Strongly minimal theories with computable models

Uri Andrews and Julia F. Knight

July 10, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

In computable model theory, there is work on the algorithmic complexity of the models of a given elementary first order theory.

Guiding principle. For a theory that is well-behaved from the point of view of model theory, it should be easier to understand the complexity of the models.

Computable models. We consider models with universe a subset of ω . We identify a model \mathcal{M} with its atomic diagram. So, \mathcal{M} is *computable* if $D(\mathcal{M})$, identified with a subset of ω , is computable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Lerman-Schmerl). If T is an arithmetical \aleph_0 -categorical theory and for $n \ge 1$, $T \cap \exists_{n+1}$ is Σ_n^0 , then T has a computable model.

Theorem (K). If T is an \aleph_0 -categorical theory and $T \cap \exists_{n+1}$ is Σ_n^0 uniformly in n, then T has a computable model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Khoussainov-Montalbán). There is a non-arithmetical \aleph_0 -categorical theory with a computable model.

(The proof uses "Marker extensions", which makes the language infinite.)

Theorem (Andrews). There is such a theory in a finite language.

Definition. A theory *T* is *strongly minimal* if for every model \mathcal{M} , and every formula $\varphi(\overline{a}, x)$ with parameters \overline{a} in \mathcal{M} , exactly one of $\varphi^{\mathcal{M}}(\overline{a}, x)$, $\neg \varphi^{\mathcal{M}}(\overline{a}, x)$ is infinite.

Familiar examples.

- 1. the theory of (\mathbb{Z}, S)
- 2. the theory of infinite \mathbb{Q} -vector spaces
- 3. the theory of the field ${\mathbb C}$ of complex numbers

Algebraic closure and dimension

Definition. Let \mathcal{T} be a strongly minimal theory, and let \mathcal{M} be a model.

- 1. The algebraic closure of S, denoted by $acl_{\mathcal{M}}(S)$, is the union of the finite sets $\varphi^{\mathcal{M}}(\overline{c}, x)$ definable in \mathcal{M} with parameters \overline{c} in S.
- A set I ⊆ M is algebraically independent if for all i ∈ I, i ∉ acl_M({I - {i}}).

Remark. Algebraic closure gives a well-defined notion of dimension. Each model of T is determined, up to isomorphism, by its dimension.

Definition. A strongly minimal theory is *trivial* if for all models \mathcal{M} and $S \subseteq \mathcal{M}$, $acl_{\mathcal{M}}(S) = \bigcup_{s \in S} acl_{\mathcal{M}}(\{s\})$.

Theorem (Goncharov-Harizanov-Laskowski-Lempp-McCoy). Every trivial strongly minimal theory with a computable model is Δ_3^0 .

(It follows that all models have Δ_3^0 copies.)

Complicated theories with computable models

Goncharov-Khoussainov, Fokina. For each *n*, there is an \aleph_1 -categorical theory *T* s.t. *T* has a computable model, and *T* is not Δ_n^0 .

(The proof uses Marker extensions, so the language is infinite and the theory is not strongly minimal.)

Andrews. There is a non-arithmetical strongly minimal theory with a computable model.

New results

Main Theorem (Andrews-K). Let T be a strongly minimal theory in a relational language. If $T \cap \exists_{n+3}$ is Δ_n^0 , uniformly in n, then every model of T has a computable copy.

Relativizing to $\emptyset^{(4)}$, we get the following.

Corollary. If \mathcal{T} has a computable model \mathcal{M} , then every model has a copy computable in $\emptyset^{(4)}$ (i.e., Δ_5^0).

Proof.

Since there is a computable model, $T \cap \exists_n$ is Δ^0_{n+1} , uniformly. Then $T \cap \exists_{n+3}$ is Δ^0_{n+4} , which is Δ^0_n relative to $\emptyset^{(4)}$.

Cases

The proof of the Main Theorem splits into cases, according to whether the theory T is arithmetical, and whether the model \mathcal{M} that we are copying is saturated, or has a "bounded" saturation property.

- 1. T is arithmetical, and \mathcal{M} is boundedly saturated.
- 2. T is not arithmetical and \mathcal{M} is saturated.
- 3. T is not arithmetical and \mathcal{M} has dimension k for some finite k, but is boundedly saturated.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 4. ${\mathcal T}$ is arithmetical, and ${\mathcal M}$ is not boundedly saturated
- 5. T is not arithmetical, and \mathcal{M} is not boundedly saturated

Bounded types and bounded saturation

Definition.

- 1. An *n*-formula is a Boolean combination of \exists_n -formulas.
- 2. An *n*-type is the set of *n*-formulas in a complete type.
- A model A is *n*-saturated if for all ā, every *n*-type p(ā, x) consistent with the type of ā is realized.

We need enumerations R^n of the *n*-types.

Lemma. There is a family $(R^n)_{n\geq 1}$ of enumerations of the *n*-types s.t. R^1 is computable, and for $n \geq 2$, R^n is Δ_{n-1}^0 , uniformly in *n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Morley rank

Definition.

- 1. The Morley *rank of a formula* is the maximum dimension of a tuple satisfying the formula.
- 2. The *Morley rank of a type* is the minimum of the ranks of the formulas in the type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definability

Remarks. For each formula $\varphi(\overline{u}, x)$, there is some k s.t. for any model \mathcal{A} and any \overline{a} in \mathcal{A} , only one of $\varphi^{\mathcal{A}}(\overline{a}, x)$, $\neg \varphi^{\mathcal{A}}(\overline{a}, x)$ has size $\geq k$. Then

$$\mathcal{A}\models (\exists^{\geq k}x) \varphi(\overline{a},x)
ightarrow (\exists^{\infty}x) \varphi(\overline{a},x)$$

For an *n*-formula $\varphi(\overline{u}, x)$, we find the appropriate *k* as above using $T \cap \exists_{n+1}$. For a \exists_{n+1} formula, we can find the appropriate *k* using $T \cap \exists_{n+2}$.

Rank and the enumerations of types

Lemma. For an *n*-formula $\varphi(\overline{x})$, using $T \cap \exists_{n+2}$, we can find \exists_{n+1} formulas saying that $\varphi(\overline{x})$ has rank at least *k*. Then using $T \cap \exists_{n+2}$, we can determine the rank.

For the enumeration \mathbb{R}^n in Lemma 1, for each \overline{x} , we list the type of full rank first. When we see a split, with one side having lower rank, the current index stays with the type of higher rank, and we add a new index for the type of lower rank.

Definition. Let \mathcal{M} be a model of T with universe ω . The \mathbb{R}^n -labeling for \mathcal{M} is the function taking each tuple \overline{a} in \mathcal{M} to the \mathbb{R}^n -index for the type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Case 1-T is arithmetical and \mathcal{M} is boundedly saturated

Lemma 1 (Harrington, Khisamiev). Suppose T is strongly minimal. If T is Δ_N^0 , then every model of T has a copy whose complete diagram is Δ_N^0 .

Lemma 2. Suppose R^N is Δ_N^0 . If \mathcal{M} is a model whose complete diagram is Δ_N^0 , then the R^N -labeling of \mathcal{M} is Δ_{N+1}^0 .

Lemma 3. For $n \ge 2$, if \mathcal{M} is an *n*-saturated model with a Δ_{n+1}^0 \mathbb{R}^n -labeling, then there is a copy with a $\Delta_n^0 \mathbb{R}^{n-1}$ -labeling.

Lemma 4. If \mathcal{M} is a 1-saturated model of \mathcal{T} with a $\Delta_2^0 R^1$ -labeling, then there is a computable copy.

In the proofs of Lemmas 3 and 4, bounded saturation helps us map elements of the copy we are building to elements of the given model.

Putting the pieces together for Case 1

Suppose T is Δ_N^0 , and \mathcal{M} is N-saturated. First, we apply Lemmas 1 and 2 to get a copy of \mathcal{M} with a $\Delta_{N+1}^0 R^N$ -labeling. Then we work our way down, applying Lemma 3 until we have a copy with a $\Delta_2^0 R^1$ -labeling. Finally, we apply Lemma 4 to get a computable copy.

Case 2—T is not arithmetical and \mathcal{M} is saturated

We build a copy \mathcal{A} of the saturated model "on the diagonal"; i.e., the Δ_3^0 worker carries out the first step, assigning a 3-type to a first element, the Δ_4^0 worker carries out the second step, assigning a 4-type to the first two elements, etc. At even steps, the new element is designated as generic—helping to build the saturated model, and at odd steps, the new element is a witness as in the standerd Henkin construction.

For each $n \geq 3$, after contributing to the diagonal, the Δ_n^0 worker goes into guessing mode, giving an \mathbb{R}^{n-1} -labeling for a structure \mathcal{B}_n , based on guesses at the \mathbb{R}^n -labeling produced by the Δ_{n+1}^0 worker. It takes effort to show that the \mathcal{B}_n are all isomorphic, and that they are isomorphic to \mathcal{A} .

Models that are not boundedly saturated

If \mathcal{M} is not *n*-saturated, we have a tuple \overline{a} with an *n*-type $p(\overline{a}, x)$ that is consistent with the type of \overline{a} but is not realized in \mathcal{M} . The type $p(\overline{a}, x)$ is the type of an *n*-generic over \overline{a} . Every element *b* satisfies some algebraic *n*-formula $\psi(\overline{a}, x)$. We can use this, for Cases 4 and 5, in the same way that we used bounded saturation.