag-like degenerate resolution refutation with a regular
depth-first traversal.

The degenerate rule incorporates weakening into resolution.

The regular property means no variable can be resolved on twice
along a path. This models the fact that DPLL algorithms do not
change the value of literals without backtracking.

Theorem [VG’05] Pool resolution p-simulates DPLL clause
learning without restarts.

Clause Learning

regWRTI

[Buss-Hoffmann-Johannsen ’08] gave a system that is equivalent to
non-greedy DPLL clause learning without restarts.

w-resolution: C D
(C \ {x}) ∪ (D \ {x})

where x /∈ C and x /∈ D.

[BHJ’08] uses tree-like proofs with lemmas to simulate dag like
proofs. A lemma must be earlier derived in left-to-right order. A
lemma is input if derived by an input subderivation (allowing
lemmas in the subderivation). An input derivation is one in which
each resolution inference has one hypothesis which is a leaf node.

Theorem [Chang’70]. Input derivations are equivalent to unit
derivations.

Theorem [BHJ’08]. Resolution trees with input lemmas simulates
general resolution (i.e., with arbitrary lemmas).

Clause Learning

regWRTI

Defn A “regWRTI” derivation is a regular tree-like w-resolution
with input lemmas.

Theorem [BHJ’08] regWRTI p-simulates DPLL clause learning
without restarts. Conversely, non-greedy DPLL clause learning
(without restarts) p-simulates regWRTI.

(The above theorem allows very general schemes of clause
learning; however it does not cover the technique of “on-the-fly
self-subsumption”.)

Clause Learning

regWRTI

Consequently: To separate DPLL with clause learning and no
restarts from full resolution, it suffices to separate either regWRTI
or pool resolution from full resolution.

Clause Learning

regWRTI

Fact: DPLL clause learning without restarts (and regWRTI and
pool resolution) simulates regular resolution.

Theorem [Alekhnovich-Johanssen-Pitassi-Urquhart’02]
Regular resolution does not p-simulate resolution.

[APJU’02] gave two examples of separations.

◮ Graph tautologies (GGT) expressing the existence of a
minimal element in a linear order, obfuscated by making the
axioms more complicated.

◮ A Stone principle about pebbling dag’s.

[Urquhart’11] gave a third example using obfuscated pebbling
tautologies expressing the well-foundedness of (finite) dags.

Clause Learning

regWRTI

Clauses for the Stone tautologies: Let G be a dag on nodes
{1,. . . ,n}, with single sink 1, all non-source nodes have indegree 2.
Let m > 0 be the number of “stones” (pebbles).

◮
∨m

j=1 pi ,j for each vertex i in G ,

◮ pi ,j ∨ rj , for each j = 1, . . . ,m, and each i which is a source in
G ,

◮ p1,j ∨ r j , for each j = 1, . . . ,m. Node 1 is the sink node.

◮ pi ′,j ′ ∨ r j ′ ∨ pi ′′,j ′′ ∨ r j ′′ ∨ pi ,j ∨ rj with i ′ and i ′′ the predecessors
of i , and j /∈ {j ′, j ′′}. These are the induction clauses for i .

“pi ,j” - Stone j is on node i .
“rj” - Stone j is red.

If all nodes have a stone, and source nodes have red stones, and
any stone on any node with red stones on both predecessors is red,
then any stone on the sink node is red.

Clause Learning

regWRTI

Theorem [Bonet-Buss’12] There are polynomial size pool
refutations and also regRTI refutations for the obfuscated GGT
tautologies.

Theorem [Bonet-Buss-Johannsen’ip] There are polynomial size
pool refutations and regRTI refutations for the obfuscated pebbling
tautologies.

Theorem [Buss-Ko lodziejczyk’su] There are polynomial size pool
refutations and regRTI refutations for the Stone tautologies.

Corollary [see also BKS, vG] Regular resolution does not simulate
regWRTI, or pool resolution, or DPLL clause learning without
restarts.

Clause Learning

regWRTI

Consequently: Although we still conjecture that resolution cannot
by simulated by DPLL with clause learning and no restarts, we
currently have no conjectures for unsatisfiable formulas that might
separate them.

Clause Learning

Question

Questions

1. Give examples of sets of clauses which have polynomial size
resolution refutations, but do not have polynomial size pool or
regWRTI refutations. Or, prove no such sets of clauses exist.

2. Does regWRTI faithfully capture present day DPLL clause
learning without restarts? For example, can “on-the-fly”
self-subsumption improve on regWRTI?

Clause Learning

Meta-Questions

Meta-questions:

1. Can we find more systematic or rigorous methods for evaluating
the effectiveness of different proof search hueristics. For example,
can we better understand why restarts are so useful in practice?

2. Can logical considerations help us understand the effectiveness
of different DPLL strategies? Can regWRTI or other similar formal
systems help design better DPLL algorithms?

Clause Learning

Meta-Questions

Meta-questions:

1. Can we find more systematic or rigorous methods for evaluating
the effectiveness of different proof search hueristics. For example,
can we better understand why restarts are so useful in practice?

2. Can logical considerations help us understand the effectiveness
of different DPLL strategies? Can regWRTI or other similar formal
systems help design better DPLL algorithms?

3. Is automated theorem proving part of Logic? Or is it just
computation?

Clause Learning

Meta-Questions

Meta-questions:

1. Can we find more systematic or rigorous methods for evaluating
the effectiveness of different proof search hueristics. For example,
can we better understand why restarts are so useful in practice?

2. Can logical considerations help us understand the effectiveness
of different DPLL strategies? Can regWRTI or other similar formal
systems help design better DPLL algorithms?

3. Is automated theorem proving part of Logic? Or is it just
computation?

Answer: Yes!

Clause Learning

Thank you

Happy Birthday, Sy!

	Satisfiability
	DPLL algorithms
	Relation to resolution
	Pool resolution
	regWRTI
	Question
	Meta-Questions
	Thank you
	ClauseLearningImage.pdf
	Example of clause learning

