Sy-Friedman's Symposium Vienna, July 8–12, 2013

Effective Categoricity of Injection Structures Valentina Harizanov George Washington University harizanv@gwu.edu http://home.gwu.edu/~harizanv/

joint work with Doug Cenzer and Jeff Remmel

Injection structure $\mathcal{A} = (A, f)$

•
$$1 - 1$$
 function $f : A \rightarrow A$.
For $a \in A$, its *orbit* is

$$\mathcal{O}_f(a) = \{ b \in A : (\exists n \in \mathbb{N}) [f^n(a) = b \lor f^n(b) = a] \}$$

• An injection structure is characterized by the number of orbits of size k for each finite k > 0, and by the number of orbits of types Z and ω .

- Let C be any infinite, co-infinite c.e. set.
 There is a computable injection structure A = (A, f) (having infinitely many orbits of type ω) such that Ran(f) = C.
- Let $\mathcal{A} = (A, f)$ be a computable injection structure. Can assume $A = \mathbb{N}$.

(i)
$$Inf(\mathcal{A}) = \{a \in A : \mathcal{O}_f(a) \text{ is infinite}\}\$$
 is a Π_1^0 set.
 $a \in Inf(\mathcal{A}) \Leftrightarrow (\forall n)[f^n(a) \neq a]$

(ii) $Fin(\mathcal{A})$ is a c.e. set.

(iii) $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ is a Π_2^0 set. $(\mathcal{O}_f(a) \text{ has type } Z) \Leftrightarrow (a \in Inf(\mathcal{A}) \land (\forall n)(\exists b)[f^n(b) = a])$ (iv) $\{a : \mathcal{O}_f(a) \text{ has type } \omega\}$ is a Σ_2^0 set. • Let c be a c.e. degree.

Let \mathcal{A} be a computable injection structure such that: \mathcal{A} has infinitely many orbits of size k for every $k \in \mathbb{N}$, and \mathcal{A} has infinitely many infinite orbits.

Then there is a computable structure \mathcal{B} isomorphic to \mathcal{A} such that $Fin(\mathcal{B})$ is of degree c.

• $Fin(\mathcal{A})$ cannot be a *simple* c.e. set.

Each infinite orbit of \mathcal{A} is a c.e. subset of the complement of $Fin(\mathcal{A})$.

No infinite orbit of A can be a simple c.e. set.
 Fin(A) is a c.e. subset of its complement.

• The *character* is defined by

 $\chi(\mathcal{A}) = \{(k, n) : 0 < k, n < \omega \land \mathcal{A} \text{ has at least } n \text{ orbits of size } k\}$ $\chi(\mathcal{A}) \text{ is a c.e. set.}$

K ⊆ (ℕ − {0}) × (ℕ − {0}) is a *character* if for all *k* and *n* > 0:

$$(k, n+1) \in K \Rightarrow (k, n) \in K$$

 For any c.e. character K, there is a computable injection structure A = (A, f) with character K and with any specified finite or countably infinite number of orbits of types ω and Z; and with Fin(A) computable and Ran(f) computable. Let \mathcal{A} be a *computable* structure.

- \mathcal{A} is computably categorical if for all computable $\mathcal{B} \cong \mathcal{A}$, there is a computable isomorphism from \mathcal{A} onto \mathcal{B} .
- \mathcal{A} is Δ_n^0 -categorical if for all computable $\mathcal{B} \cong \mathcal{A}$, there is a Δ_n^0 isomorphism from \mathcal{A} onto \mathcal{B} .
- A is relatively Δ⁰_n-categorical if for all B ≅ A, there is an isomorphism from A onto B, which is Δ⁰_n relative to the atomic diagram of B.
- \mathcal{A} is relatively Δ_n^0 -categorical $\Rightarrow \mathcal{A}$ is Δ_n^0 -categorical

- A computable injection structure A is computably categorical *iff* A is relatively computably categorical *iff* A has finitely many infinite orbits.
- $\bullet~$ Let d~ be a c.e. Turing degree.

Let computable injection structure $\mathcal{A} = (\mathbb{N}, f)$ have infinitely many orbits of type ω . There is computable $\mathcal{B} = (\mathbb{N}, g) \cong \mathcal{A}$ such that Ran(g) is a c.e. set of degree d, there is $x \in \mathbb{N}$ such that $\mathcal{O}_g(x)$ is of type ω and is a c.e. set of degree d, and for all $y \in \mathbb{N} - \mathcal{O}_g(x)$, if $\mathcal{O}_g(y)$ is of type ω , then $\mathcal{O}_q(y)$ is computable.

Let computable injection structure $\mathcal{A} = (\mathbb{N}, f)$ have infinitely many infinite orbits of type Z. There is a computable $\mathcal{B} = (\mathbb{N}, g) \cong \mathcal{A}$ such that there is $x \in \mathbb{N}$ for which $\mathcal{O}_g(x)$ is of type Z and is a c.e. set of degree d, and for all $y \in \mathbb{N} - \mathcal{O}_g(x)$, if $\mathcal{O}_g(y)$ is of type Z, then $\mathcal{O}_g(y)$ is computable.

- A computable injection structure A is Δ₂⁰-categorical *iff* A is relatively Δ₂⁰-categorical *iff* A has finitely many orbits of type ω or finitely many orbits of type Z.
- Assume computable $\mathcal{A} = (A, f)$ has finitely many orbits of type ω or finitely many orbits of type Z.

Then $\{a : \mathcal{O}_f(a) \text{ has type } \omega\}$ and $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ are Δ_2^0 sets. Given computable $\mathcal{B} = (B,g) \cong \mathcal{A}$, can use oracle $\mathbf{0}'$ to partition A and B into three sets each: the orbits of finite type, the orbits of type ω , and the orbits of type Z.

Let C be a Σ₂⁰ set. There is a computable injection structure B = (B,g) ≅ A, in which {b ∈ B : O_g(b) has type ω} is a Σ₂⁰ set with Turing degree equal to deg(C). • Any computable injection structure \mathcal{A} is relatively Δ_3^0 -categorical.

Let \mathcal{B} be isomorphic to \mathcal{A} . Using an oracle for $(deg(\mathcal{B}))''$, we can partition B into three Δ_3^0 sets: the orbits of finite type, the orbits of type ω , and the orbits of type Z.

• Definition (Fokina, Kalimullin, and R. Miller)

Let d be a Turing degree. A computable structure \mathcal{A} is d-computably categorical if for every computable structure \mathcal{B} isomorphic to \mathcal{A} , there exists a d-computable isomorphism from \mathcal{B} onto \mathcal{A} .

The *degree of categoricity* of a computable structure \mathcal{A} is the least Turing degree d for which \mathcal{A} is d-computably categorical.

 $0\mbox{-}computably categorical = computably categorical$

• Let \mathcal{M} be a (computable) Δ_2^0 -categorical injection structure, which is not computably categorical.

Then the degree of categoricity of $\mathcal M$ is 0'.

• Let \mathcal{M} be a computable injection structure, which is not Δ_2^0 -categorical.

Then the degree of categoricity of $\mathcal M$ is 0''.

• An enumeration of structures $\mathcal{A}_e = (\mathbb{N}, \phi_e)$, where ϕ_e is the usual *e*th partial computable function.

Includes every computable injection structure with universe \mathbb{N} .

• $Inj = \{e : \mathcal{A}_e \text{ is a computable injection structure}\}\$ is a Π_2^0 -complete set. Inj is $\Pi_2^0 : (e \in Inj \Leftrightarrow \phi_e \text{ is total and } 1-1)$

For the completeness of Inj, consider a Π_2^0 -complete set $Inf = \{e : W_e \text{ is infinite}\}$ and define a reduction of Inf to Inj.

Let $s_0 < s_1 < \cdots$ enumerate the (possibly finite) set of stages at which a new element appears in the standard enumeration of W_e .

To define a structure $\mathcal{A}_{f(e)} = (\mathbb{N}, \phi_{f(e)} = \phi)$: wait until s_0 appears and let $\phi(0) = 1, \phi(1) = 2, \dots, \phi(s_0 - 1) = s_0$ and $\phi(s_0) = 0$; then wait until s_1 appears and let $\phi(s_0 + 1) = s_0 + 2, \dots, \phi(s_1 - 1) = s_1$ and $\phi(s_1) = s_0 + 1; \dots$ If W_0 is finite and s_1 is the last stage at which an element enters W_0

If W_e is finite and s_k is the last stage at which an element enters W_e , then $\phi_{f(e)}(s_k+1)$ is undefined, so $f(e) \notin Inj$.

If W_e is infinite, then $\phi_{f(e)}$ is total and $Fin(\mathcal{A}_{f(e)}) = \mathbb{N}$.

- The set Inj_0^0 of indices of injection structures with no infinite orbits is Π_2^0 -complete.
- Inj_0^0 is also Π_2^0 -complete within Inj.
- A set I is Π₂⁰ within B if I is the intersection of B with a Π₂⁰ set.
 I is Π₂⁰-complete within B if for any Π₂⁰ set C, there is a computable function f that for every e, f(e) ∈ B ∧ (e ∈ C ⇔ f(e) ∈ I).

• Let $m \ge 0$.

(i) The set $Inj_{\leq m}$ of indices of computable injection structures with $\leq m$ orbits of type ω is Π_2^0 -complete.

(ii) The set $Inj_{>m}$ of indices of computable injection structures with > m orbits of type ω is D_2^0 -complete.

A set is D_2^0 if it is the difference of two Σ_2^0 sets.

 $Inj_{>m}$ is Σ_2^0 within Inj, the intersection of the Σ_2^0 set S with Inj, where

S is the set of indices e such that there are at least m + 1 elements x with $x \notin Ran(\phi_e)$.

 $e \in S$ iff (\mathcal{A}_e has > m orbits of type ω).

• For the Π_2^0 -completeness of $Inj_{\leq m}$, define a computable function g so that:

 $e \in Inf$ iff $\mathcal{A}_{g(e)}$ has all orbits finite;

 $e \in Fin \text{ iff } \mathcal{A}_{g(e)}$ has one orbit of type ω , and all other (finitely many) orbits finite.

We then define $g_k(e)$ to be the computable function such that $\mathcal{A}_{g_k(e)}$ is the disjoint union of k computable copies of $\mathcal{A}_{g(e)}$. $e \in Inf \Leftrightarrow (g_{m+1}(e) \in Inj_{\leq m})$ • Let m > 0.

(iii) The set Inj_m of indices of computable injection structures with exactly m orbits of type ω is D_2^0 -complete.

We reduce
$$D_2^0$$
-complete set
 $D = \{ \langle a, b \rangle : a \in Fin \land b \in Inf \}$ to Inj_m .

Define a computable reduction function h such that $\mathcal{A}_{h(\langle a,b\rangle)} = \mathcal{A}_{g_m(a)} \oplus (\mathcal{A}_{g_m(b)} \oplus \mathcal{A}_{g_m(b)}).$ If $\langle a,b\rangle \in D$, then $\mathcal{A}_{g_m(a)}$ has exactly m orbits of type ω and $\mathcal{A}_{g(b)}$ has no infinite orbits, so $\mathcal{A}_{h(\langle a,b\rangle)}$ has exactly m orbits of type ω .

If $a \in Inf$, then $\mathcal{A}_{h(\langle a,b \rangle)}$ has no infinite orbits if $b \in Inf$, and has 2m orbits of type ω if $b \in Fin$. • Let $n \ge 0$.

(i) The set $Inj^{\leq n}$ of indices of computable injection structures with $\leq n$ orbits of type Z is Π_3^0 -complete.

(ii) The set $Inj^{>n}$ of indices of computable injection structures with > n orbits of type Z is Σ_3^0 -complete.

 \mathcal{A}_e has > n orbits of type Z *iff* there exist n + 1 elements x_0, \ldots, x_n , each having an orbit of type Z, and no two being in the same orbit.

To show that $Inj^{>n}$ is Σ_3^0 -complete we define a reduction from the Σ_3^0 -complete set $Cof = \{e : W_e \text{ is co-finite}\}.$

• Let n > 0.

(iii) The set Inj^n of indices of computable injection structures with exactly n orbits of type Z is D_3^0 -complete. • The property of computable categoricity for computable injection structures (over \mathbb{N}) is Σ_3^0 -complete.

 $\{e : \mathcal{A}_e \text{ is an injection structure with finitely many infinite orbits}\}$ is a Σ_3^0 -complete set.

 A_e has finitely many infinite orbits iff there exists a finite sequence a₀,..., a_{k-1} such that for every b, if b ∉ O(a_i) for all i < k, then O(b) is finite.

Define a reduction f such that for every e, $\mathcal{A}_{f(e)}$ has finitely many infinite orbits iff W_e is co-finite. The orbits of $\mathcal{A}_{f(e)}$ will be exactly the orbits $\mathcal{O}(2i + 1)$ for $i \in \mathbb{N}$, and the even numbers will be used to fill out the orbits. $\mathcal{O}_{f(e)}(2i + 1)$ is finite *iff* $i \in W_e$. The function $\phi_{f(e)}$ is total and 1 - 1.

- The property of Δ_2^0 -categoricity for computable injection structures is Σ_4^0 -complete.
- I_{Δ₂⁰} = {e : A_e is an injection structure with finitely many orbits of type ω or finitely many orbits of type Z} is a Σ₄⁰-complete set.
- Σ_3^0 condition: There exists a finite sequence a_0, \ldots, a_{k-1} such that for every a, if $a \notin \mathcal{O}(a_i)$ for all i < k, then $\mathcal{O}(a)$ does not have type ω .

 Σ_4^0 condition: There exists a finite sequence b_0, \ldots, b_{l-1} such that for every b, if $b \notin \mathcal{O}(b_i)$ for all i < l, then $\mathcal{O}(b)$ does not have type Z.

• For Σ_4^0 -completeness of $I_{\Delta_2^0}$, let C be any Σ_4^0 set.

Then there is a Π_2^0 relation Q such that for every e: $e \in \overline{C}$ iff $\{n : Q(e, n)\}$ is infinite.

Now, there is a computable relation R such that for every n: Q(e, n) iff $\{r : R(e, n, r)\}$ is infinite.

Hence, $e \in \overline{C}$ iff

there are infinitely many n, such that there are infinitely many r, for which R(e, n, r) holds.

Define a reduction f such that for every e, $\mathcal{A}_{f(e)}$ has only infinite orbits, and $\mathcal{A}_{f(e)}$ has infinitely many orbits of type Z iff $e \in \overline{C}$.

The orbits of $\mathcal{A}_{f(e)}$ will be exactly the orbits $\mathcal{O}(2n+1)$ for $n \in \omega$, and the even numbers will be used to fill out the orbits.

• We may assume that R is enumerated in stages.

If (e, n, r) enters R at stage s + 1, then we add a new element in front of $\mathcal{O}(2n + 1)$.

For every
$$n$$
, $\mathcal{O}_{f(e)}(2n+1)$ is infinite, and $\mathcal{O}_{f(e)}(2n+1)$ has type Z iff $\{r : R(e, n, r)\}$ is infinite.

The function $\phi_{f(e)}$ is total and 1-1.

Finally, let \mathcal{B} be a computable structure consisting of an infinite number of orbits, each of type ω , and let $\mathcal{A}_{g(e)}$ be the disjoint union of \mathcal{B} with $\mathcal{A}_{f(e)}$. It follows that

$$e \in C \Leftrightarrow g(e) \in I_{\Delta_2^0}$$

The *Isomorphism Problem* for infinite computable injection structures

- $\{(i, j) : \mathcal{A}_i \text{ is isomorphic to } \mathcal{A}_j\}$ is a Π_4^0 -complete set.
- $\{(i, j) : A_i \text{ is computably isomorphic to } A_j\}$ is Σ_3^0 -complete set.

HAPPY BIRTHDAY, SY!