On the invariant universality property

Luca Motto Ros

Abteilung für Mathematische Logik Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany luca.motto.ros@math.uni-freiburg.de

Vienna, July 8th 2013

Definition (Analytic quasi-order)

A quasi-order R on a Polish space or, more generally, on a standard Borel space X is called *analytic* if it is an analytic subset of $X \times X$ (= projection of a Borel subset of $X \times X \times {}^{\omega}\omega$).

It is an *analytic equivalence relation* if it is also symmetric.

Definition (Borel (bi-)reducibility and completeness)

Borel reducibility: $R \leq_B S$ iff \exists Borel $f: \operatorname{dom}(R) \to \operatorname{dom}(S)$ such that $\forall x, y \in \operatorname{dom}(R) (x R y \iff f(x) S f(y)).$

Borel bi-reducibility: $R \sim_B S$ iff $R \leq_B S \leq_B R$.

(Borel-)completeness: S is Borel complete for a class C of analytic quasi-orders iff $R \leq_B S$ for all $R \in C$.

Intuitively: if $R \leq_B S$ then R is not more complicated than S.

Notation

- *E_R* = *R* ∩ *R*⁻¹ = the analytic equivalence relation associated to the analytic quasi-order *R*.
- \hat{R} = the quotient order of R (w.r.t. E_R).

Combinatorially, \sim_B is a (definable) *bi-embeddability*: $R \sim_B S$ iff \hat{R} and \hat{S} are one embeddable into the other via functions admitting Borel liftings.

Definition (Classwise Borel isomorphism)

Classwise Borel isomorphism: $R \simeq_B S$ iff there is an isomorphism f of \hat{R} and \hat{S} such that both f and f^{-1} admit Borel liftings.

Examples: isomorphism and embeddability relations

Notation

- $\mathcal{L} = \mathsf{graph}$ language.
- $\mathsf{Mod}^{\omega}_{\mathcal{L}} = {}^{\omega \times \omega} 2 = \mathsf{Polish}$ space of countable \mathcal{L} -structures.
- $\mathsf{Mod}_{\varphi}^{\omega} = \{X \in \mathsf{Mod}_{\mathcal{L}}^{\omega} \mid X \models \varphi\}$ for φ an $\mathcal{L}_{\omega_1 \omega}$ -sentence.

Theorem (Lopez-Escobar)

 $B \subseteq \operatorname{Mod}_{\mathcal{L}}^{\omega}$ is Borel and invariant under isomorphism iff $B = \operatorname{Mod}_{\varphi}^{\omega}$ for some $\mathcal{L}_{\omega_1\omega}$ -sentence φ .

Therefore the *isomorphism* relation $\cong \upharpoonright Mod_{\varphi}^{\omega}$ and the *embeddability* relation $\sqsubseteq \upharpoonright Mod_{\varphi}^{\omega}$ are examples of an *analytic equivalence relation* and an *analytic quasi-order*, respectively. However:

- ≅↾ Mod^ω_φ is a very special kind of equivalence relation and is far from being complete for analytic equivalence relations;
- $\sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\omega}$ is complete for analytic quasi-orders for suitable φ .

Theorem (S.Friedman-M.)

For every analytic quasi-order R there is an $\mathcal{L}_{\omega_1\omega}$ -sentence φ such that $R \sim_B \sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\omega}$, and in fact $R \simeq_B \sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\omega}$.

Intuitively: every analytic quasi-order R can be copied in a "faithful" way as an embeddability relation. This is abbreviated with:

 $\sqsubseteq \upharpoonright \mathsf{Mod}_{\mathcal{L}}^{\omega}$ is *(strongly) invariantly universal.*

Possible generalizations:

- **Q** Replace \sqsubseteq with other morphism relations, e.g.:
 - epimorphisms between countable structures,
 - continuous embeddability between continua (dendrites),
 - isometric embeddability between Polish metric spaces,
 - linear isometric embeddability between separable Banach spaces...
- **2** Replace "analytic" (= Σ_1^1) with: Σ_{n+2}^1 , projective, κ -Souslin, L(\mathbb{R}) ...

③ Replace countable structures with structures of size $\kappa > \omega$.

Other morphism relations

Using the Lopez-Escobar theorem, $\sqsubseteq \upharpoonright \mathsf{Mod}_{\mathcal{L}}^{\omega}$ is strongly invariantly universal iff for every analytic quasi-order R there is a Borel and invariant under isomorphism $B \subseteq \mathsf{Mod}_{\mathcal{L}}^{\omega}$ such that $R \simeq_B \sqsubseteq \upharpoonright B$.

Definition

S analytic quasi-order, E analytic equivalence relation s.t. $E \subseteq S$. The pair (S, E) is strongly invariantly universal iff for every analytic quasi-order R there is a Borel and E-invariant $B \subseteq dom(S)$ such that $R \simeq_B (S \upharpoonright B)$.

Intuitively: (S, E) is strongly invariantly universal iff S contains in a "natural" (= sufficiently closed and simply definable) way a "faithful" copy of all other analytic quasi-orders.

Usually we take (S, E) to be pairs of the form (morphism, isomorphism):

- (continuous embeddability, homeomorphism) between compacta,
- (isometric embeddability, isometry) between Polish metric spaces,
- (linear isometric embeddability, linear isometry) between separable Banach spaces, and so on.

Theorem (Camerlo-Marcone-M.)

The following (complete) analytic quasi-orders are in fact invariantly universal when paired with the associated "isomorphism" relation E:

- embeddability/epimorphisms for countable graphs ($E = \cong$),
- color preserving embeddings between countable colored linear orders (E = color preserving isomorphism),
- continuous embeddability/open cont. surjections between dendrites, cont. surjections between compacta (E = homeomorphism),
- isometric embeddability between (discrete/ultrametric) Polish metric spaces (E = isometry),
- linear isometric embeddability between separable Banach spaces (E = linear isometry),
- and so on...

Remark: Each proof is different and requires some specific work.

More complicated quasi-orders

Notation

- Given a cardinal κ, consider the generalized Baire space ^κκ endowed with the bounded topology (i.e. with the topology generated by basic clopen sets of the form N_s = {x ∈ ^κκ | x ⊇ s} for s ∈ ^{<κ}κ).
- $\mathsf{Mod}_{\mathcal{L}}^{\kappa} = \mathsf{space} \text{ of models of size } \kappa \text{ (homeomorphic to } {}^{\kappa}2 \subseteq {}^{\kappa}\kappa\text{)}.$

•
$$\mathsf{Mod}_{\varphi}^{\kappa} = \{X \in \mathsf{Mod}_{\mathcal{L}}^{\kappa} \mid X \models \varphi\}$$
 for φ an $\mathcal{L}_{\kappa^{+}\kappa}$ -sentence.

Theorem (Andretta-M.)

Work in ZF and let κ be an uncountable cardinal. For every κ -Souslin quasi-order R there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence φ such that R is bi-reducible with (in fact: classwise isomorphic to) $\sqsubseteq \upharpoonright \operatorname{Mod}_{\varphi}^{\kappa}$.

Remark: The maps involved in the bi-reducibility are κ^+ -Borel, absolutely definable, and so on...

This rather technical result may be applied in a great variety of situations...

Theorem (ZF)

For every Σ_2^1 quasi-order R there is an $\mathcal{L}_{\aleph_2\aleph_1}$ -sentence φ such that R and $\Box \upharpoonright \mathsf{Mod}_{\varphi}^{\aleph_1}$ are classwise \aleph_2 -Borel isomorphic.

Theorem $(ZFC + \forall x \in \mathbb{R} (x^{\#} \text{ exist}))$

For every Σ_3^1 quasi-order R there is an $\mathcal{L}_{\aleph_3\aleph_2}$ -sentence φ such that R and $\Box \upharpoonright \mathsf{Mod}_{\varphi}^{\aleph_2}$ are classwise \aleph_3 -Borel isomorphic.

Remark: These results make (more) sense when the continuum is large!

Theorem (ZF + AD)

For every Σ_3^1 quasi-order R there is an $\mathcal{L}_{\aleph_{\omega+1}\aleph_{\omega}}$ -sentence φ such that R and $\sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\aleph_{\omega}}$ are classwise $\aleph_{\omega+1}$ -Borel isomorphic.

More complicated quasi-orders

Define
$$j: \omega \to \omega$$
 by $j(n) = \begin{cases} 2^{k+1} - 1 & \text{if } n = 2k+1\\ 2^{k+1} & \text{if } n = 2k+2. \end{cases}$

Theorem $(ZFC + AD^{L(\mathbb{R})})$

For every Σ_n^1 quasi-order R there is an $\mathcal{L}_{\aleph_{j(n)+1}\aleph_{j(n)}}$ -sentence φ such that Rand $\sqsubseteq \upharpoonright \operatorname{Mod}_{\varphi}^{\aleph_{j(n)}}$ are classwise $\aleph_{j(n)+1}$ -Borel isomorphic.

In particular, the above theorem holds if we assume e.g. ZFC+ "there are $\omega\text{-many}$ Woodin cardinals with a measurable above", or ZFC + PFA, ...

Theorem (ZF + AD)

For n > 0, let κ_n be such that $\delta_n^1 = \kappa_n^+$ (that is $\kappa_n = \delta_{n-1}^1$ if n is even and $\kappa_n = \lambda_n^1$ if n is odd). For every Σ_n^1 quasi-order R there is an $\mathcal{L}_{\delta_n^1\kappa_n}$ -sentence φ such that $R \simeq_{\mathsf{L}(\mathbb{R})} \sqsubseteq \mathsf{Mod}_{\varphi}^{\kappa_n}$.

Theorem $(ZF + AD + V = L(\mathbb{R}))$

For every Σ_1^2 quasi-order R there is an $\mathcal{L}_{(\delta_1^2)^+\delta_1^2}$ -sentence φ such that $R \simeq_{\mathsf{L}(\mathbb{R})} \sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\delta_1^2}$.

Theorem $(ZF + AD(\mathbb{R}))$

For every quasi-order R on a standard Borel space there is $\kappa < \Theta$ and an $\mathcal{L}_{\kappa^+\kappa}$ -sentence φ such that R and $\sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\kappa}$ are classwise κ^+ -Borel isomorphic.

Theorem

Work in Solovay's model. For every real-ordinal definable (briefly: $OD(\mathbb{R})$) quasi-order R defined on a standard Borel space, there is an $\mathcal{L}_{\aleph_2\aleph_1}$ -sentence φ such that $R \simeq_{OD(\mathbb{R})} \sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\aleph_1}$.

Embeddability between larger structures

So far we considered only the embeddability relation between uncountable structures of "small" size, i.e. of cardinality smaller than (or incomparable to) the continuum $|\mathbb{R}|$... what about structures of larger cardinality?

Definition (Standard Borel κ -spaces and analytic quasi-orders)

- A topological space is called standard Borel κ-space if it is κ⁺-Borel isomorphic to a κ⁺-Borel subset of ^κκ.
- A quasi-order R on a standard Borel κ-space X is called analytic if it is the projection of a κ⁺-Borel subset of X × X × ^κκ.

Theorem (Mildenberger-M.)

Let $\kappa = \kappa^{<\kappa} > \omega$. Then for every analytic quasi-order R defined on a standard Borel κ -space, there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence φ such that R and $\sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\kappa}$ are classwise κ^+ -Borel isomorphic.

Remark: The condition $\kappa^{<\kappa} = \kappa$ is nearly optimal.

Back to the countable case: an application of our method

Example

• If $\varphi_{LO} \in \mathcal{L}_{\omega_1\omega}$ axiomatizes *linear orders*, then $\cong \upharpoonright Mod_{\varphi_{LO}}^{\omega}$ is S_{∞} -complete and $\sqsubseteq \upharpoonright Mod_{\varphi_{LO}}^{\omega}$ is a bqo (hence the bi-embeddability relation on $Mod_{\varphi_{LO}}^{\omega}$ has only \aleph_1 -many classes);

• If $\varphi_{\mathsf{CT}} \in \mathcal{L}_{\omega_1 \omega}$ axiomatizes *combinatorial trees*, then $\cong \upharpoonright \mathsf{Mod}_{\varphi_{\mathsf{CT}}}^{\omega}$ is S_{∞} -complete and $\sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi_{\mathsf{CT}}}^{\omega}$ is complete for analytic quasi-orders.

Louveau and Rosendal asked whether it is possible to increase the gap between the complexities of \sqsubseteq and \cong on the same $\operatorname{Mod}_{\varphi}^{\omega}$ (for φ an $\mathcal{L}_{\omega_1\omega}$ -sentence). More generally:

Question

Given a \cong -like analytic equivalence relation E and an analytic quasi-order R, can we find an $\mathcal{L}_{\omega_1\omega}$ -sentence φ such that $E \sim_B \cong \upharpoonright \operatorname{Mod}_{\varphi}^{\omega}$ and $R \sim_B \sqsubseteq \upharpoonright \operatorname{Mod}_{\varphi}^{\omega}$?

" \cong -like" means that *E* is Borel bireducible with *some* isomorphism relation.

Back to the countable case: an application of our method

Since bi-embeddability is obviously refined by the isomorphism relation, we get a negative answer for the pair E, R if one of the following holds:

- *E* has at most countably many classes but E_R has more classes than *E* (that is $E \leq_B id(\omega)$ but $E_R \nleq_B E$);
- *E_R* has perfectly many classes while *E* has at most ℵ₁-many classes (that is id(ℝ) ≤_B *E_R* but id(ℝ) ≰_B *E*).

Quite surprisingly, these are (almost) the unique limitations:

Theorem (M.)

Let E be a \cong -like analytic equivalence relation and let R be an analytic quasi-order. Assume that either

- $\operatorname{id}(\mathbb{R}) \leq_B E$, or
- $E_R \leq_B E, \operatorname{id}(\omega)$

Then there is an $\mathcal{L}_{\omega_1\omega}$ -sentence φ such that $E \sim_B \cong \upharpoonright \mathsf{Mod}_{\varphi}^{\omega}$ and $R \sim_B \sqsubseteq \upharpoonright \mathsf{Mod}_{\varphi}^{\omega}$.

Thank you for your attention!