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Aim and Motivation

AIM: To connect infinitesimals and computability.

WHY: From the scope of CCA 2013: (http://cca-net.de/cca2013/)

The conference is concerned with the theory of computability and
complexity over real-valued data. [BECAUSE] Most mathematical

models in physics and engineering [...] are based on the real
number concept.

The following is more true:

Most mathematical models in physics and engineering [...] are
based on the real number concept, via an intuitive calculus with

infinitesimals, i.e. informal Nonstandard Analysis.

We present a notion of computability directly based on Nonstandard

Analysis. We start with Reverse Mathematics.



Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary mathematics (countable/separable)

The proof takes place in RCA0 (≈ idealized computer, TM).

In many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1-CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



An example: Reverse Mathematics for WKL0

Central principle:

Theorem (Weak König’s Lemma)

Every infinite binary tree has an infinite path.

Assuming the base theory RCA0, WKL is equivalent to

1 Heine-Borel: every countable covering of [0, 1] has a finite
subcovering.

2 A continuous function on [0, 1] is uniformly continuous.

3 A continuous function on [0, 1] is Riemann integrable.

4 Weierstrass’ theorem: a continuous function on [0, 1] attains
its maximum.

5 Peano’s theorem for differential equations y ′ = f (x , y).



7 Gödel’s completeness/compactness theorem.

8 A countable commutative ring has a prime ideal.

9 A countable formally real field is orderable.

10 A countable formally real field has a (unique) closure.

11 Brouwer’s fixed point theorem: A continuous function from
[0, 1]n to [0, 1]n has a fixed point.

12 The separable Hahn-Banach theorem.

13 A continuous function on [0, 1] can be approximated by
(Bernstein) polynomials.

14 And many more. . . > >

The ‘Bible’ of Reverse Mathematics: Subsystems of Second-order
Arithmetic (Stephen Simpson)



The Main Theme of RM

= Mathematical theorems seem to ‘cluster’ around the Big Five,
while ‘sparse’ everywhere else.
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RCA0

WKL0

ACA0

ATR0

Π1
1-CA0

proves Interm. value thm, Soundness thm, Existence of alg. clos. . . .

↔ Peano exist. ↔ Weierstraß approx. ↔ Weierstraß max. ↔ Hahn-

Banach ↔ Heine-Borel ↔ Brouwer fixp. ↔ Gödel compl. ↔ . . .

↔ Bolzano-Weierstraß ↔ Ascoli-Arzela ↔ Köning ↔ Ramsey (k ≥ 3)

↔ Countable Basis ↔ Countable Max. Ideal ↔ . . .

↔ Ulm ↔ Lusin ↔ Perfect Set ↔ Baire space Ramsey ↔ . . .

↔ Cantor-Bendixson ↔ Silver ↔ Baire space Det. ↔ Menger ↔ . . .

(Not Absolute: but only few exceptions like RT2
2, Dirac delta thm. . . )RM verified in Coq (Korea-France).Each Big Five corresponds to foundational program and comp. class. (D&S)Distinction between logical formula with mathematical meaning and

‘purely logical’ formula, i.e. between subject (math) and formalization (logic).



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of ω ∈ Ω.



Ω-invariance: A rose by any other name

Definition (Ω-invariance)

For f : N×N→ N and ω ∈ Ω, the function ∗f (n, ω) is Ω-invariant
if (∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Principle (Ω-CA)

For all Ω-invariant ∗f (n, ω), we have

(∃g : N→ N)(∀n ∈ N)(g(n) = ∗f (n, ω)).

Theorem (Montalbán-S.)
∗RCA0 + Ω-CA ≡cons

∗RCA0 ≡cons RCA0
∗RCA0 proves that every ∆0

1-function is Ω-invariant.
∗RCA0 + Ω-CA proves that every Ω-invariant function is ∆0

1.



Ω-invariance

Principle (Ω-CA)

For all Ω-invariant ∗f (n, ω), we have

(∃g : N→ N)(∀n ∈ N)(g(n) = ∗f (n, ω)).

Theorem (Montalbán-S.)
∗RCA0 + Ω-CA ≡cons

∗RCA0 ≡cons RCA0
∗RCA0 proves that every ∆0

1-function is Ω-invariant.
∗RCA0 + Ω-CA proves that every Ω-invariant function is ∆0

1.

We cannot remove Ω-invariance from Ω-CA, or we obtain WKL.

Principle (implies WKL)

For all (possibly non-Ω-invariant) ∗f (n, ω), we have

(∃g : N→ N)(∀n ∈ N)(g(n) = ∗f (n, ω)).



Ω-invariance and real numbers

Definition

1) For qn : N→ Q, ω ∈ Ω, ∗qω is Ω-invariant if (∀ω′ ∈ Ω)(∗qω ≈ ∗qω′)
2) For F : R× N→ R and ω ∈ Ω, ∗F (x , ω) is Ω-invariant if

(∀x ∈ R, ω′ ∈ Ω)(∗F (x , ω) ≈ ∗F (x , ω′)). (∗∗)

Theorem (In ∗RCA0 + Ω-CA)

1) For Ω-invariant ∗qω, there is x ∈ R such that x ≈ ∗qω.

2) For Ω-invariant ∗F (x , ω), there is G : R→ R such that

(∀x ∈ R)(∗F (x , ω) ≈ G (x)).

The standard part map ◦(x + ε) = x (x ∈ R and ε ≈ 0) is highly

non-computable, but Ω-CA provides a computable alternative for

Ω-invariant reals and functions.

However, (**) is implied by (∀x ∈ R)(∀ε, ε′ ≈ 0)(∗F (x , ε) ≈ ∗F (x , ε′)).

‘Computable’ physics



Ω-invariance and Continuity

Theorem (In ∗RCA0 + Ω-CA)

For F : R→ R, NS-continuity implies ‘continuity with modulus’:

(∀x ∈ R, y ∈ ∗R)(x ≈ y → ∗F (x) ≈ ∗F (y))

implies

(∃g : N→ Q)(∀x , y ∈ R)(∀ε > 0)(|x−y | < g(ε, x)→ |F (x)−F (y)| < ε).

Computable modulus of continuity. (Same for uniform continuity.)

About that coding in Reverse Mathematics. . .



Coding and RM



Ω-invariance and continuity

Reverse Mathematics Without Coding, given the ‘right’ definitions.

NOT: x = (qn)n∈N is a real IF (∀n, i ∈ N)(|qn − qn+i )| < 1
2n .

BUT: x = (qn)n∈N is a real IF (∀ω, ω′ ∈ Ω)(∗qω ≈ ∗qω′).

Represent a continuous function G : R→ R via G : Q→ Q such that

(∀x ∈ R)(∀z , y ∈ ∗Q)(x ≈ y ≈ z → ∗G (y) ≈ ∗G (z)),

and define G : R→ R as G(x) = G(qn) := ∗G (qω).

Then G is pointwise NS-continuous and Ω-invariant. I.e. G(x) is a
real number for x ∈ R.

Even discontinuous functions H : R→ R can be represented by

Ω-invariant (nonstandard) H : ∗Q→ ∗Q

All this works because ∗Q ≈ R.



Higher-order RM

Ulrich Kohlenbach’s system RCAω
0 extends RCA0 with all finite types.

Equivalences between classical principles in RCAω0 .
1 (∃2) ≡ (∃ϕ2)(∀f 1)(ϕf =0 0↔ (∃x0)f (x0) = 0).

2 There exists standard F 1→0 such that for all x ∈ R we have

F (x) =

{
0 x ≤R 0

1 x >R 0
.

3 UWKL ≡ (∃Φ1→1)(∀f 1)(T∞(f )→ (∀x0)(f ([Φf ]x) =0 0)).
4 UIVT ≡ (∃Φ)(∀F ∈ C )(F (Φ(F )) =R 0). (BHK)

But also intuitionistic principles can be studied in RCAω0 :

(∃Ψ3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ψ(ϕ)) = g(Ψ(ϕ))→ ϕ(f ) =0 ϕ(g)].

The ‘fan functional’ Ψ implies that all type 2 functions are
(uniformly) continuous.



Higher-order RM and NSA

(Joint work with Erik Palmgren)

Nelson’s internal approach: st(x) is a new predicate with axioms
ST guaranteeing the basic properties of ‘x is standard’

RCAΩ
0 is RCAω0 + ST + Ω-CA and plus:

(∀stxτ )[F (x) = 1↔ Ast(x)]→ (∀stxτ )[Ast(x)↔ A(x)]. (F)



Here be functionals

In RCAΩ
0 , we have

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).
2 Π0

1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x)F (x0) = 0]
3 UWKL ≡ (∃stΦ1→1)(∀st f 1)(T st

∞(f )→ (∀stx0)(f ([Φf ]x) =0 0)).

4 WKL∗ ≡ (∀st f 1)(T st
∞(f )→ (∃stα1)(∀x0)(f (αx) =0 0)).

5 UIVT ≡ (∃stΦ)(∀stF ∈ C )(F (Φ(F )) =R 0).
6 IVT∗ ≡ (∀stF ∈ C )(∃stx ∈ [0, 1])(F (x) =∗R 0).
7 UWEIst ≡ (∃stΦ)(∀stF ∈ C )(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F ))).

8 WEI∗ ≡ (∀stF ∈ C )(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

9 WEI∗∗(≈) ≡ (∀stF ∈ C )(∃q0 ∈ [0, 1])(∀r0 ∈ [0, 1])(F (r) / F (q)).

10 Decidability of weak Π1
1-form. in LR = {0, 1,+,×,≤R, x

1,F ∈ C}.

General Theme I (∃2)st ↔ UT ↔ T ∗ ↔ T ∗∗(≈)↔ Π0
1-TRANS

WHERE: theorem T provable from (∃2), UT is uniform/functional

version, T ∗ and T ∗∗(≈) are nonstandard versions.



Kijk omhoog. . .

General theme I connects WKL0 and ACA0 (≈ (∃2)).

WKL0

ACA0
=

ATR0

Π1
1CA0

(Analogy by Simpson)

The Suslin functional S2 is essentially Π1
1-CA0.

General Theme II (S2)st ↔ UT ↔ T ∗ ↔ Π1
1-TRANS

WHERE: theorem T provable from ATR0 but not from (∃2), UT is

uniform/functional version, T ∗ is a special nonstandard version.

‘Down under’: BD-N, WLPO, Fan Functional, . . .



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?



A joke about R, courtesy of SMBC


