Local Computability and the Ordinal ω_1^{CK} . ω

Johanna N.Y. Franklin, Asher M. Kach, Russell Miller, & Reed Solomon

University of Connecticut & City University of New York

Sy Friedman's 60th Birthday Conference 11 July 2013 Kurt Gödel Research Center Vienna, Austria

Local Descriptions of Structures

Defn.

A simple cover \mathfrak{A} of a structure S is a set containing all finitely generated substructures of S, up to isomorphism (and nothing else!). Repetitions are allowed.

 ${\mathfrak A}$ is *computable* if every ${\mathcal A}\in {\mathfrak A}$ is a computable structure.

 \mathfrak{A} is *uniformly computable* if there is a single algorithm listing out all \mathcal{A}_i in \mathfrak{A} .

When S = L is a linear order, this is trivial: every infinite linear order is locally computable, with a cover containing one copy of each finite linear order.

Embeddings

Let \mathcal{L} be locally computable, with simple cover $\{\mathcal{A}_0, \mathcal{A}_1, \ldots\}$. Suppose $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{L}$ are finite. If

$$\begin{array}{c} \mathcal{B} \xrightarrow{\qquad \subseteq \qquad} \mathcal{C} \\ \beta & \stackrel{\frown}{\cong} \xrightarrow{\qquad } \gamma & \stackrel{\frown}{\cong} \\ \mathcal{A}_{i} \xrightarrow{\qquad f \qquad} \mathcal{A}_{j} \end{array}$$

commutes, we say that $f : A_i \hookrightarrow A_j$ lifts to the inclusion $\mathcal{B} \subseteq \mathcal{C}$ via the isomorphisms β and γ .

For linear orders, if $\mathcal{B} = \{a < d < e\} \subseteq \mathcal{C} = \{a < b < c < d < e\}$, and $\mathcal{A}_i = \{x_0 < x_1 < x_2\}$ and $\mathcal{A}_j = \{y_0 < y_1 < y_2 < y_3 < y_4\}$, then take $f(x_0) = y_0$, $f(x_1) = y_3$, $f(x_2) = y_4$.

Computable Covers

Defn.

A *cover* of \mathcal{L} comprises a simple cover \mathfrak{A} , along with sets $I_{ij}^{\mathfrak{A}}$ of embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$, such that:

- every $f \in I_{ii}^{\mathfrak{A}}$ lifts to an inclusion $\mathcal{B} \subseteq \mathcal{C}$ within \mathcal{L} ,
- every inclusion within \mathcal{L} is the lift of some *f* in some $f_{ji}^{\mathfrak{A}}$,
- and the Amalgamation Property holds for all *i*, *j*, *k*, *e*, and *f*:

Computable Covers

Defn.

A *cover* of \mathcal{L} comprises a simple cover \mathfrak{A} , along with sets $I_{ij}^{\mathfrak{A}}$ of embeddings $\mathcal{A}_i \hookrightarrow \mathcal{A}_j$, such that:

- every $f \in I_{ii}^{\mathfrak{A}}$ lifts to an inclusion $\mathcal{B} \subseteq \mathcal{C}$ within \mathcal{L} ,
- every inclusion within \mathcal{L} is the lift of some *f* in some $I_{ji}^{\mathfrak{A}}$,
- and the Amalgamation Property holds for all *i*, *j*, *k*, *e*, and *f*:

The cover is *(uniformly) computable* if all $f_{ij}^{\mathfrak{A}}$ are c.e. uniformly in *i* and *j*. In this case, \mathcal{L} is said to be *locally computable*.

For linear orders, use all maps of each smaller A_i into each larger A_j . So every linear order is locally computable.

Defn.

Every embedding from any A_i into \mathcal{L} is 0-*extensional*. An isomorphism $\beta : A_i \to \mathcal{B} \subseteq \mathcal{L}$ is (m+1)-*extensional* if

• $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists C \subseteq \mathcal{L})[f \text{ lifts to } \mathcal{B} \subseteq C \text{ via } \beta \text{ and some } \gamma]; \text{ and }$

• $(\forall \text{ finite } \mathcal{D} \supseteq \mathcal{B})(\exists k)(\exists g \in I_{ik}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma]$

with γ *m*-extensional in both cases:

$$\begin{array}{c} \mathcal{B} \\ \beta \\ \uparrow \cong \\ \mathcal{A}_{i} \underbrace{f}{} \rightarrow \mathcal{A} \end{array}$$

Defn.

Every embedding from any A_i into \mathcal{L} is 0-*extensional*. An isomorphism $\beta : A_i \to \mathcal{B} \subseteq \mathcal{L}$ is (m+1)-*extensional* if

• $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists C \subseteq \mathcal{L})[f \text{ lifts to } \mathcal{B} \subseteq C \text{ via } \beta \text{ and some } \gamma]; \text{ and }$

• $(\forall \text{ finite } \mathcal{D} \supseteq \mathcal{B})(\exists k)(\exists g \in I_{ik}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma]$

with γ *m*-extensional in both cases:

$$\begin{array}{c} \mathcal{B}^{---} \subset \mathcal{C} \\ \beta \\ \stackrel{\frown}{\cong} \qquad \gamma \\ \mathcal{A}_{i} \underbrace{f} \quad \mathcal{A}_{i} \end{array}$$

Defn.

Every embedding from any A_i into \mathcal{L} is 0-*extensional*. An isomorphism $\beta : A_i \to \mathcal{B} \subseteq \mathcal{L}$ is (m+1)-*extensional* if

• $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists C \subseteq \mathcal{L})[f \text{ lifts to } \mathcal{B} \subseteq C \text{ via } \beta \text{ and some } \gamma]; \text{ and }$

• $(\forall \text{ finite } \mathcal{D} \supseteq \mathcal{B})(\exists k)(\exists g \in I_{ik}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma]$ with γ *m*-extensional in both cases:

Defn.

Every embedding from any A_i into \mathcal{L} is 0-*extensional*. An isomorphism $\beta : A_i \to \mathcal{B} \subseteq \mathcal{L}$ is (m+1)-*extensional* if

• $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists C \subseteq \mathcal{L})[f \text{ lifts to } \mathcal{B} \subseteq C \text{ via } \beta \text{ and some } \gamma]; \text{ and }$

• $(\forall \text{ finite } \mathcal{D} \supseteq \mathcal{B})(\exists k)(\exists g \in I_{ik}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma]$ with γ *m*-extensional in both cases:

Defn.

Every embedding from any A_i into \mathcal{L} is 0-*extensional*. An isomorphism $\beta : A_i \to \mathcal{B} \subseteq \mathcal{L}$ is (m+1)-*extensional* if

• $(\forall j)(\forall f \in I_{ij}^{\mathfrak{A}})(\exists C \subseteq \mathcal{L})[f \text{ lifts to } \mathcal{B} \subseteq C \text{ via } \beta \text{ and some } \gamma]; \text{ and }$

• $(\forall \text{ finite } \mathcal{D} \supseteq \mathcal{B})(\exists k)(\exists g \in I_{ik}^{\mathfrak{A}})[f \text{ lifts to } \mathcal{B} \subseteq \mathcal{C} \text{ via } \beta \text{ and some } \gamma]$ with γ *m*-extensional in both cases:

 \mathcal{L} is *m*-extensional if it has a cover \mathfrak{A} s.t. every $\mathcal{A}_i \in \mathfrak{A}$ is the domain of an *m*-extensional map and every finite $\mathcal{B} \subseteq \mathcal{L}$ is the image of one.

Intuition: A 1-extensional map β is a more exact description of \mathcal{B} by \mathcal{A}_i : the ways \mathfrak{A} can extend \mathcal{A}_i are exactly the ways of extending \mathcal{B} within \mathcal{L} .

Example with Ordinals

For a computable cover of the linear order $\mathcal{L} = (\omega, <)$, we can take all finite linear orders, with all order-embeddings among them.

For a 1-extensional (computable) cover of ω , the suborders $\mathcal{B}_1 = \{0 < 2 < 4\}$ and $\mathcal{B}_2 = \{1 < 5 < 6\}$ of ω cannot both have 1-extensional maps from the same \mathcal{A}_i . To cover \mathcal{B}_1 1-extensionally, $\mathcal{A}_i = \{x_0 < x_1 < x_2\}$ would have to have an embedding *f* into an \mathcal{A}_j which has an element in between $f(x_1)$ and $f(x_2)$. But if this \mathcal{A}_i were also a 1-extensional cover of \mathcal{B}_2 , say via γ , then this *f* would indicate that ω contains an element in between $\gamma(x_1) = 5$ and $\gamma(x_2) = 6$.

1-extensionality allows every Σ_1 fact (with parameters) about \mathcal{L} to be expressed using the cover and its embeddings. A 1-extensional cover of ω is not hard to build, but it must have a different \mathcal{A}_i for each finite suborder of ω . (In fact, every computable LO \mathcal{L} has a *canonical cover*, containing all finite suborders of \mathcal{L} , with inclusion maps.)

Let S be the linear order $\omega + \omega$.

0-extensional cover \mathfrak{A} : all finite linear orders \mathcal{L} , with all embeddings.

Let S be the linear order $\omega + \omega$.

0-extensional cover \mathfrak{A} : all finite linear orders \mathcal{L} , with all embeddings.

1-extensional cover \mathfrak{A}' : all finite linear orders $\mathcal{L} = \{x_0 < \cdots < x_n\}$, each with a rule saying, for each i < n, how many elements may be placed between x_i and x_{i+1} , and how many to the left of x_0 . (At most one pair (x_i, x_{i+1}) may have ∞ many.) All embeddings which respect these rules are allowed.

Let S be the linear order $\omega + \omega$.

0-extensional cover \mathfrak{A} : all finite linear orders \mathcal{L} , with all embeddings.

1-extensional cover \mathfrak{A}' : all finite linear orders $\mathcal{L} = \{x_0 < \cdots < x_n\}$, each with a rule saying, for each i < n, how many elements may be placed between x_i and x_{i+1} , and how many to the left of x_0 . (At most one pair (x_i, x_{i+1}) may have ∞ many.) All embeddings which respect these rules are allowed.

2-extensional cover \mathfrak{A}'' : all finite linear orders \mathcal{L} , with a computable function giving the order type of each interval (x, y) in each \mathcal{L} . Again, embeddings must respect this rule. This cover is *m*-extensional for every *m*.

Let S be the linear order $\omega + \omega$.

0-extensional cover \mathfrak{A} : all finite linear orders \mathcal{L} , with all embeddings.

1-extensional cover \mathfrak{A}' : all finite linear orders $\mathcal{L} = \{x_0 < \cdots < x_n\}$, each with a rule saying, for each i < n, how many elements may be placed between x_i and x_{i+1} , and how many to the left of x_0 . (At most one pair (x_i, x_{i+1}) may have ∞ many.) All embeddings which respect these rules are allowed.

2-extensional cover \mathfrak{A}'' : all finite linear orders \mathcal{L} , with a computable function giving the order type of each interval (x, y) in each \mathcal{L} . Again, embeddings must respect this rule. This cover is *m*-extensional for every *m*.

 \mathfrak{A}_0 does not distinguish any elements within S; it is a 0-extensional cover of every infinite LO. \mathfrak{A}_1 is a 1-extensional cover of $(\omega + \mathbb{Z} \cdot \lambda)$, for every nonempty LO λ . \mathfrak{A}_2 is a 2-extensional cover of no LO except S.

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{c} \mathcal{B} \\ \gamma \\ \uparrow \cong \\ \mathcal{A}_i \end{array}$$

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{c} \mathcal{B} \\ \gamma \stackrel{\bullet}{\uparrow} \cong \\ \mathcal{A}_{i} \stackrel{f}{\longrightarrow} \mathcal{A}_{i} \end{array}$$

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{cccc} \mathcal{B} & & & \mathcal{C} & & & \mathcal{D} \\ \gamma & \subseteq & & \mathcal{C} & & \subseteq & \mathcal{D} \\ \gamma & \cong & & \delta_0 & \cong & \\ \mathcal{A}_i & & & f & & \mathcal{A}_j \end{array}$$

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{c} \mathcal{B}^{----} \subset \mathcal{C} \longrightarrow \mathcal{D} \\ \gamma & \stackrel{\uparrow}{\cong} & \delta_0 & \stackrel{\uparrow}{\cong} & \delta_1 & \stackrel{\uparrow}{\cong} \\ \mathcal{A}_i \longrightarrow \mathcal{A}_i \longrightarrow \mathcal{A}_i \longrightarrow \mathcal{G}_{----} & \mathcal{G}_k \end{array}$$

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{c} \mathcal{B}^{---} \subset \stackrel{\frown}{\frown} \mathcal{C} & \xrightarrow{\frown} \mathcal{D} \\ \gamma & \stackrel{\frown}{\cong} & \delta_0 & \stackrel{\frown}{\cong} & \stackrel{\frown}{\delta_1} & \stackrel{\frown}{\cong} \\ \mathcal{A}_i & \stackrel{f}{\longrightarrow} \mathcal{A}_i & \stackrel{\mathcal{G}^{---}}{\longrightarrow} \mathcal{A}_k & \stackrel{h}{\longrightarrow} \mathcal{A}_l \end{array}$$

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

For limit θ , a map $\gamma : A_i \to B$ is θ -extensional if it is ζ -extensional for every ordinal $\zeta < \theta$. For successors $\theta + 1$, use the definition for m + 1.

Theorem

Suppose \mathcal{L} has a θ -extensional cover, with $\theta < \omega_{CK}^1$. Then for any finite set P of parameters in \mathcal{L} and $(\forall \zeta \leq \theta)$, the Σ_{ζ} -theory of (\mathcal{L}, P) is arithmetically Σ_{ζ}^0 , uniformly in i and $\gamma^{-1}(P)$, where $\gamma : \mathcal{A}_i \to \langle P \rangle$ is θ -extensional.

$$\begin{array}{c} \mathcal{B} & \xrightarrow{} \mathcal{C} & \xrightarrow{} \mathcal{C} & \xrightarrow{} \mathcal{D} & \xrightarrow{} \mathcal{E} & \xrightarrow{} \mathcal{F} \\ \gamma & \stackrel{\frown}{\cong} & \delta_0 & \stackrel{\frown}{\cong} & \delta_1 & \stackrel{\frown}{\cong} & \delta_2 & \stackrel{\frown}{\cong} & & \\ \mathcal{A}_i & \xrightarrow{f} & \mathcal{A}_j & \xrightarrow{} \mathcal{g} & \xrightarrow{} \mathcal{A}_k & \xrightarrow{h} & \mathcal{A}_l \end{array}$$

The Actual Question

Question

For an ordinal α , when is there a θ -extensional (computable) cover of the linear order α ?

The Actual Question

Question

For an ordinal α , when is there a θ -extensional (computable) cover of the linear order α ?

Theorem (Miller-Mulcahey, 2008)

Let \mathcal{S} be a countable structure. Then TFAE:

- S has an ∞ -extensional computable cover (with the AP);
- S has an θ-extensional computable cover for some θ > the Scott rank of S;
- S is computably presentable (≡ there exists a Turing-computable structure isomorphic to S).

Corollary

Every $\alpha < \omega_1^{CK}$ has an ∞ -extensional cover.

Negative Results

Theorem

 ω_1^{CK} has no ω_1^{CK} -extensional computable cover.

Proof: we give a construction which would use an ω_1^{CK} -extensional cover to build a computable presentation of ω_1^{CK} . (Indeed, this shows that ω_1^{CK} cannot have any ω_1^{CK} -extensional hyperarithmetical cover.)

Corollary

No ordinal
$$\alpha > \omega_1^{CK}$$
 has an $(\omega_1^{CK} + 1)$ -extensional cover.

From a such a cover, fix a singleton $A_{i_0} = \{x_0\}$ with an $(\omega_1^{CK} + 1)$ -extensional map onto the suborder $\{\omega_1^{CK}\}$. Then we could build a cover of ω_1^{CK} by considering those A_j for which

$$(\exists k)(\exists f: \mathcal{A}_{i_0} \rightarrow \mathcal{A}_k)(\exists g: \mathcal{A}_j \rightarrow \mathcal{A}_k)[(\forall y \in \mathcal{A}_j) \ g(y) < f(x_0)].$$

This would be an ω_1^{CK} -extensional cover of ω_1^{CK} .

The Remaining Questions

When does α have a θ -extensional computable cover? Answers so far...

Useful observation: every $\beta < \omega^{\theta+1}$ can be identified by a Boolean combination of computable $\Sigma_{2:\theta+1}$ -formulas, but $\omega^{\theta+1}$ itself cannot be.

A Further Answer

Theorem

For every computable ordinal θ , every ordinal α has a θ -extensional computable cover.

This is not surprising. Roughly speaking, with a θ -extensional cover, we cannot distinguish powers ω^{ζ} for $\zeta > \theta$, so just write $\alpha = \omega^{(\theta+1)} \cdot \mu + \nu$, with $\nu < \omega^{(\theta+1)}$.

Another Answer

Theorem

If $\omega_1^{CK} \le \alpha < \omega_1^{CK} \cdot \omega$, then α has no ω_1^{CK} -extensional cover.

Such an α contains finitely many multiples of ω_1^{CK} . In a cover, we could pick a single \mathcal{A}_i which ω_1^{CK} -extensionally covers all of those multiples. A delicate construction then uses this cover to build a computable presentation of ω_1^{CK} , which is impossible.

The Last Answer

Surprise Theorem (joint with Julia Knight)

All ordinals $\alpha \geq \omega_1^{CK} \cdot \omega$ have ω_1^{CK} -extensional computable covers.

In fact, the canonical cover of a computable presentation of the Harrison ordering $\omega_1^{CK} \cdot (1 + \eta)$ is an ω_1^{CK} -extensional cover of each order $\omega_1^{CK} \cdot (1 + \rho)$ with ρ infinite. Likewise, each such ordinal has an ω_1^{CK} -back-and-forth with the Harrison ordering.

What More Could We Ask?

....Well, we could ask the same question about κ -recursion theory and κ -local computability, in which we list all substructures generated by subsets of size $< \kappa$. Does the same phenomenon occur? At $(\kappa^+)^{CK} \cdot \kappa$, or where? Is there a Harrison ordering for κ ? (Is there Barwise compactness for κ ?) Do we need to use $L_{\kappa\kappa}$ formulas to make this happen?

What More Could We Ask?

....Well, we could ask the same question about κ -recursion theory and κ -local computability, in which we list all substructures generated by subsets of size $< \kappa$. Does the same phenomenon occur? At $(\kappa^+)^{CK} \cdot \kappa$, or where? Is there a Harrison ordering for κ ? (Is there Barwise compactness for κ ?) Do we need to use $L_{\kappa\kappa}$ formulas to make this happen?

Happy Birthday, Sy!