Foundations of infinitesimal calculus: surreal numbers and nonstandard analysis

Vladimir Kanovei

1IITP RAS and MIIT, Moscow, Russia, kanovei@googlemail.com

Sy David Friedman’s 60th-Birthday Conference
08 – 12 July 2013
Kurt Gödel Research Center, Vienna, Austria
Abstract

A system of foundations of infinitesimal calculus will be discussed. The system is based on two class-size models, including

1. the surreal numbers, and
2. the K–Shelah set-size-saturated limit ultrapower model.

Some historical remarks will be made, and a few related problems will be discussed, too.
Table of contents

1 Extending the real line
2 The Surreal Field
3 Digression: Hausdorff studies on pantachies
4 Technical shortcomings of the surreal Field
5 Nonstandard analysis

Back
Section 1.
Extending the real line
Extending the real line

The idea to extend the real line \mathbb{R} by new elements, called initially indivisible, later infinitesimal, and infinite (or infinitely large), emerged in the early centuries of modern mathematics in connection with the initial development of Calculus.
The idea to extend the real line \mathbb{R} by new elements, called initially
- indivisible,

later
- infinitesimal, and
- infinite (or infinitely large),

emerged in the early centuries of modern mathematics in connection with the initial development of Calculus.
A nonarchimedean extension R_{ext} of the real line is a real-closed ordered field (rcof, for brevity) which properly extends the real number field R. Such a nonarchimedean extension R_{ext} by necessity contains all usual reals: $R \subset R_{\text{ext}}$, along with:

- **Infinitesimals**: $x \in R_{\text{ext}}$ satisfying $0 < |x| < 1/n$ for all $n \in \mathbb{N}$;
- **Infinitely large elements**: $x \in R_{\text{ext}}$ satisfying $|x| > n$ for all $n \in \mathbb{N}$;
- **Various elements of mixed character**: e.g., those of the form $x + \alpha$, where $x \in R$ and α is infinitesimal.
A nonarchimedean extension \mathbb{R}^{ext} of the real line is a real-closed ordered field (rcof, for brevity) which properly extends the real number field \mathbb{R}.
Nonarchimedean extensions

Definition

A nonarchimedean extension \mathbb{R}^ext of the real line is

a real-closed ordered field (\textbf{rcof}, for brevity)

which properly extends the real number field \mathbb{R}.

Such a nonarchimedean extension \mathbb{R}^ext by necessity contains all usual reals: $\mathbb{R} \subsetneq \mathbb{R}^\text{ext}$,
Nonarchimedean extensions

Definition

A nonarchimedean extension \mathbb{R}^{ext} of the real line is

a real-closed ordered field (rcof, for brevity)

which properly extends the real number field \mathbb{R}.

Such a nonarchimedean extension \mathbb{R}^{ext} by necessity contains all usual reals: $\mathbb{R} \subsetneq \mathbb{R}^{ext}$, along with:

infinitesimals: those $x \in \mathbb{R}^{ext}$ satisfying $0 < |x| < \frac{1}{n}$ for all $n \in \mathbb{N}$;
A nonarchimedean extension \mathbb{R}^{ext} of the real line is a real-closed ordered field (rcof, for brevity) which properly extends the real number field \mathbb{R}.

Such a nonarchimedean extension \mathbb{R}^{ext} by necessity contains all usual reals: $\mathbb{R} \subset \mathbb{R}^{\text{ext}}$, along with:

- **infinitesimals**: those $x \in \mathbb{R}^{\text{ext}}$ satisfying $0 < |x| < \frac{1}{n}$ for all $n \in \mathbb{N}$;
- **infinitely large elements**: $x \in \mathbb{R}^{\text{ext}}$ satisf. $|x| > n$ for all $n \in \mathbb{N}$;
Nonarchimedean extensions

Definition

A nonarchimedean extension \mathbb{R}^{ext} of the real line is a real-closed ordered field (\textit{rcof}, for brevity) which properly extends the real number field \mathbb{R}.

Such a nonarchimedean extension \mathbb{R}^{ext} by necessity contains all usual reals: $\mathbb{R} \subsetneq \mathbb{R}^{\text{ext}}$, along with:

- **infinitesimals**: those $x \in \mathbb{R}^{\text{ext}}$ satisfying $0 < |x| < \frac{1}{n}$ for all $n \in \mathbb{N}$;
- **infinitely large elements**: $x \in \mathbb{R}^{\text{ext}}$ satis. $|x| > n$ for all $n \in \mathbb{N}$;

and various elements of mixed character, e.g., those of the form $x + \alpha$, where $x \in \mathbb{R}$ and α is infinitesimal.
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \(\mathbb{R}^{\text{ext}} \) satisfying technical conditions which allow consistent "full-scale" treatment of infinitesimals, and foundational conditions of feasibility, plausibility, etc.

Different solutions have been proposed, and among them the surreal numbers of Conway – Alling.
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \mathbb{R}_{ext} satisfying technical conditions which allow consistent "full-scale" treatment of infinitesimals, and foundational conditions of feasibility, plausibility, etc. Different solutions have been proposed, and among them the surreal numbers of Conway – Alling.
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \mathbb{R}^{ext} satisfying...
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \mathbb{R}^{ext} satisfying

1. technical conditions which allow consistent “full-scale” treatment of infinitesimals,
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \mathbb{R}^{ext} satisfying

1. technical conditions which allow consistent “full-scale” treatment of infinitesimals,

and

2. foundational conditions of feasibility, plausibility, etc.
The problem

Problem of foundations of infinitesimal calculus

Define an extended real line \mathbb{R}^{ext} satisfying

1. technical conditions which allow consistent “full-scale” treatment of infinitesimals,

and

2. foundational conditions of feasibility, plausibility, etc.

Different solutions have been proposed, and among them

the surreal numbers of Conway – Alling.
Section 2.
The Surreal field
Characterization

Mathematically, the surreal field is defined as the unique modulo isomorphism.

Definition (set-size density)

A total order (or any ordered structure) \(L \) is set-size-dense if for any its subsets \(X, Y \subseteq L \) (of any cardinality, but sets):

- if \(X < Y \), then there is an element \(z \) such that \(X < z < Y \).

Remark

Such an order has to be a proper class (not a set!). Indeed if \(L \) is a set then taking \(X = L \) and \(Y = \emptyset \) leads to an element \(z \in L \) with \(X < z \), which is a contradiction.
Mathematically, the surreal field is defined mathematically as follows:

Definition (set-size density)

A total order (or any ordered structure) L is set-size-dense if for any its subsets $X, Y \subseteq L$ (of any cardinality, but sets):

- If $X < Y$ then there is an element $z \in L$ such that $X < z < Y$.

Remark

Such an order has to be a proper class (not a set!). Indeed if L is a set then taking $X = L$ and $Y = \emptyset$ leads to an element $z \in L$ with $X < z$, which is a contradiction.
Mathematically, the surreal field is:
Characterization

Definition

Mathematically, **the surreal field** is:

- the **unique modulo isomorphism**

Definition (set-size density)

A total order (or any ordered structure) \(L \) is **set-size-dense** if for any its subsets \(X, Y \subseteq L \) (of any cardinality, but sets):

If \(X < Y \) then there is an element \(z \) such that \(X < z < Y \).

Remark

Such an order has to be a **proper class** (not a set!) Indeed if \(L \) is a set then taking \(X = L \) and \(Y = \emptyset \) leads to an element \(z \in L \) with \(X < z \), which is a contradiction.
Characterization

Definition

Mathematically, the **surreal field** is:

- **the unique modulo isomorphism**
- **set-size-dense rcof** (= real closed ordered field).

Definition (set-size density)

A total order (or any ordered structure) L is set-size-dense if for any its subsets $X, Y \subseteq L$ (of any cardinality, but sets):

If $X < Y$ then there is an element z such that $X < z < Y$.

Remark

Such an order has to be a proper class (not a set!)

Indeed if L is a set then taking $X = L$ and $Y = \emptyset$ leads to an element $z \in L$ with $X < z$, which is a contradiction.
Characterization

Definition

Mathematically, the surreal field is:

- the unique modulo isomorphism
- set-size-dense \textit{rcof} (= real closed ordered field).

Definition (set-size density)
Characterization

Definition

Mathematically, the **surreal field** is:

- the **unique modulo isomorphism**
- set-size-dense rcof \((=\text{real closed ordered field})\).

Definition (set-size density)

A total order (or any ordered structure) \(L\) is **set-size-dense** if for any its subsets \(X, Y \subseteq L\) (of any cardinality, but sets):
Characterization

Definition
Mathematically, the surreal field is:
- the unique modulo isomorphism
- set-size-dense rcof (= real closed ordered field).

Definition (set-size density)
A total order (or any ordered structure) L is set-size-dense if for any its subsets $X, Y \subseteq L$ (of any cardinality, but sets):

if $X < Y$ then there is an element z such that $X < z < Y$.
Characterization

Definition
Mathematically, the **surreal field** is:

- the unique modulo isomorphism
- set-size-dense rcof (= real closed ordered field).

Definition (set-size density)
A total order (or any ordered structure) L is **set-size-dense** if for any its subsets $X, Y \subseteq L$ (of any cardinality, but sets):

Back

if $X < Y$ then there is an element z such that $X < z < Y$.

Remark
Such an order has to be a **proper class**.
Characterization

Definition
Mathematically, the **surreal field** is:

- the **unique modulo isomorphism**
- **set-size-dense** \(\text{rcof}\) (= real closed ordered field).

Definition (set-size density)
A total order (or any ordered structure) \(L\) is **set-size-dense** if for any its subsets \(X, Y \subseteq L\) (of any cardinality, but sets):

If \(X < Y\) then there is an element \(z\) such that \(X < z < Y\).

Remark
Such an order has to be a **proper class** (not a set!)
Characterization

Definition

Mathematically, the surreal field is:

- the unique modulo isomorphism
- set-size-dense rcof (\(=\) real closed ordered field).

Definition (set-size density)

A total order (or any ordered structure) \(L\) is **set-size-dense** if for any its subsets \(X, Y \subseteq L\) (of any cardinality, but sets):

\[
\text{if } X < Y \text{ then there is an element } z \text{ such that } X < z < Y.
\]

Remark

Such an order has to be a **proper class** (not a set!)

Indeed if \(L\) is a set then taking \(X = L\) and \(Y = \emptyset\) leads to an element \(z \in L\) with \(X < z\), which is a contradiction.
Mathematically, the surreal field is:
- the unique modulo isomorphism
- set-size-dense rcof ($= \text{real closed ordered field}$).

A total order (or any ordered structure) L is set-size-dense if for any its subsets $X, Y \subseteq L$ (of any cardinality, but sets):

If $X < Y$ then there is an element z such that $X < z < Y$.

Such an order has to be a proper class (not a set!)
Indeed if L is a set then taking $X = L$ and $Y = \emptyset$ leads to an element $z \in L$ with $X < z$, which is a contradiction.
Characterization

Definition

Mathematically, the **surreal field** is:

- the unique modulo isomorphism
- **set-size-dense** \(rcoF \) (\(= \) real closed ordered Field).

Definition (set-size density)

A total order (or any ordered structure) \(L \) is **set-size-dense** if for any its subsets \(X, Y \subseteq L \) (of any cardinality, but sets):

if \(X < Y \) then there is an element \(z \) such that \(X < z < Y \).

Remark

Such an order has to be a **proper class** (not a set!)

Indeed if \(L \) is a set then taking \(X = L \) and \(Y = \emptyset \) leads to an element \(z \in L \) with \(X < z \), which is a contradiction.
In a more traditional notation, the set-size density is equivalent to being of the order type η^α for each ordinal α.

Definition (Hausdorff 1907, 1914)

A total order (or any ordered structure) L is of type η^α if for any subsets $X, Y \subseteq L$ of cardinality $\text{card}(X \cup Y) < \aleph^\alpha$:

- If $X < Y$ then there is an element z such that $X < z < Y$.

Digression: Hausdorff Kanovei (Moscow)
Remark

In a more traditional notation, the set-size density is equivalent to being of the order type η_α for each ordinal α.
Remark

In a more traditional notation, the set-size density is equivalent to being of the order type η_α for each ordinal α.

Definition (Hausdorff 1907, 1914)

A total order (or any ordered structure) L is of type η_α if for any subsets $X, Y \subseteq L$ of cardinality $\text{card}(X \cup Y) < \aleph_\alpha$:

If $X < Y$ then there is an element z such that $X < z < Y$.

Digression: Hausdorff Kanovei (Moscow)
Remark
In a more traditional notation, the set-size density is equivalent to being of the order type η_α for each ordinal α.

Definition (Hausdorff 1907, 1914)
A total order (or any ordered structure) L is of type η_α if for any subsets $X, Y \subseteq L$ of cardinality $\text{card}(X \cup Y) < \aleph_\alpha$:
Remark

In a more traditional notation, the set-size density is equivalent to being of the order type η_α for each ordinal α.

Definition (Hausdorff 1907, 1914)

A total order (or any ordered structure) L is of type η_α if for any subsets $X, Y \subseteq L$ of cardinality $\text{card}(X \cup Y) < \aleph_\alpha$:

if $X < Y$ then there is an element z such that $X < z < Y$.
Remark
In a more traditional notation, the set-size density is equivalent to being of the order type η_α for each ordinal α.

Definition (Hausdorff 1907, 1914)
A total order (or any ordered structure) L is of type η_α if for any subsets $X, Y \subseteq L$ of cardinality $\text{card}(X \cup Y) < \aleph_\alpha$: if $X < Y$ then there is an element z such that $X < z < Y$.

Digression: Hausdorff
Theorem (the existence thm, Conway 1976, Alling 1985)

There is a set-size-dense \mathbb{F}_{∞}.

Proof (Conway)
Consecutive filling in of all "gaps" $X < Y$, with a suitable (very complex, dozens of pages) definition of the order and the field operations, by transfinite induction.

Proof (Alling)
A far reaching generalization of the Levi–Civita field construction, on the base of Hausdorff's construction of dense ordered sets.
Theorem (the existence thm, Conway 1976, Alling 1985)

There is a set-size-dense \(rcoF \ F_\infty \).
Theorem (the existence thm, Conway 1976, Alling 1985)

There is a set-size-dense $\text{rcoF } F_\infty$.

Proof (Conway)

Consecutive filling in of all “gaps” $X < Y$, with a suitable (very complex, dosens of pages) definition of the order and the field operations, by transfinite induction.
Theorem (the existence thm, Conway 1976, Alling 1985)

There is a set-size-dense \(rcoF F_\infty \).

Proof (Conway)

Consecutive filling in of all “gaps” \(X < Y \), with a suitable (very complex, dozens of pages) definition of the order and the field operations, by transfinite induction.

Proof (Alling)

A far reaching generalization of the Levi–Civita field construction, on the base of Hausdorff’s construction of dense ordered sets.
Surreals: existence

Theorem (the existence thm, Conway 1976, Alling 1985)

There is a set-size-dense $rcoF F_{\infty}$.

Proof (Conway)

Consecutive filling in of all “gaps” $X < Y$, with a suitable (very complex, dozens of pages) definition of the order and the field operations, by transfinite induction.

Proof (Alling)

A far reaching generalization of the Levi–Civita field construction, on the base of Hausdorff’s construction of dense ordered sets.
Surreals: conclusion

The extended \mathbb{F}_∞ is:

- rather simply and straightforwardly defined
- set-size-dense
- unique, as the only set-size-dense \mathbb{F}_{∞} up to isomorphism;
- "smooth", in the sense that the underlying domain consists of sequences of ordinals — at least in the Alling version;
- computable, in the sense that the field operations in \mathbb{F}_∞ are directly computable — at least in the Alling version.
\(F_\infty \) is the surreal Field
F∞ is the surreal Field

Conclusion
Conclusion

The extended \(rcoF \) \(\mathbb{R}^{ext} = F_\infty \) is:

- **Finitely**, as the only set-size-dense \(rcoF \) up to isomorphism;
- "Smooth", in the sense that the underlying domain consists of sequences of ordinals — at least in the Alling version;
- **Computable**, in the sense that the field operations in \(F_\infty \) are directly computable — at least in the Alling version.
Conclusion

The extended $\mathbb{R}^{\text{ext}} = \mathbb{F}_\infty$ is:

- rather simply and straightforwardly defined.
The extended $rcoF \mathbb{R}^{\text{ext}} = F_\infty$ is:

- rather simply and straightforwardly defined
- set-size-dense $rcoF$;
The extended \(\text{rcoF} \) \(\mathbb{R}^{\text{ext}} = \mathcal{F}_\infty \) is:

- rather simply and straightforwardly defined
- set-size-dense \(\text{rcoF} \);
- unique, as the only set-size-dense \(\text{rcoF} \) up to isomorphism;
Conclusion

The extended \(rcoF \) \(\mathbb{R}^{\text{ext}} = F_{\infty} \) is:

- rather simply and straightforwardly defined
- set-size-dense \(rcoF \);
- unique, as the only set-size-dense \(rcoF \) up to isomorphism;
- "smooth", in the sense that the underlying domain consists of sequences of ordinals — at least in the Alling version.
Surreals: conclusion

\[F_\infty \text{ is the surreal Field} \]

Conclusion

The extended \(rcoF \) \(\mathbb{R}^{\text{ext}} = F_\infty \) is:

- rather simply and straightforwardly defined
- set-size-dense \(rcoF \);
- unique, as the only set-size-dense \(rcoF \) up to isomorphism;
- "smooth", in the sense that the underlying domain consists of sequences of ordinals — at least in the Alling version;
- computable, in the sense that the field operations in \(F_\infty \) are directly computable — at least in the Alling version.
Surreals: conclusion

This likely solves the Problem of foundations of infinitesimal calculus in Part 2 (foundational conditions) but not yet in Part 1 (technical conditions).

Technical shortcomings of surreals

Back
Section 3

Digression:
Hausdorff’s studies on pantachies
Pantachies

Definition (Hausdorff 1907, 1909)

A pantachy is any maximal totally ordered subset \(L \) of a given partially ordered set \(P \), e.g., \(P = \langle R^\omega; \prec \rangle \), where, for \(x, y \in R^\omega \), \(x \prec y \) iff \(x(n) < y(n) \) for all but finite \(n \).

Remark

Any pantachy in \(P = \langle R^\omega; \prec \rangle \) is a set of type \(\eta_1 \).
A **pantachy** is any maximal totally ordered subset L of a given partially ordered set P,

Definition (Hausdorff 1907, 1909)
A pantachy is any maximal totally ordered subset L of a given partially ordered set P, e.g., $P = \langle \mathbb{R}^\omega ; \prec \rangle$, where, for $x, y \in \mathbb{R}^\omega$,

$$x \prec y \iff x(n) < y(n) \text{ for all but finite } n.$$
A **pantachy** is any maximal totally ordered subset L of a given partially ordered set P, e.g., $P = \langle \mathbb{R}^\omega ; \prec \rangle$, where, for $x, y \in \mathbb{R}^\omega$,

$$x \prec y \text{ iff } x(n) < y(n) \text{ for all but finite } n.$$

Remark

Any pantachy in $P = \langle \mathbb{R}^\omega ; \prec \rangle$ is a set of type η_1.

Definition (Hausdorff 1907, 1909)
Two pantachy existence theorems

Theorem (Hausdorff 1909)
There is a pantachy in \(\langle \mathbb{R}^\omega; \prec \rangle \) with an \((\omega_1, \omega_1)\)-gap.

Theorem (Hausdorff 1909)
There is a pantachy in \(\langle \mathbb{R}^\omega; \prec \rangle \) which is a rcof in the sense of the eventual coordinate-wise operations — that is,
\[x + y = z \text{ iff } \exists n \leq \omega \quad x(n) + y(n) = z(n) \]
for all but finite \(n \), and the same for the product.

Any such a pantachy is a rcof of type \(\eta_1 \).
Two pantachy existence theorems

Theorem (Hausdorff 1909)

There is a pantachy in \(\langle \mathbb{R}^\omega ; \prec \rangle \) with an \((\omega_1, \omega_1)\)-gap.
Two pantachy existence theorems

Theorem (Hausdorff 1909)

There is a pantachy in \(\langle \mathbb{R}^\omega ; \prec \rangle \) with an \((\omega_1, \omega_1)\)-gap.

Theorem (Hausdorff 1909)

There is a pantachy in \(\langle \mathbb{R}^\omega ; \prec \rangle \) which is a rcof in the sense of the eventual coordinate-wise operations—that is, \(x + y = z \) iff \(x(n) + y(n) = z(n) \) for all but finite \(n \), and the same for the product. Any such a pantachy is a rcof of type \(\eta_1 \).
Two pantachy existence theorems

Theorem (Hausdorff 1909)

There is a pantachy in $\langle \mathbb{R}^\omega ; \prec \rangle$ with an (ω_1, ω_1)-gap.

Theorem (Hausdorff 1909)

There is a pantachy in $\langle \mathbb{R}^\omega ; \prec \rangle$ which is a rcof in the sense of the eventual coordinate-wise operations.
Theorem (Hausdorff 1909)

There is a pantachy in \(\langle \mathbb{R}^\omega ; \prec \rangle\) with an \((\omega_1, \omega_1)\)-gap.

Theorem (Hausdorff 1909)

There is a pantachy in \(\langle \mathbb{R}^\omega ; \prec \rangle\) which is a rcof in the sense of the eventual coordinate-wise operations — that is,

- \(x + y = z\) iff \(x(n) + y(n) = z(n)\) for all but finite \(n\),
- and the same for the product.
Theorem (Hausdorff 1909)

There is a pantachy in $\langle R^\omega ; \prec \rangle$ with an (ω_1, ω_1)-gap.

Theorem (Hausdorff 1909)

There is a pantachy in $\langle R^\omega ; \prec \rangle$ which is a rcof in the sense of the eventual coordinate-wise operations — that is,

- $x + y = z$ iff $x(n) + y(n) = z(n)$ for all but finite n,
- and the same for the product.

Any such a pantachy is a rcof of type η_1.
The problem of gapless pantachies

Problem (Hausdorff 1907)

Is there a pantachy \((\mathbb{R}^\omega; <)\), containing no \((\omega_1, \omega_1)\)-gaps?

The problem is still open, and it looks like it is the oldest concrete open problem in set theory.

Gödel and Solovay discussed almost the same problem in 1970s.

Kanovei (Moscow) Foundations of infinitesimal calculus SDF60 2013 17 / 35
The problem of gapless pantachies

Problem (Hausdorff 1907)
Is there a pantachy (in \(\mathbb{R}^{\omega}; \prec\)), containing no \((\omega_1, \omega_1)\)-gaps?
The problem is still open, and, it looks like it is

the oldest concrete open problem in set theory.
The problem of gapless pantachies

Problem (Hausdorff 1907)
Is there a pantachy (in $\langle \mathbb{R}^\omega ; \prec \rangle$), containing no (ω_1, ω_1)-gaps?

The problem is still open, and, it looks like it is

the oldest concrete open problem in set theory.

Gödel and Solovay discussed almost the same problem in 1970s.
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable without assuming AC?

2. Even assuming AC, is there an individually, effectively defined example of a pantachy?

Solution (K & Lyubetsky 2012)

In the negative (both parts), whenever P is a Borel partial order, in which every countable subset has an upper bound. This result, by no means surprising, is nevertheless based on some pretty nontrivial arguments, including methods related to Stern's absoluteness theorem. But no algebraic structure on P is assumed.

Back to surreals

Kanovei (Moscow)
Foundations of infinitesimal calculus
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable not assuming AC?

Solution (K & Lyubetsky 2012)

In the negative (both parts), whenever P is a Borel partial order, in which every countable subset has an upper bound. This result, by no means surprising, is nevertheless based on some pretty nontrivial arguments, including methods related to Stern's absoluteness theorem. But no algebraic structure on P is assumed.

Back to surreals
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable not assuming AC?
2. Even assuming AC, is there an individual, effectively defined example of a pantachy?
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable **not assuming** AC?
2. Even assuming AC, is there an individual, **effectively defined** example of a pantachy?

Solution (K & Lyubetsky 2012)

In the negative (both parts),
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable not assuming [AC](#) ?
2. Even assuming [AC](#), is there an individual, effectively defined example of a pantachy?

Solution (K & Lyubetsky 2012)

In the negative (both parts), whenever \(P \) is a Borel partial order, in which every countable subset has an upper bound.
The problem of effective existence of pantachies

Problem (Hausdorff 1907)

1. Is the pantachy existence provable not assuming AC?
2. Even assuming AC, is there an individual, effectively defined example of a pantachy?

Solution (K & Lyubetsky 2012)

In the negative (both parts), whenever \(P \) is a Borel partial order, in which every countable subset has an upper bound.

This result, by no means surprising, is nevertheless based on some pretty nontrivial arguments, including methods related to Stern’s absoluteness theorem. But no algebraic structure on \(P \) is assumed.
Section 4.
Technical shortcomings of the surreal Field
Shortcomings of the surreal Field

There is no clear way to naturally define sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, etc, in \mathbb{F}_∞—so that they satisfy the same internal laws and principles as their counterparts defined over the reals \mathbb{R}.

Example

The own system of sur-integers in \mathbb{F}_∞ defined by Conway 1976 has the property that $\sqrt{2}$ is sur-rational, which makes little sense. This crucially limits the role of surreals \mathbb{F}_∞ as a foundational system, in the spirit of the Problem of foundations of infinitesimal calculus.
Observation

There is **no clear way to naturally define** sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, *etc*, *etc*, in F_∞.

Example: The own system of sur-integers in F_∞ defined by Conway 1976 has the property that $\sqrt{2}$ is sur-rational, which makes little sense. This crucially limits the role of surreals F_∞ as a foundational system, in the spirit of the Problem of foundations of infinitesimal calculus.
There is **no clear way to naturally define** sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, *etc, etc*, in \mathbb{F}_∞ — so that they satisfy **the same internal laws and principles** as their counterparts defined over the reals \mathbb{R}.
There is no clear way to naturally define sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, etc, etc, in F_∞ — so that they satisfy the same internal laws and principles as their counterparts defined over the reals \mathbb{R}.

The own system of sur-integers in F_∞ defined by Conway 1976 has the property that $\sqrt{2}$ is sur-rational,
Observation

There is no clear way to naturally define sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, etc, etc, in F_∞ — so that they satisfy the same internal laws and principles as their counterparts defined over the reals \mathbb{R}.

Example

The own system of sur-integers in F_∞ defined by Conway 1976 has the property that $\sqrt{2}$ is sur-rational, which makes little sense.
Shortcomings of the surreal Field

Observation

There is no clear way to naturally define sur-integers, most of analytic functions (beginning with e^x), accordingly, sur-sequences of surreals, sur-sets of surreals, etc, etc, in F_∞ — so that they satisfy the same internal laws and principles as their counterparts defined over the reals \mathbb{R}.

Example

The own system of sur-integers in F_∞ defined by Conway 1976 has the property that $\sqrt{2}$ is sur-rational, which makes little sense.

This crucially limits the role of surreals F_∞ as a foundational system, in the spirit of the Problem of foundations of infinitesimal calculus.
Problem (upgrade of surreals)

Define a compatible Universe over the surreals F_{∞}, sufficient to technically support "full-scale" treatment of infinitesimals.

Back

To define such a Universe, we employ methods of nonstandard analysis.
The problem of surreals

Problem (upgrade of surreals)

Define a compatible Universe over the surreals F^∞, sufficient to technically support "full-scale" treatment of infinitesimals.

Back To define such a Universe, we employ methods of nonstandard analysis.
Define a compatible Universe over the surreals F_∞, sufficient to technically support “full-scale” treatment of infinitesimals.
The problem of surreals

Problem (upgrade of surreals)

Define a **compatible Universe** over the surreals F_∞, sufficient to technically support “full-scale” treatment of infinitesimals.

To define such a Universe, we employ methods of **nonstandard analysis**.
Section 5.
Nonstandard analysis
Nonstandard analysis

Nonstandard analysis (Robinson) studies elementary extensions $^*\mathbb{V}$ of different structures over the reals \mathbb{R}, in particular, elementary extensions $^*\mathbb{V}$ of universes \mathbb{V} over \mathbb{R}.

Such an extension $^*\mathbb{V}$ accordingly contains an extension $^*\mathbb{R}$ of \mathbb{R}.

Any such an extension $^*\mathbb{R}$ is called hyperreals.

Each $^*\mathbb{R}$ is a rcof (or rcoF) and (except for trivialities) a nonarchimedean one.

$^*\mathbb{V}$ is a compatible universe over $^*\mathbb{R}$.

Kanovei (Moscow)
Nonstandard analysis (Robinson) studies elementary extensions $^*\mathbb{V}$ of different structures over the reals \mathbb{R}, in particular, elementary extensions $^*\mathbb{V}$ of Universes \mathbb{V} over \mathbb{R}. Such an extension $^*\mathbb{R}$ accordingly contains an extension $^*\mathbb{R}$ of \mathbb{R}. Any such an extension $^*\mathbb{R}$ is called hyperreals. Each $^*\mathbb{R}$ is a rcof (or rcoF) and (except for trivialities) a nonarchimedean one. $^*\mathbb{V}$ is a compatible Universe over $^*\mathbb{R}$.
Nonstandard analysis (Robinson) studies elementary extensions \(\star V \) of different structures over the reals \(\mathbb{R} \), in particular, elementary extensions \(\star V \) of Universes \(V \) over \(\mathbb{R} \).

1. Such an extension \(\star V \) accordingly contains an extension \(\star R \) of \(\mathbb{R} \).
Nonstandard analysis (Robinson) studies elementary extensions $\star V$ of different structures over the reals \mathbb{R}, in particular, elementary extensions $\star V$ of Universes V over \mathbb{R}.

1. Such an extension $\star V$ accordingly contains an extension $\star R$ of \mathbb{R}.

2. Any such an extension $\star R$ is called hyperreals.
Nonstandard analysis (Robinson) studies elementary extensions \mathcal{V} of different structures over the reals \mathbb{R}, in particular, elementary extensions \mathcal{V} of Universes \mathcal{V} over \mathbb{R}.

1. Such an extension \mathcal{V} accordingly contains an extension \mathcal{R} of \mathbb{R}.

2. Any such an extension \mathcal{R} is called hyperreals.

3. Each \mathcal{R} is a rcof (or rcoF) and (except for trivialities) a nonarchimedean one.
Nonstandard analysis (Robinson) studies elementary extensions \(*V \) of different structures over the reals \(\mathbb{R} \), in particular, elementary extensions \(*V \) of Universes \(V \) over \(\mathbb{R} \).

1. Such an extension \(*V \) accordingly contains an extension \(*R \) of \(\mathbb{R} \).

2. Any such an extension \(*R \) is called hyperreals.

3. Each \(*R \) is a rcof (or rcoF) and (except for trivialities) a nonarchimedean one.

4. \(*V \) is a compatible Universe over \(*R \).
Elementary extensions \(\mathcal{V} \) of the ZFC set universe \(V \) can be obtained as ultrapowers or limit ultrapowers of \(V \).

Theorem (K & Shelah 2004)

There exists a limit ultrapower \(\mathcal{V} \) of \(V \) such that

1. the corresponding hyperreal line \(\mathcal{R} \in \mathcal{V} \) is set-size-dense,
2. \(\mathcal{V} \) is an elementary extension of the universe \(V \), and
3. \(\mathcal{V} \) is a compatible Universe over \(\mathcal{R} \).

This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and the Problem of foundations of infinitesimal calculus.
Set-size-dense nonstandard extensions

Elementary extensions $\star V$ of the ZFC set universe V can be obtained as ultrapowers or limit ultrapowers of V. Theorem (K & Shelah 2004) There exists a limit ultrapower $\star V$ of V such that
1. the corresponding hyperreal line $\star \mathbb{R} \in \star V$ is set-size-dense,
2. $\star V$ is an elementary extension of the universe V,
3. $\star V$ is a compatible Universe over $\star \mathbb{R}$.

Back This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and the Problem of foundations of infinitesimal calculus.
Elementary extensions *V of the ZFC set universe V can be obtained as ultrapowers or limit ultrapowers of V.

Theorem (K & Shelah 2004)

- *V is set-size-dense,
- *V is an elementary extension of the universe V,
- *V is a compatible Universe over *R.

This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and the Problem of foundations of infinitesimal calculus.
Elementary extensions *V of the ZFC set universe V can be obtained as ultrapowers or limit ultrapowers of V.

Theorem (K & Shelah 2004)

There exists a limit ultrapower *V of V such that

1. the corresponding hyperreal line $^*R \in ^*V$ is set-size-dense,
2. *V is an elementary extension of the universe V,
3. *V is a compatible Universe over *R.

This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and the Problem of foundations of infinitesimal calculus.
Elementary extensions $^*\mathbb{V}$ of the ZFC set universe \mathbb{V} can be obtained as ultrapowers or limit ultrapowers of \mathbb{V}.

Theorem (K & Shelah 2004)

There exists a limit ultrapower $^*\mathbb{V}$ of \mathbb{V} such that

1. the corresponding hyperreal line $^*\mathbb{R} \in ^*\mathbb{V}$ is set-size-dense,
Elementary extensions *V of the ZFC set universe V can be obtained as \textit{ultrapowers} or \textit{limit ultrapowers} of V.

\textbf{Theorem (K & Shelah 2004)}

\textit{There exists a limit ultrapower *V of V such that}

1. the corresponding hyperreal line $^*\mathbb{R} \in ^*V$ is \textit{set-size-dense},

2. *V is an elementary extension of the universe V, and
Elementary extensions \mathbb{V} of the ZFC set universe \mathbb{V} can be obtained as ultrapowers or limit ultrapowers of \mathbb{V}.

Theorem (K & Shelah 2004)

There exists a limit ultrapower \mathbb{V} of \mathbb{V} such that

1. the corresponding hyperreal line $\mathbb{R} \in \mathbb{V}$ is set-size-dense,
2. \mathbb{V} is an elementary extension of the universe \mathbb{V}, and
3. \mathbb{V} is a compatible Universe over \mathbb{R}.

This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and the Problem of foundations of infinitesimal calculus.
Elementary extensions $^\ast V$ of the ZFC set universe V can be obtained as ultrapowers or limit ultrapowers of V.

Theorem (K & Shelah 2004)

There exists a limit ultrapower $^\ast V$ of V such that

1. the corresponding hyperreal line $^\ast \mathbb{R} \in ^\ast V$ is set-size-dense,
2. $^\ast V$ is an elementary extension of the universe V, and
3. $^\ast V$ is a compatible Universe over $^\ast \mathbb{R}$.

This theorem leads to the following foundational system, solving...
Set-size-dense nonstandard extensions

Elementary extensions \(*V \) of the ZFC set universe \(V \) can be obtained as ultrapowers or limit ultrapowers of \(V \).

Theorem (K & Shelah 2004)

There exists a limit ultrapower \(*V \) of \(V \) such that

1. the corresponding hyperreal line \(*\mathbb{R} \in *V \) is set-size-dense,
2. \(*V \) is an elementary extension of the universe \(V \), and
3. \(*V \) is a compatible Universe over \(*\mathbb{R} \).

This theorem leads to the following foundational system, solving the Problem of upgrade of the surreals, and
Elementary extensions \mathcal{V} of the ZFC set universe \mathcal{V} can be obtained as ultrapowers or limit ultrapowers of \mathcal{V}.

Theorem (K & Shelah 2004)

There exists a limit ultrapower \mathcal{V} of \mathcal{V} such that

1. the corresponding hyperreal line $\mathcal{R} \in \mathcal{V}$ is set-size-dense,
2. \mathcal{V} is an elementary extension of the universe \mathcal{V}, and
3. \mathcal{V} is a compatible Universe over \mathcal{R}.

This theorem leads to the following foundational system, solving

- the Problem of upgrade of the surreals, and
- the Problem of foundations of infinitesimal calculus.
Superstructure over the surreals

\[F_\infty \]
Superstructure over the surreals

\[F_\infty \]

surreals
Superstructure over the surreals

\[F_\infty \]

surreals

a nicely defined rcoF

Back
Superstructure over the surreals

A problem

Kanovei (Moscow)
Foundations of infinitesimal calculus
sdf60
2013 25 / 35
Superstructure over the surreals

surreals

F_∞

a nicely defined rcoF

set-size-dense hyperreals

*R

QED

A problem

Kanovei (Moscow)

Foundations of infinitesimal calculus

2013 25 / 35
Superstructure over the surreals

- F_∞
- surreals
- A nicely defined $rcoF$
- $*\mathbb{R}$
- $\text{set-size-dense hyperreals}$
- admit a compatible Universe

QED

Kanovei (Moscow)

Foundations of infinitesimal calculus

2013 25 / 35
Superstructure over the surreals

F_{∞}

surreals

a nicely defined rcoF

set-size-dense hyperreals

admit a compatible Universe

QED
Superstructure over the surreals

F_\infty

surreals

a nicely defined rcoF

Back

set-size-dense hyperreals

admit a compatible Universe

*V

*\mathbb{R}

QED

Kanovei (Moscow)

Foundations of infinitesimal calculus

2013 25 / 35
Superstructure over the surreals

- \(F_{\infty} \)
- \(\text{surreals} \)
- A nicely defined \(\text{rcoF} \)
- \(\text{Back} \)
- \(\text{set-size-dense hyperreals} \)
- \(\text{induced by } H \)
- \(\text{isomorphic under } \text{Global Choice} \)
- \(\text{as two } \text{set-size-dense } \text{rcoF} \)
- \(\text{admit a compatible Universe} \)

QED
Superstructure over the surreals

consider an isomorphism

\[H : \ast \mathbb{R} \to F_\infty \]

surreals

\(\ast \mathbb{R} \)

\(\ast \mathbb{V} \)

set-size-dense hyperreals

isomorphic under Global Choice as two set-size-dense \(\text{rcoF} \)

admit a compatible Universe

QED
consider an isomorphism

\[H : \mathcal{F}_\infty \rightarrow F_\infty \]

surreals

a nicely defined $rcoF$

Back

set-size-dense hyperreals

isomorphic under Global Choice as two set-size-dense $rcoF$

admit a compatible Universe

QED
Superstructure over the surreals

isomorphism H induces a Universe over F_∞

set-size-dense hyperreals

a nicely defined $rcoF$

isomorphic under Global Choice as two set-size-dense $rcoF$

admit a compatible Universe
Superstructure over the surreals

Isomorphism H induces a Universe over F_∞

Induced by H

Surreals

Set-size-dense hyperreals

A problem definable non-definable

Kanovei (Moscow)
Foundations of infinitesimal calculus

2013 25 / 35
Superstructure over the surreals

isomorphism H induces a Universe over F_∞

a compatible Universe over F_∞

surreals

isomorphic under Global Choice as two set-size-dense rcoF

set-size-dense hyperreals

admit a compatible Universe

\[\text{sdf60 2013 25 / 35} \]
Superstructure over the surreals

A problem...
Superstructure over the surreals

A problem

A compatible Universe over F_∞

QED

induced by H

$\ast V$

$\ast \mathbb{R}$

set-size-dense
hyperreals

surreals

a nicely defined $rcoF$

Back

isomorphic under Global Choice as two set-size-dense $rcoF$

admit a compatible Universe
Superstructure over the surreals

A problem

definable

A problem

definable

induced by H

induced by H

isomorphic under Global Choice as two set-size-dense $rcoF$

admit a compatible Universe

set-size-dense hyperreals

surreals

a nicely defined $rcoF$

QED

Back

Kanovei (Moscow) Foundations of infinitesimal calculus SDF60 2013
Superstructure over the surreals

A problem

A problem

non-definable

definable

\[a \text{ compatible Universe over } F_{\infty} \]

\[\text{surreals} \]

\[\text{a nicely defined } rcoF \]

\[\text{set-size-dense hyperreals} \]

\[\text{admit a compatible Universe} \]

\[\text{isomorphic under } \text{Global Choice} \text{ as two set-size-dense } rcoF \]

\[\text{induced by } H \]

\[\text{induced by } H \]

\[\text{QED} \]

\[F_{\infty} \]

\[\text{Back} \]
Problems

Observation
At the moment, the isomorphism \(H \) between \(F_\infty \) and \(\ast R \) can be obtained only using the Global Choice axiom GC. Accordingly, both the isomorphism \(H \), and the induced Universe over the surreals \(F_\infty \) are non-definable.

Problem 1
Is there a direct construction of \(H \), w/o appeal to GC?

Problem 2
Is there a definable (OD) compatible Universe over \(F_\infty \)?
Problems

Observation

At the moment, the isomorphism H between F_∞ and $_*R$ can be obtained only using the Global Choice axiom GC. Accordingly, both the isomorphism H, and the induced Universe over the surreals F_∞ are non-definable.

Problem 1
Is there a direct construction of H, w/o appeal to GC?

Problem 2
Is there a definable (OD) compatible Universe over F_∞?
At the moment, the isomorphism H between F_{∞} and $\ast \mathbb{R}$ can be obtained only using the Global Choice axiom GC. Accordingly,
Observation

At the moment, the isomorphism H between \mathbb{F}_∞ and $\ast \mathbb{R}$ can be obtained only using the Global Choice axiom GC. Accordingly,

- both the isomorphism H,

Problems
At the moment, the isomorphism H between F_∞ and $^*(-\mathbb{R})$ can be obtained only using the Global Choice axiom GC. Accordingly,

- both the isomorphism H, and
- the induced Universe over the surreals F_∞
Problems

Observation
At the moment, the isomorphism H between F_∞ and $^*\mathbb{R}$ can be obtained only using the \textbf{Global Choice axiom} GC. Accordingly,

- both the \textbf{isomorphism H}, and
- the \textbf{induced Universe} over the surreals F_∞

are \textbf{non-definable}.
Observation

At the moment, the isomorphism H between F_∞ and $^\ast\mathbb{R}$ can be obtained only using the Global Choice axiom GC. Accordingly,

- both the isomorphism H, and
- the induced Universe over the surreals F_∞

are non-definable.

Problem
Observation

At the moment, the isomorphism H between F_∞ and $*\mathbb{R}$ can be obtained only using the Global Choice axiom GC. Accordingly,

- both the isomorphism H, and
- the induced Universe over the surreals F_∞

are non-definable.

Problem

1. Is there a direct construction of H, w/o appeal to GC?
Observation

At the moment, the isomorphism H between F_∞ and $*_\mathbb{R}$ can be obtained only using the Global Choice axiom GC. Accordingly,

- both the isomorphism H, and
- the induced Universe over the surreals F_∞

are non-definable.

Problem

1. Is there a direct construction of H, w/o appeal to GC? A
2. Is there a definable (OD) compatible Universe over F_∞?
Problems

Problem

Is there an OD isomorphism between the Conway and the Alling surreals?

Kanovei (Moscow) Foundations of infinitesimal calculus
Problem

Is there an OD isomorphism between the Conway and the Alling surreals?
Problem

Is there an OD isomorphism between the Conway and the Alling surreals?

Problem

Is there an OD isomorphism between the Conway and the Alling surreals?

The speaker thanks the organizers for the opportunity of giving this talk, and for a financial support.
Acknowledgements

The speaker thanks the organizers for the opportunity of giving this talk, and for a financial support

The speaker thanks everybody for patience
The speaker thanks the organizers for the opportunity of giving this talk, and for a financial support.

The speaker thanks everybody for patience.
Uniqueness of set-size-dense rcoF modulo isomorphism

Theorem (Alling 1961, 1985, on the base of Hausdorff 1907)

Assuming the Global Choice axiom, any two set-size-dense rcoF are isomorphic, and hence a set-size-dense rcoF is unique (mod isomorphism) if exists.
Theorem (Alling 1961, 1985, on the base of Hausdorff 1907)

Assuming the Global Choice axiom, any two set-size-dense \(rcoF \) are isomorphic, and hence a set-size-dense \(rcoF \) is unique (mod isomorphism) if exists.

Proof

Use a back-and-forth type argument.
Theorem (Alling 1961, 1985, on the base of Hausdorff 1907)

Assuming the Global Choice axiom, any two set-size-dense rcoF are isomorphic, and hence

a set-size-dense rcoF is unique (mod isomorphism) if exists.

Proof

Use a back-and-forth type argument.
Digression: classes

A field (a group, order, etc.) is a field (resp., group, ordered domain, etc.) whose underlying domain is a proper class.

A rcoF is a rcof whose underlying domain is a proper class.
A **Field** (a **Group**, **Order**, *etc.*) is a field (resp., group, ordered domain, *etc.*) whose underlying domain is a proper class.
Definition (capitalization of classes)

1. A Field (a Group, Order, etc.) is a field (resp., group, ordered domain, etc.) whose underlying domain is a proper class.

2. A rcoF is a rcof whose underlying domain is a proper class.

Back to Surreals
Universes

A Universe \(F \) over a Structure (set or class) \(V \) is a Model (set or class) of ZFC, containing \(F \) as a set.

A Universe \(V \) over a set \(F \) is compatible, iff it is true in \(V \) that \(F \) is an archimedean set.

Remark: The universe of all sets \(V \) is a compatible Universe over the reals \(R \).

But it is not clear at all how to define a compatible Universe over a non-archimedean set \(F \).

Back to the surreals problem.
Definition (universes)

A **universe** over a structure F is a model V of ZFC, containing F as a set.

A universe V over a structure F is compatible, iff it is true in V that F is an archimedean structure.

Remark: The universe of all sets V is a compatible universe over the reals R.

But it is not clear at all how to define a compatible universe over a non-archimedean structure F.
A **Universe** over a Structure (set or class) F is a Model (set or class) V of ZFC, containing F as a set.
Universes

Definition (universes)

- A **Universe** over a Structure (set or class) F is a Model (set or class) V of ZFC, containing F as a set.

- A Universe V over a rcoF F is **compatible**,
A **Universe** over a Structure (set or class) F is a Model (set or class) V of ZFC, containing F as a set.

A Universe V over a $\text{rcoF} \ F$ is **compatible**, iff it is true in $\ V$ that F is an archimedean rcof.
Definition (universes)

- A **Universe** over a Structure (set or class) F is a Model (set or class) V of ZFC, containing F as a set.

- A Universe V over a $rcoF$ F is **compatible**, iff it is true in V that F is an archimedean $rcof$.

Remark

The universe of all sets V is a compatible Universe over the reals \mathbb{R}.
Definition (universes)

- A **Universe** over a Structure (set or class) F is a Model (set or class) V of ZFC, containing F as a set.

- A Universe V over a $\text{rcoF} F$ is **compatible**, iff it is true in V that F is an archimedean rcof.

Remark

The universe of all sets V is a compatible Universe over the reals \mathbb{R}. But it is not clear at all how to define a compatible Universe over a non-archimedean $\text{rcoF} F$.
The **Global Choice axiom** GC asserts that there is a Function (a proper class!) G such that
- the domain $\text{dom } G$ consists of all sets, and
- $G(x) \in x$ for all $x \neq \emptyset$.

Remark

GC definitely exceeds the capacities of the ordinary set theory ZFC. However, GC is rather innocuous, in the sense that any theorem provable in $\text{ZFC} + \text{GC}$ and saying something only on sets (not on classes) is provable in ZFC alone.
Global Choice

Definition

The **Global Choice axiom** GC asserts that there is a Function (a proper class!) G such that

- the domain $\text{dom } G$ consists of all sets, and
- $G(x) \in x$ for all $x \neq \emptyset$.

Remark

GC definitely exceeds the capacities of the ordinary set theory ZFC.
Global Choice

Definition

The **Global Choice axiom** GC asserts that there is a Function (a proper class!) G such that

- the domain $\text{dom } G$ consists of all sets, and
- $G(x) \in x$ for all $x \neq \emptyset$.

Remark

GC definitely exceeds the capacities of the ordinary set theory ZFC. However, GC is **rather innocuous**, in the sense that any theorem provable in $\text{ZFC} + \text{GC}$ and saying something only on sets (not on classes) is provable in ZFC alone.
This question answers **in the negative**, by the following theorem.

Theorem

1. There is no definable \(\text{ZFC} \)-provable even **bijection** between:
 - the underlying domain of \(F_\infty \) (in the Alling version), and
 - the underlying domain of the Universe \({}^*V \) of the K-Shelah theorem.

Back to problems

Kanovei (Moscow)
Foundations of infinitesimal calculus
This question answers in the negative, by the following theorem.

Theorem

1. There is no definable ZFC-provable even bijection between:
 - the underlying domain of F_∞ (in the Alling version), and
 - the underlying domain of the Universe *V of the K-Shelah theorem.

2. But, there is a definable ZFC-provable injection from the underlying domain of F_∞ to the underlying domain of *V.

Back to problems
Hausdorff’s early papers

Hausdorff’s early papers

The early papers of Hausdorff have been reprinted and commented in

Hausdorff’s early papers

1. F. Hausdorff, Untersuchungen über Ordnungstypen IV, V.
 Ber. über die Verhandlungen der Königlich Sächsische Gesellschaft der

2. F. Hausdorff, Die Graduierung nach dem Endverlauf.
 Abhandlungen der Königlich Sächsische Gesellschaft der

The early papers of Hausdorff have been reprinted and commented in

3. F. Hausdorff, Gesammelte Werke, Band IA: Allgemeine

And translated and commented in

4. F. Hausdorff, Hausdorff on ordered sets, Translated, edited, and
 commented by J. M. Plotkin. AMS and LMS, 2005.
Density and saturation

Remark
For orders and rcof of type η_0 (= simply dense) being η_α is equivalent to \aleph_α-saturation.