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Motivation

In computable model theory, there is work on the algorithmic
complexity of the models of a given elementary first order theory.

Guiding principle. For a theory that is well-behaved from the
point of view of model theory, it should be easier to understand the
complexity of the models.

Computable models. We consider models with universe a subset
of ω. We identify a model M with its atomic diagram. So, M is
computable if D(M), identified with a subset of ω, is computable.



ℵ0-categorical theories

Theorem (Lerman-Schmerl). If T is an arithmetical
ℵ0-categorical theory and for n ≥ 1, T ∩ ∃n+1 is Σ0

n, then T has a
computable model.

Theorem (K). If T is an ℵ0-categorical theory and T ∩ ∃n+1 is
Σ0
n uniformly in n, then T has a computable model.



Complicated ℵ0-categorical theories

Theorem (Khoussainov-Montalbán). There is a
non-arithmetical ℵ0-categorical theory with a computable model.

(The proof uses “Marker extensions”, which makes the language
infinite.)

Theorem (Andrews). There is such a theory in a finite language.



Strongly minimal theories

Definition. A theory T is strongly minimal if for every model M,
and every formula ϕ(a, x) with parameters a in M, exactly one of
ϕM(a, x), ¬ϕM(a, x) is infinite.

Familiar examples.

1. the theory of (Z, S)

2. the theory of infinite Q-vector spaces

3. the theory of the field C of complex numbers



Algebraic closure and dimension

Definition. Let T be a strongly minimal theory, and let M be a
model.

1. The algebraic closure of S , denoted by aclM(S), is the union
of the finite sets ϕM(c , x) definable in M with parameters c
in S .

2. A set I ⊆M is algebraically independent if for all i ∈ I ,
i /∈ aclM({I − {i}).

Remark. Algebraic closure gives a well-defined notion of
dimension. Each model of T is determined, up to isomorphism, by
its dimension.



Trivial strongly minimal theories

Definition. A strongly minimal theory is trivial if for all models M
and S ⊆M, aclM(S) = ∪s∈SaclM({s}).

Theorem (Goncharov-Harizanov-Laskowski-Lempp-McCoy).
Every trivial strongly minimal theory with a computable model is
∆0

3.

(It follows that all models have ∆0
3 copies.)



Complicated theories with computable models

Goncharov-Khoussainov, Fokina. For each n, there is an
ℵ1-categorical theory T s.t. T has a computable model, and T is
not ∆0

n.

(The proof uses Marker extensions, so the language is infinite and
the theory is not strongly minimal.)

Andrews. There is a non-arithmetical strongly minimal theory
with a computable model.



New results

Main Theorem (Andrews-K). Let T be a strongly minimal
theory in a relational language. If T ∩ ∃n+3 is ∆0

n, uniformly in n,
then every model of T has a computable copy.

Relativizing to ∅(4), we get the following.

Corollary. If T has a computable model M, then every model has
a copy computable in ∅(4) (i.e., ∆0

5).

Proof.
Since there is a computable model, T ∩ ∃n is ∆0

n+1, uniformly.

Then T ∩ ∃n+3 is ∆0
n+4, which is ∆0

n relative to ∅(4).



Cases

The proof of the Main Theorem splits into cases, according to
whether the theory T is arithmetical, and whether the model M
that we are copying is saturated, or has a “bounded” saturation
property.

1. T is arithmetical, and M is boundedly saturated.

2. T is not arithmetical and M is saturated.

3. T is not arithmetical and M has dimension k for some finite
k, but is boundedly saturated.

4. T is arithmetical, and M is not boundedly saturated

5. T is not arithmetical, and M is not boundedly saturated



Bounded types and bounded saturation

Definition.

1. An n-formula is a Boolean combination of ∃n-formulas.

2. An n-type is the set of n-formulas in a complete type.

3. A model A is n-saturated if for all a, every n-type p(a, x)
consistent with the type of a is realized.



Enumerations of n-types

We need enumerations Rn of the n-types.

Lemma. There is a family (Rn)n≥1 of enumerations of the n-types
s.t. R1 is computable, and for n ≥ 2, Rn is ∆0

n−1, uniformly in n.



Morley rank

Definition.

1. The Morley rank of a formula is the maximum dimension of a
tuple satisfying the formula.

2. The Morley rank of a type is the minimum of the ranks of the
formulas in the type.



Definability

Remarks. For each formula ϕ(u, x), there is some k s.t. for any
model A and any a in A, only one of ϕA(a, x), ¬ϕA(a, x) has size
≥ k. Then

A |= (∃≥kx)ϕ(a, x)→ (∃∞x)ϕ(a, x)

For an n-formula ϕ(u, x), we find the appropriate k as above using
T ∩ ∃n+1. For a ∃n+1 formula, we can find the appropriate k using
T ∩ ∃n+2.



Rank and the enumerations of types

Lemma. For an n-formula ϕ(x), using T ∩ ∃n+2, we can find ∃n+1

formulas saying that ϕ(x) has rank at least k . Then using
T ∩ ∃n+2, we can determine the rank.

For the enumeration Rn in Lemma 1, for each x , we list the type
of full rank first. When we see a split, with one side having lower
rank, the current index stays with the type of higher rank, and we
add a new index for the type of lower rank.



Labeled models

Definition. Let M be a model of T with universe ω. The
Rn-labeling for M is the function taking each tuple a in M to the
Rn-index for the type.



Case 1—T is arithmetical and M is boundedly saturated

Lemma 1 (Harrington, Khisamiev). Suppose T is strongly
minimal. If T is ∆0

N , then every model of T has a copy whose
complete diagram is ∆0

N .

Lemma 2. Suppose RN is ∆0
N . If M is a model whose complete

diagram is ∆0
N , then the RN -labeling of M is ∆0

N+1.



Working our way down

Lemma 3. For n ≥ 2, if M is an n-saturated model with a ∆0
n+1

Rn-labeling, then there is a copy with a ∆0
n Rn−1-labeling.

Lemma 4. If M is a 1-saturated model of T with a ∆0
2

R1-labeling, then there is a computable copy.

In the proofs of Lemmas 3 and 4, bounded saturation helps us map
elements of the copy we are building to elements of the given
model.



Putting the pieces together for Case 1

Suppose T is ∆0
N , and M is N-saturated. First, we apply Lemmas

1 and 2 to get a copy of M with a ∆0
N+1 RN -labeling. Then we

work our way down, applying Lemma 3 until we have a copy with a
∆0

2 R1-labeling. Finally, we apply Lemma 4 to get a computable
copy.



Case 2—T is not arithmetical and M is saturated

We build a copy A of the saturated model “on the diagonal”; i.e.,
the ∆0

3 worker carries out the first step, assigning a 3-type to a
first element, the ∆0

4 worker carries out the second step, assigning
a 4-type to the first two elements, etc. At even steps, the new
element is designated as generic—helping to build the saturated
model, and at odd steps, the new element is a witness as in the
standerd Henkin construction.

For each n ≥ 3, after contributing to the diagonal, the ∆0
n worker

goes into guessing mode, giving an Rn−1-labeling for a structure
Bn, based on guesses at the Rn-labeling produced by the ∆0

n+1

worker. It takes effort to show that the Bn are all isomorphic, and
that they are isomorphic to A.



Models that are not boundedly saturated

If M is not n-saturated, we have a tuple a with an n-type p(a, x)
that is consistent with the type of a but is not realized in M. The
type p(a, x) is the type of an n-generic over a. Every element b
satisfies some algebraic n-formula ψ(a, x). We can use this, for
Cases 4 and 5, in the same way that we used bounded saturation.


