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(joint work with

Sy Friedman)

Definitions

Theorem

Motivation

The proof

The end

Definitions

Definition

A tree is a strict partial ordering (T , <) with the property that
for each x ∈ T , {y : y < x} is well-ordered by <.

The αth level of a tree T consists of all x such that {y : y < x}
has order-type α.

The height of T is the least α such that the αth level of T is
empty.

A branch in T is a maximal linearly ordered subset of T .

We say that a branch is cofinal if it hits every level of T .

Definition

An infinite cardinal κ has the tree property if every tree of height κ
whose levels have size < κ has a cofinal branch.
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Theorem

Definition

We say that a cardinal κ is γ-hypermeasurable if there is an
elementary embedding j : V → M with crit(j) = κ such that
H(γ)V = H(γ)M .

Theorem (Friedman, H.)

1 Assume that V is a model of ZFC and κ is λ+-hypermeasurable
in V , where λ is the least weakly compact cardinal greater than
κ. Then there exists a forcing extension of V in which κ is still
measurable, κ++ has the tree property and 2κ = κ+++.

2 If the assumption is strengthened to the existence of a
θ-hypermeasurable cardinal (for an arbitrary cardinal θ > λ of
cofinality greater than κ) then the proof can be generalized to
get 2κ = θ.

3 By forcing with the Prikry forcing over the above models one
gets Con(cof (κ) = ω, TP(κ++), 2κ large).
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(joint work with

Sy Friedman)

Definitions

Theorem

Motivation

The proof

The end

Theorem

Definition

We say that a cardinal κ is γ-hypermeasurable if there is an
elementary embedding j : V → M with crit(j) = κ such that
H(γ)V = H(γ)M .

Theorem (Friedman, H.)

1 Assume that V is a model of ZFC and κ is λ+-hypermeasurable
in V , where λ is the least weakly compact cardinal greater than
κ. Then there exists a forcing extension of V in which κ is still
measurable, κ++ has the tree property and 2κ = κ+++.

2 If the assumption is strengthened to the existence of a
θ-hypermeasurable cardinal (for an arbitrary cardinal θ > λ of
cofinality greater than κ) then the proof can be generalized to
get 2κ = θ.

3 By forcing with the Prikry forcing over the above models one
gets Con(cof (κ) = ω, TP(κ++), 2κ large).
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Where did such a theorem come from?

Natasha Dobrinen and Sy used a generalization of Sacks forcing to
reduce the large cardinal strength required to obtain the tree property
at the double successor of a measurable cardinal κ from a
supercompact to a weakly compact hypermeasurable cardinal. In
their model 2κ = κ++.

On the other hand, TP(ℵ2) is consistent with large continuum (a
detailed proof was given by Spencer Unger). So, the idea was to
prove the analogous result for TP(κ++) with κ measurable, using
Mitchell’s forcing together with a ”surgery” argument.

As in Dobrinen-Friedman paper, the consistency of a cardinal κ of
Mitchell order λ+, where λ is weakly compact and greater than κ, is
a lower bound on the consistency strength of TP(κ++) with κ
measurable and 2κ = κ+++. Therefore our result is in fact almost an
equiconsistency result.
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The proof: defining the forcing

Let κ be λ+-hypermeasurable. Let j : V → M be an elementary
embedding witnessing the hypermeasurability of κ, with crit(j) = κ,
j(κ) > λ and H(λ+)V = H(λ+)M . We may assume that M is of the
form M = {j(f )(α) : α < λ+, f : κ→ V , f ∈ V }. We first define
some forcing notions in order to describe the intended model.

For a regular cardinal α and an arbitrary cardinal β let Add(α, β)
denote the forcing for adding β many α-Cohens. The conditions are
partial functions from α× β into {0, 1} of size < α.

Define a forcing notion Pκ as follows. Let ρ0 be the first inaccessible
cardinal and let λ0 be the least weakly compact cardinal above ρ0.
For k < κ, given λk , let ρk+1 be the least inaccessible cardinal above
λk and let λk+1 be the least weakly compact cardinal above ρk+1.
For limit ordinals k ≤ κ, let ρk be the least inaccessible cardinal
greater than or equal to supl<kλl and let λk be the least weakly
compact cardinal above ρk . Note that ρκ = κ and λκ is the least
weakly compact cardinal above κ.
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The proof: defining the forcing

Let P0 be the trivial forcing. For i < κ, if i = ρk for some k < κ, let
Q̇i be a Pi -name for the forcing Add(ρk , λ

+
k ). Otherwise let Q̇i be a

Pi -name for the trivial forcing. Let Pi+1 = Pi ∗ Q̇i . Let Pκ be the
iteration 〈〈Pi , Q̇i 〉 : i < κ〉 with Easton support.

We define the Mitchell forcing M(κ, β) as Add(κ, β) ∗ Q, where

Q = {q | q is a partial function of cardinality ≤ κ on the
regular cardinals below β such that for each γ
in Dom(q), ∅ Add(κ,γ) “q(γ) ∈ Add(κ+, 1)”}.

Since M(κ, λ) is known to preserve the tree property at λ while
making λ into the κ++ of the extension, the idea is simply to force
with Add(κ, λ+) over V M(κ,λ). However, in order to preserve the
measurability of κ, our intended model will be a little different:
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The proof: defining the forcing

Let j0 : V → M0 be the measure ultrapower embedding via the
normal measure U0 = {X ⊆ κ | κ ∈ j(X )} derived from j with critical
point κ such that κM0 ⊆ M0 and let λ0 be the first weakly compact
cardinal of M0 above κ. To prove the theorem we force over V with

Pκ ∗ Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗ Add(κ, λ+) ∗ R,

where Pκ is the ’preparatory’ forcing defined above, and R is the
forcing notion defined as follows:

Let G , g0 be generic filters on Pκ,Add(κ, (λ+0 )M0), respectively. In
V [G ][g0], we can lift the embedding j0 : V → M0 to an embedding
j0 : V [G ]→ M0[G ][g0][H0], where the generics on the right side
correspond to j0(Pκ) factored as j0(Pκ)|κ ∗ j0(Pκ)κ ∗ j0(Pκ)κ+1,j0(κ).

The forcing R is defined as Add(j0(κ), λ+) of M0[G ][g0][H0]. We
note here that R is an element of V [G ][g0]. Since j0(λ) = λ, R is
actually the image of Add(κ, λ+) under j0.
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cardinal of M0 above κ. To prove the theorem we force over V with

Pκ ∗ Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗ Add(κ, λ+) ∗ R,

where Pκ is the ’preparatory’ forcing defined above, and R is the
forcing notion defined as follows:

Let G , g0 be generic filters on Pκ,Add(κ, (λ+0 )M0), respectively. In
V [G ][g0], we can lift the embedding j0 : V → M0 to an embedding
j0 : V [G ]→ M0[G ][g0][H0], where the generics on the right side
correspond to j0(Pκ) factored as j0(Pκ)|κ ∗ j0(Pκ)κ ∗ j0(Pκ)κ+1,j0(κ).

The forcing R is defined as Add(j0(κ), λ+) of M0[G ][g0][H0]. We
note here that R is an element of V [G ][g0]. Since j0(λ) = λ, R is
actually the image of Add(κ, λ+) under j0.
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The proof: defining the forcing

For technical reasons, we rewrite our forcing

Pκ ∗ Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗ Add(κ, λ+) ∗ R,

as

Pκ ∗ Add(κ, λ+) ∗ Q ∗ R,

where Q is this time defined only using the even components i of
Add(κ, λ+) with (λ+0 )M0 ≤ i < λ.

More precisely, for an interval I of ordinals let Add(κ, I )|even be the
forcing whose conditions are partial functions from κ× {even ordinals
in I} into {0, 1} of size < κ. Then, for q ∈ Q and γ ∈ Dom(q), q(γ)
is an Add(κ, [(λ+0 )M0 , γ))|even-name for a condition in Add(κ+, 1).

We denote the final model, obtained by forcing over V with
Pκ ∗ Add(κ, λ+) ∗ Q ∗ R, as W .
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The proof: projections

Definition

Let A and B be two partial orderings. A function π : B → A is
called a projection iff the following hold:

1 π is order-preserving and π(B) is dense in A.

2 If π(b) = a and a′ < a, then there is b′ ≤ b such that
π(b′) ≤ a′.

Fact

If π : B → A is a projection, then the forcing B is
forcing-equivalent to A ∗ B/A for some quotient B/A.
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The proof: projections

Since both Add(κ, [(λ+0 )M0 , λ))|even and Q exist in the model
V [G ][g0], we can also consider the forcing

Add(κ, [(λ+0 )M0 , λ))|even × Q,

of course, with a different ordering on Q, not depending on
Add(κ, [(λ+0 )M0 , λ))|even.

In order not to confuse it with Add(κ, [(λ+0 )M0 , λ))|even ∗ Q, which

has a different ordering, we will write Add(κ, [(λ+0 )M0 , λ))|even × Q ′.
For the same reason, the conditions (p, q) in the product will be
denoted as (p, (0, q)).

It can be shown that Q is κ+-distributive, and Q ′ is obviously
κ+-closed in V [G ][g0].
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(joint work with

Sy Friedman)

Definitions

Theorem

Motivation

The proof

The end

The proof: projections

Since both Add(κ, [(λ+0 )M0 , λ))|even and Q exist in the model
V [G ][g0], we can also consider the forcing

Add(κ, [(λ+0 )M0 , λ))|even × Q,

of course, with a different ordering on Q, not depending on
Add(κ, [(λ+0 )M0 , λ))|even.

In order not to confuse it with Add(κ, [(λ+0 )M0 , λ))|even ∗ Q, which

has a different ordering, we will write Add(κ, [(λ+0 )M0 , λ))|even × Q ′.
For the same reason, the conditions (p, q) in the product will be
denoted as (p, (0, q)).

It can be shown that Q is κ+-distributive, and Q ′ is obviously
κ+-closed in V [G ][g0].
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The proof: the projection lemma

Lemma

The function π given by π(p, (0, q)) = (p, q) is a projection from

Add(κ, [(λ+0 )M0 , λ))|even × Q ′

onto

Add(κ, [(λ+0 )M0 , λ))|even ∗ Q.

This projection can be naturally extended to a projection from the
product

Add(κ, [(λ+0 )M0 , λ+))× Q ′ × R

onto

Add(κ, [(λ+0 )M0 , λ+)) ∗ Q × R.
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The proof: properties of the forcing

Lemma

R is κ+-closed and λ-Knaster in V [G ][g0].

Proof.

The closure follows easily because R is κ+-closed in M0[G ][g0][H0]
and M0[G ][g0][H0] is closed under κ-sequences in V [G ][g0]. Let
〈pα : α < λ〉 be a sequence of conditions in R, and let pα be of the
form j0(fα)(κ) for some function fα : κ→ Add(κ, λ+), fα ∈ V [G ].
A ∆-system argument shows that λ many of the functions fα are
pointwise compatible. It follows that λ many of the conditions pα
are compatible.
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The proof: properties of the forcing

Lemma

The forcing Q × R is κ+-distributive in V Pκ∗Add(κ,λ+).

Proof.

The forcings Q ′,R are closed in the model V Pκ∗Add(κ,(λ+
0 )

M0 ) in
which they are defined, therefore their product Q ′ × R is closed in
there as well. By Easton’s lemma, after forcing with the κ+-c.c.
forcing Add(κ, [(λ+0 )M0 , λ+)), the product Q ′ × R will remain
κ+-distributive. Since κ+-distributivity is equivalent to not adding
new κ-sequences of ordinals, it follows from the above facts about
projections that Q ×R is distributive in V Pκ∗Add(κ,λ+) as well.
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The proof: what happens with cardinals

Lemma

In W , κ+ = (κ+)V , κ++ = λ, and κ+++ = (λ+)V . In particular,
2κ = κ+++.

Proof.

κ+ = (κ+)V : This follows from the facts that Pκ ∗ Add(κ, λ+) is

κ+-c.c in V , and Q ∗ R is κ+-distributive in V Pκ∗Add(κ,λ+).

κ++ = λ, κ+++ = (λ+)V : The Mitchell forcing M(κ, λ) collapses
precisely the cardinals between κ+ and λ. On the other side, in

the model V Pκ∗Add(κ,(λ+
0 )

M0 ), in which all cardinals are preserved,
R has the λ-Knaster property and M(κ, λ) ∗ Add(κ, λ+) satisfies
the λ-c.c. It follows that their product also satisfies the λ-c.c.,
which means that all cardinals above λ are preserved.
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the λ-c.c. It follows that their product also satisfies the λ-c.c.,
which means that all cardinals above λ are preserved.
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The proof: a remark

In the general case where κ is θ-hypermeasurable we can first force to
add a function f : κ→ κ with j(f )(κ) = θ. Then θ0, M0’s version of
θ, is less than κ++, because θ0 = j0(f )(κ) < j0(κ) < κ++. It follows
that the forcing R still has the λ-Knaster property in V Pκ∗Add(κ,θ0),
and hence, the above lemmas apply in the general case.
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Ajdin Halilović(joint work with Sy Friedman) “The tree property” at the double successor of a measurable cardinal κ with 2κ large



“The tree
property” at the
double successor
of a measurable
cardinal κ with

2κ large

Ajdin Halilović
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The proof: measurability of κ

Lemma

κ remains measurable in W .

Proof

In order to prove that κ remains measurable in W we extend the
elementary embedding j : V → M to an embedding of W . We have
already picked generics G , g0 for Pκ,Add(κ, (λ+0 )M0), resp.

Let g be an Add(κ, [(λ+0 )M0 , λ+))-generic filter over V [G ][g0]. We
first use a ’surgery’ argument to lift j to an embedding of
V [G ][g0][g ].

The embedding j can be factored as k ◦ j0, where k : M0 → M is
defined by k([F ]U) := j(F )(κ). The embedding k is also elementary
and its critical point is (κ++)M0 . By elementarity and GCH,
(κ++)M0 < j0(κ) < κ++. Note also that k(λ0) = λ.
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The proof: measurability of κ

Proof continued

Recall that we have already lifted in V [G ][g0] the embedding
j0 : V → M0 to an embedding j0 : V [G ]→ M0[G ][g0][H0].

It is now possible in V [G ][g0][g ] to lift k : M0 → M to an embedding
k : M0[G ][g0][H0]→ M[G ][(g0 × g)′][H], getting the commutative
diagram

V [G ]
j−→ M[G ][(g0 × g)′][H]

↘ j0 k↗

M0[G ][g0][H0]

Next, lift j : V [G ]→ M[G ][(g0 × g)′][H] to an embedding of
V [G ][g0][g ], as follows:
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Proof continued

Let GQ × h be a filter on Q × R which is generic over V [G ][g0][g ].

We transfer h along k in order to get a generic h∗ for j(Add(κ, λ+))
so that we could lift j to j : V [G ][g0][g ]→ M0[G ][g0][H0][h∗].
Namely, h∗ = {p ∈ j(Add(κ, λ+)) | k(p0) ≤ p for some p0 ∈ h} is
generic for j(Add(κ, λ+)).

The fact that h can be transferred to create a generic for
j(Add(κ, λ+)), and the fact that R = j0(Add(κ, λ+)) is not a
harmful forcing in V [G ][g0], i.e. has κ+-closure and λ-Knaster
property, are the main advantages of factoring j as k ◦ j0.

This lifting argument is called surgery, because we still have to make
sure that j [g0 × g ] ⊆ h∗, and that is done by altering the conditions
of the generic h∗ on small parts of size < κ.
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Proof continued

So far we have proven that in V [G ][g0][g ][h] there is a definable
elementary embedding j : V [G ][g0][g ]→ M[G ][(g0 × g)′][H][h∗∗].

We now need to find a generic filter Gj(Q) × hj(R) for j(Q × R) such
that j [GQ × h] ⊆ Gj(Q) × hj(R), in order to define our final lifting

j : V [G ][g0][g ][GQ ][h]→ M[G ][(g0 × g)′][H][h∗∗][Gj(Q)][hj(R)].

This last step is, however, just another transferring argument since,
by one of our lemmas, Q × R is κ+-distributive over V [G ][g0][g ],
that is, {(q, r) | j(q0, r0) ≤ (q, r) for some (q0, r0) ∈ GQ × h} is an
appropriate generic.

This completes the proof of measurability of κ. �
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The proof: ”the tree property“ at κ++

Lemma

κ++ has the tree property in W .

Proof

In order to get a contradiction suppose that there is a κ++-Aronszajn
tree in W .

Recall that W can be written as V Pκ∗Add(κ,(λ+
0 )

M0 )∗M(κ,λ)∗Add(κ,λ+)∗R .

Let V1 denote the model V Pκ∗Add(κ,(λ+
0 )

M0 )∗M(κ,λ) and let R ′ = R|λ
be the forcing Add(j0(κ), λ) of M0[G ][g0][H0].

We first notice that there must be a κ++-Aronszajn tree already in

V
Add(κ,λ)×R′
1 because Add(κ, λ+)× R has the λ-c.c. in V1 and the

tree is of size κ++.
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Ajdin Halilović(joint work with Sy Friedman) “The tree property” at the double successor of a measurable cardinal κ with 2κ large



“The tree
property” at the
double successor
of a measurable
cardinal κ with

2κ large

Ajdin Halilović
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The proof: ”the tree property“ at κ++

Proof continued

Similarly as before, we can rewrite

Pκ ∗ Add(κ, (λ+0 )M0) ∗M(κ, λ) ∗ Add(κ, λ)× R ′

as

Pκ ∗ Add(κ, (λ+0 )M0) ∗ Add(κ, λ) ∗ Q × R ′,

where Q is defined only using the even components of Add(κ, λ).

Hence, in terms of our chosen generics, the above means that there
is a κ++-Aronszajn tree T in V [G ][g0][g|λ][GQ ][h|λ]. Let Ṫ be an
Add(κ, λ) ∗ Q × R ′-name in V [G ][g0] for T .

Recall that λ is a weakly compact cardinal in V [G ][g0]. Therefore,
there exist in V [G ][g0] transitive ZF−-models N0,N1 of size λ and an
elementary embedding k : N0 → N1 with critical point λ, such that
N0 ⊇ H(λ)V [G ][g0] and G , g0, Ṫ ∈ N0.
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The proof: ”the tree property“ at κ++

Proof continued

Note that g|λ ∗ GQ ∗ h|λ is also Add(κ, λ) ∗ Q × R ′-generic over N0.

Since crit(k)=λ, we can factor k(Add(κ, λ) ∗ Q × R ′) as

Add(κ, λ) ∗ Add(κ, [λ, k(λ))) ∗ Q ∗ Q∗ × R ′ × R∗

where Q∗ and R∗ denote the tail forcings k(Q)/Q and k(R ′)/R ′,
respectively, with components indexed from the interval [λ, k(λ)).

Since k is the identity on g|λ ∗GQ ∗ h|λ we can extend the embedding
k : N0 → N1 in some large universe U to an embedding

k : N0[g|λ][GQ ][h|λ]→ N1[g|λ][g∗][GQ ][GQ∗ ][h|λ][h∗]

where g∗,GQ∗ , h
∗ are arbitrary generics for Add(κ, [λ, k(λ))),Q∗,R∗,

respectively, picked in U.
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(joint work with

Sy Friedman)

Definitions

Theorem

Motivation

The proof

The end

The proof: ”the tree property“ at κ++

Proof continued

Note that g|λ ∗ GQ ∗ h|λ is also Add(κ, λ) ∗ Q × R ′-generic over N0.

Since crit(k)=λ, we can factor k(Add(κ, λ) ∗ Q × R ′) as

Add(κ, λ) ∗ Add(κ, [λ, k(λ))) ∗ Q ∗ Q∗ × R ′ × R∗

where Q∗ and R∗ denote the tail forcings k(Q)/Q and k(R ′)/R ′,
respectively, with components indexed from the interval [λ, k(λ)).

Since k is the identity on g|λ ∗GQ ∗ h|λ we can extend the embedding
k : N0 → N1 in some large universe U to an embedding

k : N0[g|λ][GQ ][h|λ]→ N1[g|λ][g∗][GQ ][GQ∗ ][h|λ][h∗]

where g∗,GQ∗ , h
∗ are arbitrary generics for Add(κ, [λ, k(λ))),Q∗,R∗,

respectively, picked in U.
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The proof: ”the tree property“ at κ++

Proof continued

Since T ∈ N0[g|λ][GQ ][h|λ] is a λ-Aronszajn tree, by elementarity
k(T ) is a k(λ)-Aronszajn tree in N1[g|λ][g∗][GQ ][GQ∗ ][h|λ][h∗] which
coincides with T up to level λ. Hence T has a cofinal branch b in
N1[g|λ][g∗][GQ ][GQ∗ ][h|λ][h∗]. We will show that b must actually
belong to N1[g|λ][GQ ][h|λ] (i.e. the tail generics g∗,GQ∗ , h

∗ can not
add a new branch), and thereby reach the desired contradiction to
the assumption that T has no cofinal branches in V [G ][g0][g ][GQ ][h]!

Similarly as above, in N1 there is a projection from the product

Add(κ, λ)× Add(κ, [λ, k(λ)))× Q ′ × Q∗′ × R ′ × R∗

onto

Add(κ, λ) ∗ Add(κ, [λ, k(λ))) ∗ Q ∗ Q∗ × R ′ × R∗,

where Q ′,Q∗′ are κ+-closed forcings defined in N1. Let GQ′ × GQ∗′

be Q ′ × Q∗′-generic over N1[g|λ][g∗].
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The proof: ”the tree property“ at κ++

Proof continued

If we can show that the bigger generic g∗ ∗ GQ∗′ ∗ h∗ doesn’t add the
branch b through T over the bigger model N1[g|λ][GQ′ ][h|λ], then in
particular the smaller generic g∗ ∗ GQ∗ ∗ h∗ doesn’t add b over the
smaller model N1[g|λ][GQ ][h|λ], and we are done.
Since all the forcings are defined in N1, we can write

N1[g|λ][g∗][GQ′ ][GQ∗′ ][h|λ][h∗]
as

N1[GQ′ ][h|λ][g|λ][g∗][GQ∗′ ][h
∗].

Note that in N1[GQ′ ][h|λ], Q∗′ × R∗ is κ+-closed forcing and
Add(κ, k(λ)) is κ+-c.c. Therefore, it can be shown that Q∗′ × R∗

doesn’t add any branches to T over the model N1[GQ′ ][h|λ][g|λ][g∗].
Finally, Add(κ, [λ, k(λ))) has the κ++-Knaster property, which
means that it couldn’t have added the branch b over the model
N1[GQ′ ][h|λ][g|λ] either. This proves TP(κ++). �
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smaller model N1[g|λ][GQ ][h|λ], and we are done.
Since all the forcings are defined in N1, we can write

N1[g|λ][g∗][GQ′ ][GQ∗′ ][h|λ][h∗]
as

N1[GQ′ ][h|λ][g|λ][g∗][GQ∗′ ][h
∗].

Note that in N1[GQ′ ][h|λ], Q∗′ × R∗ is κ+-closed forcing and
Add(κ, k(λ)) is κ+-c.c. Therefore, it can be shown that Q∗′ × R∗

doesn’t add any branches to T over the model N1[GQ′ ][h|λ][g|λ][g∗].

Finally, Add(κ, [λ, k(λ))) has the κ++-Knaster property, which
means that it couldn’t have added the branch b over the model
N1[GQ′ ][h|λ][g|λ] either. This proves TP(κ++). �
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Ajdin Halilović(joint work with Sy Friedman) “The tree property” at the double successor of a measurable cardinal κ with 2κ large


	Definitions
	Theorem
	Motivation
	The proof
	The end

