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Remeniscences

Thanks Sy for giving me a job at KGRC. (2004-2007)

It was first time I worked around more than one other set theorist.

Lovely to do research all day!
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So, what are sliders?
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Pulled Pork Sliders
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Chicken Sliders
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Hamburger Sliders
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Sliders come in many forms

Yet, all sliders of the same form are indistinguishable from each other.

In mathematics, sliders are formally known as indiscernibles.
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History

During a working lunch at an AIMS Conference in December 2004, Sy
introduced me to indiscernibles.

(He also introduced me to the working lunch.)

The indiscernibles were pleasant, though undistinguished lunch guests.

Since that initial introduction, indiscernibles keep sliding into key positions
in my work.
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Sy and I were interested in the following:

Problem. Given models V ⊆W of ZFC, when does having a new
subset of κ in W \ V make (Pκ+(λ))W \ (Pκ+(λ))V stationary in W ?
i.e. When is the ground model co-stationary?

Pκ(λ) = {x ⊆ λ : |x | < κ}.

C ⊆ Pκ(λ) is club if it is closed under < κ-unions and ⊆-cofinal in
Pκ(λ).

S ⊆ Pκ(λ) is stationary if S meets every club set.
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Background

[Abraham/Shelah 1983]: ccc forcings adding a new subset of ℵ0
[Gitik 1985]: models V ⊆W where W has a new subset of ℵ0
make the ground model co-stationary for Pκ(λ), for all cardinals
ℵ1 < κ < λ in the larger model.

What if the larger model has a new subset of ℵ1 but no new subsets of ℵ0?

Sy knew that Erdős cardinals would be necessary if we add no new
ω-sequences, because of a covering theorem of [Magidor 1990].

Erdős cardinals involve indiscernibles.

This was the beginning of our work on finding the equiconsistency of
co-stationarity of the ground model and broader work in which
indiscernibles play an important role.
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Indiscernibles

Def. M a structure, X ⊆M linearly ordered by <.

〈X , <〉 is a set of indiscernibles for M iff
for all ϕ(v1, . . . , vn) in the language of M,
for all x1 < · · · < xn and y1 < · · · < yn in X ,

M |= ϕ[x1, . . . , xn] iff M |= ϕ[y1, . . . , yn].
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α-Erdős cardinals

κ is α-Erdős if for each structure M in a countable language with universe
κ (endowed with Skolem functions), for each club C ⊆ κ there is a set
I ⊆ C of order type α such that

I is a set of indiscernibles for M and

I is remarkable: whenever α0 < · · · < αn; β0 < · · · < βn are from I ,
αi−1 < βi , τ is a term, and τM(α0, . . . , αn) < αi , then
τM(α0, . . . , αn) = τM(α0, . . . , αi−1, βi , . . . , βn).
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Thm. [Dobrinen/Friedman 06] Suppose that in V , λ > κ, κ is regular,
and λ is κ-Erdős. Let Cκ be κ-Cohen forcing
(or any (λ, λ, κ)-distributive partial ordering adding a new subset of κ).

Then (Pκ+(µ))V
Cκ \ (Pκ+(µ))V is stationary in V Cκ for all µ ≥ λ.

Pushing the κ down to smaller cardinals involved gleaning tree coding
from some work of [Baumgartner 1991].
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Let C denote ℵ1-Cohen forcing.

Thm (Global Gitik). [Dobrinen/Friedman 06] The following are
equiconsistent:

1 There is a proper class of ω1-Erdős cardinals.

2 (Pκ(λ))V
C \ (Pκ(λ))V is stationary in V C, for all regular κ ≥ ℵ2

and λ > κ.

Note: There are still many open problems in this line of work.

Indiscernibles were also important in our work on the internal
consistency strength of co-stationarity of the ground model
[Dobrinen/Friedman 2008].
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More work using indiscernibles

Thm. [Dobrinen/Friedman 10] The following are equiconsistent:

1 κ is a measurable cardinal and the tree property holds at κ++.

2 κ is a weakly compact hypermeasurable cardinal.

Thm. [Dobrinen/Friedman 10] Suppose 0# exists. Then there is an
inner model in which the tree property holds at the double successor of
every strongly inaccessible cardinal.

The proofs of such theorems heavily involve the Silver indiscernibles for
building the generics.
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And now for something discernibly different
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Ramsey Theory

Ramsey Theorem. For each k , n ≥ 1 and coloring c : [ω]k → n, there
is an infinite M ⊆ ω such that c restricted to [M]k monochromatic.
That is, M is homogeneous.

What about colorings into infinitely many colors?
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Order Indiscernibility

Erdős-Rado Canonization Theorem. For each k ≥ 1 and each
equivalence relation E on [ω]k , there is an infinite M ⊆ ω such that
E � [M]k is canonical; i.e. E � [M]k is given by Ek

I for some I ⊆ k .

For a, b ∈ [ω]k , a Ek
I b iff ∀i ∈ I , ai = bi .

Thm. [Dobrinen/Mijares/Trujillo 1] For any product of n + 1 many
Fräıssé classes of ordered structures with the Ramsey Property, the
canonical equivalence relations are given by EI0,...,In .

The proofs of these theorems involve sliding of points between fixed
points; in essence, indiscernibility.
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Simplest Topological Ramsey Space: The Ellentuck Space

Example. Ellentuck space [ω]ω.
Basis for topology: [s,X ] = {Y ∈ [ω]ω : s @ Y ⊆ X}.

X ⊆ [ω]ω is Ramsey iff for each [s,X ], there is a s @ Y ⊆ X such that
either [s,Y ] ⊆ X or [s,Y ] ∩ X = ∅.

Thm. [Ellentuck 1974] Every X ⊆ [ω]ω with the property of Baire (in
the Ellentuck topology) is Ramsey.

Galvin-Prikry Theorem: All (metrically) Borel sets are Ramsey.
Silver Theorem: All (metrically) Suslin sets are Ramsey.
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The Next Topological Ramsey Space: R1 [D/T 1]

T1

〈 〉

〈0〉 〈1〉 〈2〉 〈3〉 〈4〉 〈5〉
. . .

〈0,
0〉

〈1,
1〉

〈1,
2〉

〈2,
3〉

〈2,
4〉

〈2,
5〉

〈3,
6〉

〈3,
7〉

〈3,
8〉

〈3,
9〉

〈4,
10
〉

〈4,
11
〉

〈4,
12
〉

〈4,
13
〉

〈4,
14
〉

〈5,
15
〉

〈5,
16
〉

〈5,
17
〉

〈5,
18
〉

〈5,
19
〉

〈5,
20
〉

X ∈ R1 iff X is a subtree of T1 and X ∼= T1.
For X ,Y ∈ R1, Y ≤1 X iff Y ⊆ X .
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〉

〈4,
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〉

〈4,
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〉

〈4,
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〉

〈5,
15
〉

〈5,
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〉

〈5,
17
〉

〈5,
18
〉

〈5,
19
〉

〈5,
20
〉

The Erdős-Rado type theorems are building blocks for canonical
equivalence relations on barriers on a certain collection of (new)
topological Ramsey spaces.

Numbers of Canonical Equivalence Relations on Finite Rank
Barriers [D/T 1]
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The space R2

T2

〈 〉
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〉
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〉
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〉
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〉
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Theorems in [Dobrinen/Todorcevic 2]

Ramsey-Classification Thms. For each α < ω1, every equivalence
relation on a barrier on the topological Ramsey space Rα is canonical
on some open set.

‘Canonical’ essentially means built in a recursive manner from
Erdős-Rado equivalence relations.

Ramsey-classification theorems for equivalence relations on barriers
were used to classify all Rudin-Keisler isomorphism types of ultrafilters
within the Tukey type of ultrafilters with weak partition properties.
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Classification of Tukey vs Rudin-Keisler for ultrafilters

Def. U ≥RK V iff ∃f : ω → ω such that {X ⊆ ω : f −1(X ) ∈ U} = V.

U ≥T V iff ∃g : U → V such that for each filter base B ⊆ U , g(B) is a
filter base for V.

U ≥RK V ⇒ U ≥T V.

Thm. [Dobrinen/Todorcevic 1,2] For each α < ω1, there is an
ultrafilter Uα which is a rapid p-point, has partition properties, and the
cofinal types below it form a chain of order-type (α + 1)∗.

Moreover, the isomorphism types within these cofinal types are
completely classified as tree ultrafilters, where branching occurs
according to p-points from a precise countable collection determined by
the canonization theorem.
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General Framework in [Dobrinen/Mijares/Trujillo 1,2]

A general framework is being developed in [Dobrinen/Mijares/Trujillo 1,2]
for

1 Constructing general topological Ramsey spaces;

2 Canonization theorems for equivalence relations on barriers;

3 Classification of all isomorphism types within the Tukey types of the
associated ultrafilters;

4 Finding initial structures in Tukey types besides chains.

More on this in Barcelona.
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Happy 60th Birthday Sy!

Happy wishes as you slide into the next decade!
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