"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

i neoren

The

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

The University of South East Europe - Lumina Bucharest, Romania

Sy David Friedman's 60th-Birthday Conference Vienna, 11.7.2013

Definitions

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definitions

Theoren

Motivatio

The proo

The end

Definitions

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sy Friedman)

Definitions

iviotivatio

The proof

T1.

Definition

- A *tree* is a strict partial ordering (T, <) with the property that for each $x \in T$, $\{y : y < x\}$ is well-ordered by <.
- The α th level of a tree T consists of all x such that $\{y: y < x\}$ has order-type α .
- The *height* of T is the least α such that the α th level of T is empty.
- A branch in T is a maximal linearly ordered subset of T.
- We say that a branch is *cofinal* if it hits every level of T.

Definitions

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Heoren

IVIOLIVALIO

The proo

The end

Definition

- A *tree* is a strict partial ordering (T, <) with the property that for each $x \in T$, $\{y : y < x\}$ is well-ordered by <.
- The α th level of a tree T consists of all x such that $\{y: y < x\}$ has order-type α .
- The *height* of T is the least α such that the α th level of T is empty.
- A branch in T is a maximal linearly ordered subset of T.
- We say that a branch is *cofinal* if it hits every level of T.

Definition

An infinite cardinal κ has the *tree property* if every tree of height κ whose levels have size $< \kappa$ has a cofinal branch.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theorem

Motivatio

The proo

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sy Friedman)

Definitions

Theorem

i ne proo

The proo

Definition

We say that a cardinal κ is γ -hypermeasurable if there is an elementary embedding $j:V\to M$ with $\mathrm{crit}(j)=\kappa$ such that $H(\gamma)^V=H(\gamma)^M$.

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Aidin Halilović Sv Friedman)

Theorem

Definition

We say that a cardinal κ is γ -hypermeasurable if there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa$ such that $H(\gamma)^V = H(\gamma)^M$.

Theorem (Friedman, H.)

• Assume that V is a model of ZFC and κ is λ^+ -hypermeasurable in V, where λ is the least weakly compact cardinal greater than κ . Then there exists a forcing extension of V in which κ is still measurable, κ^{++} has the tree property and $2^{\kappa} = \kappa^{+++}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definit

Theorem

_.

The and

Definition

We say that a cardinal κ is γ -hypermeasurable if there is an elementary embedding $j:V\to M$ with $\mathrm{crit}(j)=\kappa$ such that $H(\gamma)^V=H(\gamma)^M$.

Theorem (Friedman, H.)

- Assume that V is a model of ZFC and κ is λ^+ -hypermeasurable in V, where λ is the least weakly compact cardinal greater than κ . Then there exists a forcing extension of V in which κ is still measurable, κ^{++} has the tree property and $2^{\kappa} = \kappa^{+++}$.
- ② If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal $\theta > \lambda$ of cofinality greater than κ) then the proof can be generalized to get $2^{\kappa} = \theta$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definit

Theorem

The proc

Definition

We say that a cardinal κ is γ -hypermeasurable if there is an elementary embedding $j:V\to M$ with $\mathrm{crit}(j)=\kappa$ such that $H(\gamma)^V=H(\gamma)^M$.

Theorem (Friedman, H.)

- Assume that V is a model of ZFC and κ is λ^+ -hypermeasurable in V, where λ is the least weakly compact cardinal greater than κ . Then there exists a forcing extension of V in which κ is still measurable, κ^{++} has the tree property and $2^{\kappa} = \kappa^{+++}$.
- ② If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal $\theta > \lambda$ of cofinality greater than κ) then the proof can be generalized to get $2^{\kappa} = \theta$.
- 3 By forcing with the Prikry forcing over the above models one gets $Con(cof(\kappa) = \omega, TP(\kappa^{++}), 2^{\kappa} large)$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theorem

Motivation

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work witl Sy Friedman)

Definitions

Motivation

......

The proof

Natasha Dobrinen and Sy used a generalization of Sacks forcing to reduce the large cardinal strength required to obtain the tree property at the double successor of a measurable cardinal κ from a supercompact to a weakly compact hypermeasurable cardinal. In their model $2^{\kappa} = \kappa^{++}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Motivation

The proof

The end

Natasha Dobrinen and Sy used a generalization of Sacks forcing to reduce the large cardinal strength required to obtain the tree property at the double successor of a measurable cardinal κ from a supercompact to a weakly compact hypermeasurable cardinal. In their model $2^{\kappa}=\kappa^{++}$.

On the other hand, $\mathsf{TP}(\aleph_2)$ is consistent with large continuum (a detailed proof was given by Spencer Unger). So, the idea was to prove the analogous result for $\mathsf{TP}(\kappa^{++})$ with κ measurable, using Mitchell's forcing together with a "surgery" argument.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Motivation

The proof

The en

Natasha Dobrinen and Sy used a generalization of Sacks forcing to reduce the large cardinal strength required to obtain the tree property at the double successor of a measurable cardinal κ from a supercompact to a weakly compact hypermeasurable cardinal. In their model $2^{\kappa}=\kappa^{++}$.

On the other hand, $\mathsf{TP}(\aleph_2)$ is consistent with large continuum (a detailed proof was given by Spencer Unger). So, the idea was to prove the analogous result for $\mathsf{TP}(\kappa^{++})$ with κ measurable, using Mitchell's forcing together with a "surgery" argument.

As in Dobrinen-Friedman paper, the consistency of a cardinal κ of Mitchell order λ^+ , where λ is weakly compact and greater than κ , is a lower bound on the consistency strength of $\mathsf{TP}(\kappa^{++})$ with κ measurable and $2^\kappa = \kappa^{+++}$. Therefore our result is in fact almost an equiconsistency result.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theoren

Motivation

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D - C - W - - - -

Deminicionic

Motivati

The proof

Let κ be λ^+ -hypermeasurable. Let $j: V \to M$ be an elementary embedding witnessing the hypermeasurability of κ , with $\mathrm{crit}(j) = \kappa$, $j(\kappa) > \lambda$ and $H(\lambda^+)^V = H(\lambda^+)^M$. We may assume that M is of the form $M = \{j(f)(\alpha) : \alpha < \lambda^+, f: \kappa \to V, f \in V\}$. We first define some forcing notions in order to describe the intended model.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Sy Friedmar

Theorem

Motivatio

The proof

Let κ be λ^+ -hypermeasurable. Let $j:V\to M$ be an elementary embedding witnessing the hypermeasurability of κ , with $\mathrm{crit}(j)=\kappa$, $j(\kappa)>\lambda$ and $H(\lambda^+)^V=H(\lambda^+)^M$. We may assume that M is of the form $M=\{j(f)(\alpha):\alpha<\lambda^+,f:\kappa\to V,f\in V\}$. We first define some forcing notions in order to describe the intended model.

For a regular cardinal α and an arbitrary cardinal β let $Add(\alpha, \beta)$ denote the forcing for adding β many α -Cohens. The conditions are partial functions from $\alpha \times \beta$ into $\{0,1\}$ of size $< \alpha$.

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Sv Friedman)

The proof

Let κ be λ^+ -hypermeasurable. Let $j: V \to M$ be an elementary embedding witnessing the hypermeasurability of κ , with crit(j) = κ , $j(\kappa) > \lambda$ and $H(\lambda^+)^V = H(\lambda^+)^M$. We may assume that M is of the form $M = \{i(f)(\alpha) : \alpha < \lambda^+, f : \kappa \to V, f \in V\}$. We first define some forcing notions in order to describe the intended model.

For a regular cardinal α and an arbitrary cardinal β let $Add(\alpha, \beta)$ denote the forcing for adding β many α -Cohens. The conditions are partial functions from $\alpha \times \beta$ into $\{0,1\}$ of size $< \alpha$.

Define a forcing notion P_{κ} as follows. Let ρ_0 be the first inaccessible cardinal and let λ_0 be the least weakly compact cardinal above ρ_0 . For $k < \kappa$, given λ_k , let ρ_{k+1} be the least inaccessible cardinal above λ_k and let λ_{k+1} be the least weakly compact cardinal above ρ_{k+1} . For limit ordinals $k \leq \kappa$, let ρ_k be the least inaccessible cardinal greater than or equal to $\sup_{l < k} \lambda_l$ and let λ_k be the least weakly compact cardinal above ρ_k . Note that $\rho_{\kappa} = \kappa$ and λ_{κ} is the least weakly compact cardinal above κ .

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theore

Motivation

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Sv Friedman)

The proof

Let P_0 be the trivial forcing. For $i < \kappa$, if $i = \rho_k$ for some $k < \kappa$, let \dot{Q}_i be a P_i -name for the forcing $Add(\rho_k, \lambda_k^+)$. Otherwise let \dot{Q}_i be a P_i -name for the trivial forcing. Let $P_{i+1} = P_i * Q_i$. Let P_{κ} be the iteration $\langle \langle P_i, Q_i \rangle : i < \kappa \rangle$ with Easton support.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sv Friedman)

D. C. W. . . .

Definitions

Motivati

The proof

The end

Let P_0 be the trivial forcing. For $i < \kappa$, if $i = \rho_k$ for some $k < \kappa$, let \dot{Q}_i be a P_i -name for the forcing $Add(\rho_k, \lambda_k^+)$. Otherwise let \dot{Q}_i be a P_i -name for the trivial forcing. Let $P_{i+1} = P_i * \dot{Q}_i$. Let P_{κ} be the iteration $\langle \langle P_i, \dot{Q}_i \rangle : i < \kappa \rangle$ with Easton support.

We define the *Mitchell forcing* $M(\kappa, \beta)$ as $Add(\kappa, \beta) * Q$, where

 $Q = \{q \mid q \text{ is a partial function of cardinality} \leq \kappa \text{ on the regular cardinals below } \beta \text{ such that for each } \gamma \text{ in } \mathrm{Dom}(q), \emptyset \Vdash^{Add(\kappa,\gamma)} "q(\gamma) \in Add(\kappa^+,1)"\}.$

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Sv Friedman)

The proof

Let P_0 be the trivial forcing. For $i < \kappa$, if $i = \rho_k$ for some $k < \kappa$, let Q_i be a P_i -name for the forcing $Add(\rho_k, \lambda_k^+)$. Otherwise let Q_i be a P_i -name for the trivial forcing. Let $P_{i+1} = P_i * Q_i$. Let P_{κ} be the iteration $\langle \langle P_i, Q_i \rangle : i < \kappa \rangle$ with Easton support.

We define the *Mitchell forcing* $M(\kappa, \beta)$ as $Add(\kappa, \beta) * Q$, where

$$Q = \{q \mid q \text{ is a partial function of cardinality} \leq \kappa \text{ on the regular cardinals below } \beta \text{ such that for each } \gamma \\ \text{in } \mathrm{Dom}(q), \emptyset \Vdash^{Add(\kappa,\gamma)} "q(\gamma) \in Add(\kappa^+,1)"\}.$$

Since $M(\kappa, \lambda)$ is known to preserve the tree property at λ while making λ into the κ^{++} of the extension, the idea is simply to force with $Add(\kappa, \lambda^+)$ over $V^{M(\kappa, \lambda)}$. However, in order to preserve the measurability of κ , our intended model will be a little different:

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theore

Motivation

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

Theore

The proof

Let $j_0:V\to M_0$ be the measure ultrapower embedding via the normal measure $U_0=\{X\subseteq\kappa\mid\kappa\in j(X)\}$ derived from j with critical point κ such that ${}^\kappa M_0\subseteq M_0$ and let λ_0 be the first weakly compact cardinal of M_0 above κ . To prove the theorem we force over V with

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R$$
,

where P_{κ} is the 'preparatory' forcing defined above, and R is the forcing notion defined as follows:

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

Let $j_0:V\to M_0$ be the measure ultrapower embedding via the normal measure $U_0=\{X\subseteq\kappa\mid\kappa\in j(X)\}$ derived from j with critical point κ such that ${}^\kappa M_0\subseteq M_0$ and let λ_0 be the first weakly compact cardinal of M_0 above κ . To prove the theorem we force over V with

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R$$

where P_{κ} is the 'preparatory' forcing defined above, and R is the forcing notion defined as follows:

Let G, g_0 be generic filters on P_κ , $Add(\kappa, (\lambda_0^+)^{M_0})$, respectively. In $V[G][g_0]$, we can lift the embedding $j_0: V \to M_0$ to an embedding $j_0: V[G] \to M_0[G][g_0][H_0]$, where the generics on the right side correspond to $j_0(P_\kappa)$ factored as $j_0(P_\kappa)_{|\kappa} * j_0(P_\kappa)_{\kappa} * j_0(P_\kappa)_{\kappa+1,j_0(\kappa)}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

Let $j_0:V\to M_0$ be the measure ultrapower embedding via the normal measure $U_0=\{X\subseteq\kappa\mid\kappa\in j(X)\}$ derived from j with critical point κ such that ${}^\kappa M_0\subseteq M_0$ and let λ_0 be the first weakly compact cardinal of M_0 above κ . To prove the theorem we force over V with

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R,$$

where P_{κ} is the 'preparatory' forcing defined above, and R is the forcing notion defined as follows:

Let G, g_0 be generic filters on $P_\kappa, Add(\kappa, (\lambda_0^+)^{M_0})$, respectively. In $V[G][g_0]$, we can lift the embedding $j_0: V \to M_0$ to an embedding $j_0: V[G] \to M_0[G][g_0][H_0]$, where the generics on the right side correspond to $j_0(P_\kappa)$ factored as $j_0(P_\kappa)_{|\kappa} * j_0(P_\kappa)_\kappa * j_0(P_\kappa)_{\kappa+1,j_0(\kappa)}$.

The forcing R is defined as $Add(j_0(\kappa), \lambda^+)$ of $M_0[G][g_0][H_0]$. We note here that R is an element of $V[G][g_0]$. Since $j_0(\lambda) = \lambda$, R is actually the image of $Add(\kappa, \lambda^+)$ under j_0 .

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sy Friedman)

Definition

Theorem

Motivation

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

Theore

iviotivatio

The proof

For technical reasons, we rewrite our forcing

$$P_{\kappa}*Add(\kappa,(\lambda_{0}^{+})^{M_{0}})*M(\kappa,\lambda)*Add(\kappa,\lambda^{+})*R,$$

as

$$P_{\kappa} * Add(\kappa, \lambda^{+}) * Q * R$$
,

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

-.

Motivati

The proof

The end

For technical reasons, we rewrite our forcing

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R,$$

as

$$P_{\kappa} * Add(\kappa, \lambda^{+}) * Q * R$$
,

where Q is this time defined only using the even components i of $Add(\kappa, \lambda^+)$ with $(\lambda_0^+)^{M_0} \leq i < \lambda$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D - C -- W - - - -

Demicion

Motivati

The proof

he en

For technical reasons, we rewrite our forcing

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R$$

as

$$P_{\kappa} * Add(\kappa, \lambda^{+}) * Q * R$$
,

where Q is this time defined only using the even components i of $Add(\kappa, \lambda^+)$ with $(\lambda_0^+)^{M_0} \leq i < \lambda$.

More precisely, for an interval I of ordinals let $Add(\kappa,I)_{|\text{even}}$ be the forcing whose conditions are partial functions from $\kappa \times \{\text{even ordinals in } I\}$ into $\{0,1\}$ of size $<\kappa$. Then, for $q\in Q$ and $\gamma\in \text{Dom}(q)$, $q(\gamma)$ is an $Add(\kappa,[(\lambda_0^+)^{M_0},\gamma))_{|\text{even}}$ -name for a condition in $Add(\kappa^+,1)$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

I heore

The proof

The end

For technical reasons, we rewrite our forcing

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda^+) * R$$
,

as

$$P_{\kappa} * Add(\kappa, \lambda^{+}) * Q * R$$
,

where Q is this time defined only using the even components i of $Add(\kappa, \lambda^+)$ with $(\lambda_0^+)^{M_0} \leq i < \lambda$.

More precisely, for an interval I of ordinals let $Add(\kappa,I)_{|\mathrm{even}}$ be the forcing whose conditions are partial functions from $\kappa \times \{\mathrm{even} \ \mathrm{ordinals} \ \mathrm{in} \ I\}$ into $\{0,1\}$ of size $<\kappa$. Then, for $q\in Q$ and $\gamma\in \mathrm{Dom}(q),\ q(\gamma)$ is an $Add(\kappa,[(\lambda_0^+)^{M_0},\gamma))_{|\mathrm{even}}$ -name for a condition in $Add(\kappa^+,1)$.

We denote the final model, obtained by forcing over V with $P_{\kappa} * Add(\kappa, \lambda^{+}) * Q * R$, as W.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

i neoren

Motivatio

The proof

Definition

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Sv Friedman)

The proof

Let A and B be two partial orderings. A function $\pi: B \to A$ is called a projection iff the following hold:

- \bullet π is order-preserving and $\pi(B)$ is dense in A.
- 2 If $\pi(b) = a$ and a' < a, then there is $b' \le b$ such that $\pi(b') < a'$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

Theore

TTTO ETT GET

The proof

The end

Definition

Let A and B be two partial orderings. A function $\pi: B \to A$ is called a projection iff the following hold:

- π is order-preserving and $\pi(B)$ is dense in A.
- ② If $\pi(b) = a$ and a' < a, then there is $b' \le b$ such that $\pi(b') \le a'$.

Fact

If $\pi: B \to A$ is a projection, then the forcing B is forcing-equivalent to A * B/A for some quotient B/A.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

i neoren

Motivatio

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sy Friedman)

Definitions

Theore

IVIOLIVALI

The proof

The end

Since both $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}}$ and Q exist in the model $V[G][g_0]$, we can also consider the forcing

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))|_{\text{even}} \times Q$$

of course, with a different ordering on Q, not depending on $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|even}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Sv Friedman)

 $V[G][g_0]$, we can also consider the forcing Ajdin Halilović

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))|_{\text{even}} \times Q,$$

of course, with a different ordering on Q, not depending on $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{leven}$.

Since both $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))|_{even}$ and Q exist in the model

In order not to confuse it with $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))|_{\text{even}} * Q$, which has a different ordering, we will write $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} \times Q'$. For the same reason, the conditions (p,q) in the product will be denoted as (p, (0, q)).

The proof

The proof: projections

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman) $V[G][g_0]$, we can also consider the forcing

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))|_{\text{even}} \times Q,$$

of course, with a different ordering on Q, not depending on $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{leven}$.

Since both $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{leven}$ and Q exist in the model

In order not to confuse it with $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} * Q$, which has a different ordering, we will write $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} \times Q'$. For the same reason, the conditions (p,q) in the product will be denoted as (p,(0,q)).

It can be shown that Q is κ^+ -distributive, and Q' is obviously κ^+ -closed in $V[G][g_0]$.

The proof

The proof: the projection lemma

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

Theoren

Motivation

The proof

The end

The proof: the projection lemma

"The tree property" at the double successor of a measurable cardinal & with 2^K large

Sv Friedman)

The proof

Lemma

The function
$$\pi$$
 given by $\pi(p,(0,q))=(p,q)$ is a projection from

$$\textit{Add}(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\mathrm{even}} \times \textit{Q}'$$

onto

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} * Q.$$

The proof: the projection lemma

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sy Friedman)

Definition

I heorer

motivatio

The proof

The end

Lemma

The function π given by $\pi(p,(0,q))=(p,q)$ is a projection from

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} \times Q'$$

onto

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda))_{|\text{even}} * Q.$$

This projection can be naturally extended to a projection from the product

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda^+)) \times Q' \times R$$

onto

$$Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda^+)) * Q \times R.$$

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sy Friedman)

Definition

i neoren

Motivatio

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sy Friedman)

Definitions

Theorem

Motivati

The proof

. .

R is κ^+ -closed and λ -Knaster in $V[G][g_0]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Aidin Halilović Sv Friedman)

The proof

Lemma

R is κ^+ -closed and λ -Knaster in $V[G][g_0]$.

Proof.

The closure follows easily because R is κ^+ -closed in $M_0[G][g_0][H_0]$ and $M_0[G][g_0][H_0]$ is closed under κ -sequences in $V[G][g_0]$. Let $\langle p_{\alpha} : \alpha < \lambda \rangle$ be a sequence of conditions in R, and let p_{α} be of the form $i_0(f_\alpha)(\kappa)$ for some function $f_\alpha: \kappa \to Add(\kappa, \lambda^+), f_\alpha \in V[G]$. A Δ -system argument shows that λ many of the functions f_{α} are pointwise compatible. It follows that λ many of the conditions p_{α} are compatible.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sy Friedman)

Definition

i neoren

Motivatio

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Theore

Motivati

The proof

. .

The forcing $Q \times R$ is κ^+ -distributive in $V^{P_{\kappa}*Add(\kappa,\lambda^+)}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitio

Theore

The proof

The en

Lemma

The forcing $Q \times R$ is κ^+ -distributive in $V^{P_{\kappa}*Add(\kappa,\lambda^+)}$.

Proof.

The forcings Q', R are closed in the model $V^{P_{\kappa}*Add(\kappa,(\lambda_0^+)^{M_0})}$ in which they are defined, therefore their product $Q' \times R$ is closed in there as well. By Easton's lemma, after forcing with the κ^+ -c.c. forcing $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda^+))$, the product $Q' \times R$ will remain κ^+ -distributive. Since κ^+ -distributivity is equivalent to not adding new κ -sequences of ordinals, it follows from the above facts about projections that $Q \times R$ is distributive in $V^{P_{\kappa}*Add(\kappa,\lambda^+)}$ as well. \square

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sy Friedman)

Definition

i neorem

Motivation

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work witl Sy Friedman)

Definitions

Theore

The proof

In W,
$$\kappa^+ = (\kappa^+)^V$$
, $\kappa^{++} = \lambda$, and $\kappa^{+++} = (\lambda^+)^V$. In particular, $2^{\kappa} = \kappa^{+++}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Theore

IVIOLIVALI

The proof

The end

Lemma

In
$$W$$
, $\kappa^+ = (\kappa^+)^V$, $\kappa^{++} = \lambda$, and $\kappa^{+++} = (\lambda^+)^V$. In particular, $2^{\kappa} = \kappa^{+++}$.

Proof.

 $\kappa^+ = (\kappa^+)^V$: This follows from the facts that $P_{\kappa} * Add(\kappa, \lambda^+)$ is κ^+ -c.c in V, and Q * R is κ^+ -distributive in $V^{P_{\kappa}*Add(\kappa, \lambda^+)}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Aidin Halilović

Sv Friedman)

The proof

Lemma

In W,
$$\kappa^+ = (\kappa^+)^V$$
, $\kappa^{++} = \lambda$, and $\kappa^{+++} = (\lambda^+)^V$. In particular, $2^{\kappa} = \kappa^{+++}$.

Proof.

 $\kappa^+ = (\kappa^+)^V$: This follows from the facts that $P_{\kappa} * Add(\kappa, \lambda^+)$ is κ^+ -c.c in V, and Q * R is κ^+ -distributive in $V^{P_\kappa * Add(\kappa, \lambda^+)}$.

 $\kappa^{++} = \lambda, \kappa^{+++} = (\lambda^+)^V$: The Mitchell forcing $M(\kappa, \lambda)$ collapses precisely the cardinals between κ^+ and λ . On the other side, in the model $V^{P_{\kappa}*Add(\kappa,(\lambda_0^+)^{M_0})}$, in which all cardinals are preserved, R has the λ -Knaster property and $M(\kappa, \lambda) * Add(\kappa, \lambda^+)$ satisfies the λ -c.c. It follows that their product also satisfies the λ -c.c., which means that all cardinals above λ are preserved.

The proof: a remark

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

i neorem

The proof

The end

The proof: a remark

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitio

Theore

Motivat

The proof

The end

In the general case where κ is θ -hypermeasurable we can first force to add a function $f:\kappa\to\kappa$ with $j(f)(\kappa)=\theta$. Then θ_0 , M_0 's version of θ , is less than κ^{++} , because $\theta_0=j_0(f)(\kappa)< j_0(\kappa)<\kappa^{++}$. It follows that the forcing R still has the λ -Knaster property in $V^{P_\kappa*Add(\kappa,\theta_0)}$, and hence, the above lemmas apply in the general case.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Definition

i neoren

Motivation

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilovi (joint work wi Sy Friedman

Definition:

I heore

IVIOLIVALI

The proof

Lemma

 κ remains measurable in W.

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Sv Friedman)

The proof

Lemma

 κ remains measurable in W.

Proof

In order to prove that κ remains measurable in W we extend the elementary embedding $j: V \to M$ to an embedding of W. We have already picked generics G, g_0 for $P_{\kappa}, Add(\kappa, (\lambda_0^+)^{M_0})$, resp.

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Aidin Halilović Sv Friedman)

The proof

Lemma

 κ remains measurable in W.

Proof

In order to prove that κ remains measurable in W we extend the elementary embedding $j: V \to M$ to an embedding of W. We have already picked generics G, g_0 for $P_{\kappa}, Add(\kappa, (\lambda_0^+)^{M_0})$, resp.

Let g be an $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda^+))$ -generic filter over $V[G][g_0]$. We first use a 'surgery' argument to lift i to an embedding of $V[G][g_0][g].$

"The tree property" at the double successor of a measurable cardinal κ with 2^K large

Ajdin Halilović

Sv Friedman)

The proof

Lemma

 κ remains measurable in W.

Proof

In order to prove that κ remains measurable in W we extend the elementary embedding $j: V \to M$ to an embedding of W. We have already picked generics G, g_0 for $P_{\kappa}, Add(\kappa, (\lambda_0^+)^{M_0})$, resp.

Let g be an $Add(\kappa, [(\lambda_0^+)^{M_0}, \lambda^+))$ -generic filter over $V[G][g_0]$. We first use a 'surgery' argument to lift i to an embedding of $V[G][g_0][g].$

The embedding j can be factored as $k \circ j_0$, where $k : M_0 \to M$ is defined by $k([F]_U) := j(F)(\kappa)$. The embedding k is also elementary and its critical point is $(\kappa^{++})^{M_0}$. By elementarity and GCH, $(\kappa^{++})^{M_0} < i_0(\kappa) < \kappa^{++}$. Note also that $k(\lambda_0) = \lambda$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sv Friedman)

Definition

Theorer

Motivatio

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work witl Sy Friedman)

Definitions

Theore

iviotivatio

The proof

Proof continued

Recall that we have already lifted in $V[G][g_0]$ the embedding $j_0: V \to M_0$ to an embedding $j_0: V[G] \to M_0[G][g_0][H_0]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theorer

The proof

The end

Proof continued

Recall that we have already lifted in $V[G][g_0]$ the embedding $j_0: V \to M_0$ to an embedding $j_0: V[G] \to M_0[G][g_0][H_0]$.

It is now possible in $V[G][g_0][g]$ to lift $k:M_0\to M$ to an embedding $k:M_0[G][g_0][H_0]\to M[G][(g_0\times g)'][H]$, getting the commutative diagram

$$V[G] \xrightarrow{j} M[G][(g_0 \times g)'][H]$$

$$\searrow^{j_0} \xrightarrow{k} M_0[G][g_0][H_0]$$

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Sv Friedman)

The proof

Recall that we have already lifted in $V[G][g_0]$ the embedding $j_0: V \to M_0$ to an embedding $j_0: V[G] \to M_0[G][g_0][H_0]$.

It is now possible in $V[G][g_0][g]$ to lift $k: M_0 \to M$ to an embedding $k: M_0[G][g_0][H_0] \to M[G][(g_0 \times g)'][H]$, getting the commutative diagram

$$V[G] \xrightarrow{j} M[G][(g_0 \times g)'][H]$$

$$\searrow^{j_0} \stackrel{k}{\nearrow} M_0[G][g_0][H_0]$$

Next, lift $j: V[G] \to M[G][(g_0 \times g)'][H]$ to an embedding of $V[G][g_0][g]$, as follows:

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with

Definition

Theorem

Motivatio

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

iviotivatio

The proof

The end

Let $G_Q \times h$ be a filter on $Q \times R$ which is generic over $V[G][g_0][g]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

IVIOLIVALI

The proof

/lotivatio

Proof continued

Let $G_Q \times h$ be a filter on $Q \times R$ which is generic over $V[G][g_0][g]$.

We transfer h along k in order to get a generic h^* for $j(Add(\kappa, \lambda^+))$ so that we could lift j to $j: V[G][g_0][g] \to M_0[G][g_0][H_0][h^*]$. Namely, $h^* = \{p \in j(Add(\kappa, \lambda^+)) \mid k(p_0) \leq p \text{ for some } p_0 \in h\}$ is generic for $j(Add(\kappa, \lambda^+))$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Motivation

The proof

The on

Proof continued

Let $G_Q \times h$ be a filter on $Q \times R$ which is generic over $V[G][g_0][g]$.

We transfer h along k in order to get a generic h^* for $j(Add(\kappa, \lambda^+))$ so that we could lift j to j: $V[G][g_0][g] \to M_0[G][g_0][H_0][h^*]$. Namely, $h^* = \{p \in j(Add(\kappa, \lambda^+)) \mid k(p_0) \leq p \text{ for some } p_0 \in h\}$ is generic for $j(Add(\kappa, \lambda^+))$.

The fact that h can be transferred to create a generic for $j(Add(\kappa, \lambda^+))$, and the fact that $R = j_0(Add(\kappa, \lambda^+))$ is not a harmful forcing in $V[G][g_0]$, i.e. has κ^+ -closure and λ -Knaster property, are the main advantages of factoring j as $k \circ j_0$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitio

Theore

Motivati

The proof

The en

Proof continued

Let $G_Q \times h$ be a filter on $Q \times R$ which is generic over $V[G][g_0][g]$.

We transfer h along k in order to get a generic h^* for $j(Add(\kappa, \lambda^+))$ so that we could lift j to j: $V[G][g_0][g] \to M_0[G][g_0][H_0][h^*]$. Namely, $h^* = \{p \in j(Add(\kappa, \lambda^+)) \mid k(p_0) \leq p \text{ for some } p_0 \in h\}$ is generic for $j(Add(\kappa, \lambda^+))$.

The fact that h can be transferred to create a generic for $j(Add(\kappa, \lambda^+))$, and the fact that $R = j_0(Add(\kappa, \lambda^+))$ is not a harmful forcing in $V[G][g_0]$, i.e. has κ^+ -closure and λ -Knaster property, are the main advantages of factoring j as $k \circ j_0$.

This lifting argument is called surgery, because we still have to make sure that $j[g_0 \times g] \subseteq h^*$, and that is done by altering the conditions of the generic h^* on small parts of size $< \kappa$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sv Friedman)

Definition

Theore

IVIOLIVALI

The proof

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

i neore

IVIOLIVALI

The proof

The end

Proof continued

So far we have proven that in $V[G][g_0][g][h]$ there is a definable elementary embedding $j: V[G][g_0][g] \to M[G][(g_0 \times g)'][H][h^{**}]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

Proof continued

So far we have proven that in $V[G][g_0][g][h]$ there is a definable elementary embedding $j: V[G][g_0][g] \to M[G][(g_0 \times g)'][H][h^{**}]$.

We now need to find a generic filter $G_{j(Q)} \times h_{j(R)}$ for $j(Q \times R)$ such that $j[G_Q \times h] \subseteq G_{j(Q)} \times h_{j(R)}$, in order to define our final lifting

$$j: V[G][g_0][g][G_Q][h] \to M[G][(g_0 \times g)'][H][h^{**}][G_{i(Q)}][h_{i(R)}].$$

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

_.

The proof

The end

Proof continued

So far we have proven that in $V[G][g_0][g][h]$ there is a definable elementary embedding $j: V[G][g_0][g] \to M[G][(g_0 \times g)'][H][h^{**}]$.

We now need to find a generic filter $G_{j(Q)} \times h_{j(R)}$ for $j(Q \times R)$ such that $j[G_Q \times h] \subseteq G_{j(Q)} \times h_{j(R)}$, in order to define our final lifting

$$j: V[G][g_0][g][G_Q][h] \to M[G][(g_0 \times g)'][H][h^{**}][G_{j(Q)}][h_{j(R)}].$$

This last step is, however, just another transferring argument since, by one of our lemmas, $Q \times R$ is κ^+ -distributive over $V[G][g_0][g]$, that is, $\{(q,r) \mid j(q_0,r_0) \leq (q,r) \text{ for some } (q_0,r_0) \in G_Q \times h\}$ is an appropriate generic.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D - C - W - - - -

····otivati

The proof

The end

Proof continued

So far we have proven that in $V[G][g_0][g][h]$ there is a definable elementary embedding $j: V[G][g_0][g] \to M[G][(g_0 \times g)'][H][h^{**}]$.

We now need to find a generic filter $G_{j(Q)} \times h_{j(R)}$ for $j(Q \times R)$ such that $j[G_Q \times h] \subseteq G_{j(Q)} \times h_{j(R)}$, in order to define our final lifting

$$j: V[G][g_0][g][G_Q][h] \to M[G][(g_0 \times g)'][H][h^{**}][G_{j(Q)}][h_{j(R)}].$$

This last step is, however, just another transferring argument since, by one of our lemmas, $Q \times R$ is κ^+ -distributive over $V[G][g_0][g]$, that is, $\{(q,r) \mid j(q_0,r_0) \leq (q,r) \text{ for some } (q_0,r_0) \in G_Q \times h\}$ is an appropriate generic.

This completes the proof of measurability of κ .

The proof: "the tree property" at κ^{++}

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sy Friedman)

Definition

Theoren

Motivation

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Heorei

The proof

The end

Lemma

 κ^{++} has the tree property in W.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

Motivatio

The proof

The end

Lemma

 κ^{++} has the tree property in W.

Proof

In order to get a contradiction suppose that there is a κ^{++} -Aronszajn tree in W.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work witl Sy Friedman)

Definition

Theore

The proof

_. .

Lemma

 κ^{++} has the tree property in W.

Proof

In order to get a contradiction suppose that there is a κ^{++} -Aronszajn tree in W.

Recall that W can be written as $V^{P_{\kappa}*Add(\kappa,(\lambda_0^+)^{M_0})*M(\kappa,\lambda)*Add(\kappa,\lambda^+)*R}$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

_.

Lemma

 κ^{++} has the tree property in W.

Proof

In order to get a contradiction suppose that there is a κ^{++} -Aronszajn tree in W.

Recall that W can be written as $V^{P_{\kappa}*Add(\kappa,(\lambda_0^+)^{M_0})*M(\kappa,\lambda)*Add(\kappa,\lambda^+)*R}$.

Let V_1 denote the model $V^{P_\kappa*Add(\kappa,(\lambda_0^+)^{M_0})*M(\kappa,\lambda)}$ and let $R'=R_{|\lambda}$ be the forcing $Add(j_0(\kappa),\lambda)$ of $M_0[G][g_0][H_0]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D - C - 1-1---

Theore

TTTO ETT GET

The proof

-.

Lemma

 κ^{++} has the tree property in W.

Proof

In order to get a contradiction suppose that there is a κ^{++} -Aronszajn tree in W.

Recall that W can be written as $V^{P_{\kappa}*Add(\kappa,(\lambda_0^+)^{M_0})*M(\kappa,\lambda)*Add(\kappa,\lambda^+)*R}$.

Let V_1 denote the model $V^{P_\kappa*Add(\kappa,(\lambda_0^+)^{M_0})*M(\kappa,\lambda)}$ and let $R'=R_{|\lambda}$ be the forcing $Add(j_0(\kappa),\lambda)$ of $M_0[G][g_0][H_0]$.

We first notice that there must be a κ^{++} -Aronszajn tree already in $V_1^{Add(\kappa,\lambda)\times R'}$ because $Add(\kappa,\lambda^+)\times R$ has the λ -c.c. in V_1 and the tree is of size κ^{++} .

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović joint work with Sv Friedman)

Dofinition

Theore

Motivatio

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theorer

The proof

The end

Proof continued

Similarly as before, we can rewrite

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda) \times R'$$

as

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * Add(\kappa, \lambda) * Q \times R',$$

where Q is defined only using the even components of $Add(\kappa, \lambda)$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

The end

Proof continued

Similarly as before, we can rewrite

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda) \times R'$$

as

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * Add(\kappa, \lambda) * Q \times R',$$

where Q is defined only using the even components of $Add(\kappa, \lambda)$.

Hence, in terms of our chosen generics, the above means that there is a κ^{++} -Aronszajn tree T in $V[G][g_0][g_{|\lambda}][G_Q][h_{|\lambda}]$. Let \dot{T} be an $Add(\kappa,\lambda)*Q\times R'$ -name in $V[G][g_0]$ for T.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

····otivati

The proof

The end

Proof continued

Similarly as before, we can rewrite

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * M(\kappa, \lambda) * Add(\kappa, \lambda) \times R'$$

as

$$P_{\kappa} * Add(\kappa, (\lambda_0^+)^{M_0}) * Add(\kappa, \lambda) * Q \times R',$$

where Q is defined only using the even components of $Add(\kappa, \lambda)$.

Hence, in terms of our chosen generics, the above means that there is a κ^{++} -Aronszajn tree T in $V[G][g_0][g_{|\lambda}][G_Q][h_{|\lambda}]$. Let \dot{T} be an $Add(\kappa,\lambda)*Q\times R'$ -name in $V[G][g_0]$ for T.

Recall that λ is a weakly compact cardinal in $V[G][g_0]$. Therefore, there exist in $V[G][g_0]$ transitive ZF^- -models N_0, N_1 of size λ and an elementary embedding $k: N_0 \to N_1$ with critical point λ , such that $N_0 \to H(\lambda)^{V[G][g_0]}$ and $G, g_0, \dot{T} \in N_0$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with

Definition

Theore

Motivatio

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

i neore

Motivatio

The proof

The end

Note that $g_{|\lambda} * G_Q * h_{|\lambda}$ is also $Add(\kappa, \lambda) * Q \times R'$ -generic over N_0 .

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Motivoti

The proof

The end

Proof continued

Note that $g_{|\lambda} * G_Q * h_{|\lambda}$ is also $Add(\kappa, \lambda) * Q \times R'$ -generic over N_0 .

Since crit(k)= λ , we can factor $k(Add(\kappa, \lambda) * Q \times R')$ as

$$Add(\kappa, \lambda) * Add(\kappa, [\lambda, k(\lambda))) * Q * Q^* \times R' \times R^*$$

where Q^* and R^* denote the tail forcings k(Q)/Q and k(R')/R', respectively, with components indexed from the interval $[\lambda, k(\lambda))$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

Theore

The proof

Proof continued

Note that $g_{|\lambda} * G_Q * h_{|\lambda}$ is also $Add(\kappa, \lambda) * Q \times R'$ -generic over N_0 .

Since crit(k)= λ , we can factor $k(Add(\kappa, \lambda) * Q \times R')$ as

$$Add(\kappa, \lambda) * Add(\kappa, [\lambda, k(\lambda))) * Q * Q^* \times R' \times R^*$$

where Q^* and R^* denote the tail forcings k(Q)/Q and k(R')/R', respectively, with components indexed from the interval $[\lambda, k(\lambda))$.

Since k is the identity on $g_{|\lambda}*G_Q*h_{|\lambda}$ we can extend the embedding $k:N_0\to N_1$ in some large universe U to an embedding

$$k: N_0[g_{|\lambda}][G_Q][h_{|\lambda}] \to N_1[g_{|\lambda}][g^*][G_Q][G_{Q^*}][h_{|\lambda}][h^*]$$

where g^* , G_{Q^*} , h^* are arbitrary generics for $Add(\kappa, [\lambda, k(\lambda)))$, Q^* , R^* , respectively, picked in U.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work wit Sv Friedman)

Definition

Theore

Motivatio

The proof

The end

Proof continued

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D # 1...

Motivati

The proof

The end

Proof continued

Since $T\in N_0[g_{|\lambda}][G_Q][h_{|\lambda}]$ is a λ -Aronszajn tree, by elementarity k(T) is a $k(\lambda)$ -Aronszajn tree in $N_1[g_{|\lambda}][g^*][G_Q][G_{Q^*}][h_{|\lambda}][h^*]$ which coincides with T up to level λ . Hence T has a cofinal branch b in $N_1[g_{|\lambda}][g^*][G_Q][G_{Q^*}][h_{|\lambda}][h^*]$. We will show that b must actually belong to $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$ (i.e. the tail generics g^* , G_{Q^*} , h^* can not add a new branch), and thereby reach the desired contradiction to the assumption that T has no cofinal branches in $V[G][g_0][g][G_Q][h]$!

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

D. C. W. ...

T1......

TTTO ETT GET

The proof

Proof continued

Since $T\in N_0[g_{|\lambda}][G_Q][h_{|\lambda}]$ is a λ -Aronszajn tree, by elementarity k(T) is a $k(\lambda)$ -Aronszajn tree in $N_1[g_{|\lambda}][g^*][G_Q][G_{Q^*}][h_{|\lambda}][h^*]$ which coincides with T up to level λ . Hence T has a cofinal branch b in $N_1[g_{|\lambda}][g^*][G_Q][G_{Q^*}][h_{|\lambda}][h^*]$. We will show that b must actually belong to $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$ (i.e. the tail generics g^* , G_{Q^*} , h^* can not add a new branch), and thereby reach the desired contradiction to the assumption that T has no cofinal branches in $V[G][g_0][g][G_Q][h]!$

Similarly as above, in N_1 there is a projection from the product

$$Add(\kappa, \lambda) \times Add(\kappa, [\lambda, k(\lambda))) \times Q' \times Q^{*'} \times R' \times R^*$$

onto

$$Add(\kappa, \lambda) * Add(\kappa, [\lambda, k(\lambda))) * Q * Q^* \times R' \times R^*$$
,

where Q', $Q^{*'}$ are κ^+ -closed forcings defined in N_1 . Let $G_{Q'} \times G_{Q^{*'}}$ be $Q' \times Q^{*'}$ -generic over $N_1[g_{|\lambda}][g^*]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilovid (joint work wit Sy Friedman)

Definition

Theore

Motivatio

The proof

The end

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definitions

i neore

The proof

Proof continued

If we can show that the bigger generic $g^**G_{Q^{*'}}*h^*$ doesn't add the branch b through T over the bigger model $N_1[g_{|\lambda}][G_{Q'}][h_{|\lambda}]$, then in particular the smaller generic $g^**G_{Q^*}*h^*$ doesn't add b over the smaller model $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$, and we are done.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theore

The proof

The end

Proof continued

If we can show that the bigger generic $g^* * G_{Q^{*'}} * h^*$ doesn't add the branch b through T over the bigger model $N_1[g_{|\lambda}][G_{Q'}][h_{|\lambda}]$, then in particular the smaller generic $g^* * G_{Q^*} * h^*$ doesn't add b over the smaller model $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$, and we are done.

Since all the forcings are defined in N_1 , we can write

$$N_1[g_{|\lambda}][g^*][G_{Q'}][G_{Q^{*'}}][h_{|\lambda}][h^*]$$

as

$$N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}][g^*][G_{Q^{*'}}][h^*].$$

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition:

Theore

The proof

Proof continued

If we can show that the bigger generic $g^**G_{Q^{*'}}*h^*$ doesn't add the branch b through T over the bigger model $N_1[g_{|\lambda}][G_{Q'}][h_{|\lambda}]$, then in particular the smaller generic $g^**G_{Q^*}*h^*$ doesn't add b over the smaller model $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$, and we are done. Since all the forcings are defined in N_1 , we can write

$$N_1[g_{|\lambda}][g^*][G_{Q'}][G_{Q^{*'}}][h_{|\lambda}][h^*]$$

as

$$N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}][g^*][G_{Q^{*'}}][h^*].$$

Note that in $N_1[G_{Q'}][h_{|\lambda}]$, $Q^{*'} \times R^*$ is κ^+ -closed forcing and $Add(\kappa, k(\lambda))$ is κ^+ -c.c. Therefore, it can be shown that $Q^{*'} \times R^*$ doesn't add any branches to T over the model $N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}][g^*]$.

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilović (joint work with Sy Friedman)

Definition

Theorem

....

The proof

The end

Proof continued

If we can show that the bigger generic $g^**G_{Q^{*'}}*h^*$ doesn't add the branch b through T over the bigger model $N_1[g_{|\lambda}][G_{Q'}][h_{|\lambda}]$, then in particular the smaller generic $g^**G_{Q^*}*h^*$ doesn't add b over the smaller model $N_1[g_{|\lambda}][G_Q][h_{|\lambda}]$, and we are done. Since all the forcings are defined in N_1 , we can write

$$N_1[g_{|\lambda}][g^*][G_{Q'}][G_{Q^{*'}}][h_{|\lambda}][h^*]$$

as

$$N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}][g^*][G_{Q^{*'}}][h^*].$$

Note that in $N_1[G_{Q'}][h_{|\lambda}]$, $Q^{*'} \times R^*$ is κ^+ -closed forcing and $Add(\kappa,k(\lambda))$ is κ^+ -c.c. Therefore, it can be shown that $Q^{*'} \times R^*$ doesn't add any branches to T over the model $N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}][g^*]$. Finally, $Add(\kappa,[\lambda,k(\lambda)))$ has the κ^{++} -Knaster property, which means that it couldn't have added the branch b over the model $N_1[G_{Q'}][h_{|\lambda}][g_{|\lambda}]$ either. This proves $\mathsf{TP}(\kappa^{++})$.

Siesta time in Bucharest

"The tree property" at the double successor of a measurable cardinal κ with 2^{κ} large

Ajdin Halilov (joint work wi Sy Friedman

Definitio

Theore

i ne proc

The end

