
Viewing λ-terms through Maps

Masahiko Sato

Graduate School of Informatics, Kyoto University

Joint work with Randy Pollack,
Helmut Schwichtenberg and Takafumi Sakurai

Sy Friedman’s 60th Birthday Conference
KGRC, Vienna, July 9, 2013

Motivations

The notion of binding is fundamental in mathematics (not
only in proof theory and λ-calculus.)

What are lambda terms?

How are they constructed?

Can we define λ-terms without using the notion of
equivalence relation?

A good definition of lambda term will contribute to the design
and implementation of proof assistants.

BTW, I am a finitist (in a way).

We have formally verified all the technical results in this work in
the proof assistants Minlog and Isabelle.

Motivations

The notion of binding is fundamental in mathematics (not
only in proof theory and λ-calculus.)

What are lambda terms?

How are they constructed?

Can we define λ-terms without using the notion of
equivalence relation?

A good definition of lambda term will contribute to the design
and implementation of proof assistants.

BTW, I am a finitist (in a way).

We have formally verified all the technical results in this work in
the proof assistants Minlog and Isabelle.

Good points of our approach

The inductive structure of the terms is nicer compared to
other approaches.

Can define closed lambda terms directly without first defining
the lambda terms containing free parameters.

Can use the same technique to define sentences without first
defining formulas containing free parameters.

A special generic constant □ must be included as a term,
however.

History

1930’s. Church defined raw lambda terms (Λ) and defined
α-equivalence relation on them.

1940. Quine defined graphical representation of lambda
terms. Later, Bourbaki (1954) rediscovered it.

1972. de Bruijn defined representation of lambda terms by
indices (D).
1980. S. defined representation of lambda terms by map and
skeleton (precursor of L).
2013. This talk clarifies the relationship among the above four
representations.

History (cont.)

Church (Λ)

Quine-Bourbaki (Λ/=α)

S. (L′) de Bruijn (D)

L ≃ D0

?

� j

j �

Logical View

Church (Λ)

S. (L′) de Bruijn (D)

L ≃ D0

Quine-Bourbaki (Λ/=α)

+ s

s +

?

.. example

Summary of the talk

Three datatypes
We will relate the three datatypes (Λ,L,D) of expressions
introduced by Church, S. and de Bruijn.

Λ = The datatype of raw λ-terms.

L = The datatype of lambda-expressions.

D = The datatype of de Bruijn expressions.

Three types of abstractions

Λ :abstraction by parameters x ∈ X.
L :abstraction by maps m ∈ M.

D :abstraction by indices i ∈ I.

Summary of the talk (cont.)

K,L ∈ Λ ::= x | □ | app(K,L) | lam(x,K).

M,N ∈ L ::= x | □ | app(M,N) | mask(m,M) (m | M).

D,E ∈ D ::= x | □ | app(D,E) | i | bind(D).

x ∈ X.
m ∈ M.

i ∈ I.

□ (called a box) is a special constant denoting a hole to be filled
with lambda expressions.

Datatypes and constructors

...1 Every object of a datatype is uniqulely constructed by an
application of a constructor function c to already constructed
objects:

d = c(d1, . . . , dk).

...2 Every construtor has a unique type:

c : D1 × · · · × Dk → D,

where c can be a partial function.
...3 Given d1 ∈ D1, . . . , dk ∈ Dk, it is primitive recursively
decidable if c can be successfully applied to these objects.

Hence, every object can be represented by a finite tree and we can
naturally associcate an induction principle with every datatatype.

The notion of map

The notion of map is a generalization of the
notion of occurrence of a symbol in syntactic
expressions such as formulas or lambda
terms.

Plan of the talk

Part 1. L.
Part 2. Λ. Will show L ≃ Λ/ ≡α.

Part 3. D. Will show L ≃ D0.

map/skeleton functions will play important roles in all the 3 parts.

Part 1

L
The Datatype of Lambda-exressions

The Datatype M of Maps

0 ∈ M 1 ∈ M

m ∈ M n ∈ M m ̸= 0 or n ̸= 0

cons(m,n) ∈ M

Note that
cons : M × M → M

is a partial function.
We will write (m n) or mn for cons(m,n).

Orthogonality relation on maps

m ⊥ 0 0 ⊥ n
m ⊥ n m′ ⊥ n′

mm′ ⊥ nn′

Example: (1 0)⊥ (0 1) but not (1 1)⊥ (0 1).

The Datatype X of Parameters

We assume a countably infinite set X of parameters.
We will write x, y, z for parameters.
We assume that equality relation on X is decidable.

The Datatype L and the Divisibility Relation

x ∈ L
par

□ ∈ L box

M ∈ L N ∈ L
app(M,N) ∈ L

app
m ∈ M M ∈ L m | M

mask(m,M) ∈ L mask

0 | x 0 | □ 1 | □

m | M n | N
mapp(m,n) | app(M,N)

m | N n | N m ⊥ n

m | mask(n,N)

The Datatype L of lambda-expressions (cont.)

Notational Convention

We use M,N,P as metavariables ranging over
lambda-expressions.

We write (M N) and also MN for app(M,N).

We write m\M for mask(m,M).

A lambda-expression of the form m\M is called an abstract.

We use A,B as metavariables ranging over abstarcts, and
write A for the subset of L consisting of all the abstracts.

Map and Skeleton

We write Mx for map(x,M), and Mx for skel(x,M).

map : X × L → M

yx :=

{
1 if x = y,
0 if x ̸= y.

(M N)x := (Mx Nx).

(m\M)x := Mx.

skel : X × L → L

yx :=

{
□ if x = y,
y if x ̸= y.

(M N)x := (Mx Nx).

(m\M)x := m\Mx.

Lambda Abstraction in L

We define lam : X × L → L by:

lam(x,M) := Mx\M
x.

Examples. We assume that x, y and z are distinct parameters.

lam(x, x) = 1\□.

lam(x, y) = 0\y.

lam(x, lam(y, x)) = lam(x, 0\x)

= 1\0\□.

lam(x, lam(y, y)) = lam(x, lam(1,□))

= 0\1\□.

lam(x, lam(y, lam(z, (xz yz)))) =

(10 00)\(00 10)\(01 01)\(□□ □□)

Hole Filling and Instantiation

We write Mm[P] for the result of filling boxes (holes) in M
specified by map m with P . Mm[P] is defined only if m | M .
We write A▼P for the result of instantiating abstract A with P .

fill : L × M × L → L
□1[P] := P.

□0[P] := □.

x0[P] := x.

(M N)(m n)[P] := (Mm[P] Nn[P]).

(n\N)m[P] := n\Nm[P].

▼ : A × L → LΛ

(m\M)▼P := Mm[P].

Substitution

We can now define substitution operation:
subst : L × X × L → L as follows.

[P/x]M := lam(x,M)▼P.

subst enjoys the following properties.

[P/x]y =

{
P if x = y,
y if x ̸= y.

[P/x]□ = □.

[P/x](M N) = ([P/x]M [P/x]N).

[P/x](m\M) = (m\[P/x]M).

Substitution (cont.)

Example.

[y/x]lam(y, yx) = [y/x](10\□x)

= 10\[y/x](□ x)

= 10\([y/x]□ [y/x]x)

= 10\□y

= lam(z, zy)

Remark. By internalizing the substitution operation, we can easily
get an explicit substitution calculus.

Substitution Lemma
If x ̸= y and x ̸∈ FP(P), then

[P/y][N/x]M = [[P/y]N/x][P/y]M.

Proof. By induction on M ∈ L. Here, we only treat the case
where M = m\M ′.

[P/y][N/x]M

= [P/y][N/x](m\M ′)

= m\[P/y][N/x]M ′

= m\[[P/y]N/x][P/y]M ′ (by IH)

= [[P/y]N/x][P/y](m\M ′)

= [[P/y]N/x][P/y]M.

The Lβ-calculus

AM →β A▼M β

M →β M ′

MN →β M ′N
appl

M ∈ L
MN →β MN ′ appr

M →β N

lam(x,M) →β lam(x,N)
ξ

Remark. Traditional way of formulating β-conversion rule is:

(lam(x,M) N) →β [N/x]M.

Part 2

Λ
The Datatype of Raw Lambda-terms

The Datatype Λ of Raw λ-terms

x ∈ Λ
par

□ ∈ Λ
box

K ∈ Λ L ∈ Λ
app(K,L) ∈ Λ

app x ∈ X K ∈ Λ
lam(x,K) ∈ Λ

lam

K,L ∈ Λ ::= x | □ | app(K,L) | lam(x,K).

Remark. lam binds parameter x in M .

Map and Skeleton

We define map : X × Λ → M and skel : X × Λ → Λ.

yx :=

{
1 if x = y,
0 if x ̸= y.

□x := 0.

(K L)x := (Kx Lx).

lam(y,K)x :=

{
0 if x = y,
Kx if x ̸= y.

yx :=

{
□ if x = y,
y if x ̸= y.

□x := □.

(K L)x := (Kx Lx).

lam(y,K)x :=

{
lam(y,K) if x = y,
lam(y,Kx) if x ̸= y.

Map and Skeleton (cont.)

x does not occur free in K

⇐⇒Kx = 0

⇐⇒Kx = K

Remark. This shows that the notion of map is a generalization of
the notion of occurrence.

α-equivalence Relation

We define the α-equivalence relation, =α, using the map/skeleton
functions.

x =α x □ =α □

K =α K′ L =α L′

KL =α K′L′
Kx = Ly Kx =α Ly

lam(x,K) =α lam(y, L)

Remark. No renaming is needed in this definition, and it is easy to
verify that this is indeed a decidable equivalence relation.

α-equivalence Relation

We can show that lam(x, lam(y, yx)) =α lam(y, lam(x, xy)) as
follows.

01 = 01

10 = 10

□ =α □ □ =α □
□□ =α □□

lam(y, y□) =α lam(x, x□)

lam(x, lam(y, yx)) =α lam(y, lam(x, xy))

Substitution

We think that it is more natural to define substitution as a relation
(which is invariant under α-equivalence) than to define it as a
function (using a choice function which chooses a fresh parameter).

But we skip the discussion here.

Interpretation of Λ in L

We define the interpretation function [[−]] : Λ → L as follows.

[[x]] := x.

[[□]] := □.

[[KL]] := [[K]][[L]].

[[lam(x,K)]] := lam(x, [[K]]).

Remark. Two raw λ-terms K and L are α-equivalent iff
[[M]] = [[N]].

Part 3

D
The Datatype of de Bruijn-expressions

The Datatype I of Indices

We use natural numbers as indices.

i, j ∈ I ::= 0 | 1 | 2 | 3 | · · ·

The Datatype D of de Bruijn-expressions

x ∈ D
par

□ ∈ D box
i ∈ D idx

D ∈ D E ∈ D
app(D,E) ∈ D

app D ∈ D
bind(D) ∈ D bind

We write [D] for bind(D).

Example: λx. (λy. yx)x

λ ?) ?(λ ?

(01)1\[0 □]□
� -

⟨X⟩x

?

6

⟨X⟩y

λ ??)(λ ?

[[0 1] 0]

λ ?) ?(λ ?

(01)1 \ 10\(□ □)□
λ ??)(λ ?

[10\(□ 0) 0]
� -⟨X⟩x

?

6

⟨X⟩yλ)(λ

.. summary

Conclusion

We have introduced a new datatype (L) whose elements
canonically represent the lambda terms.

In particular, abstracts are represented as pairs of the map
parts and the skeleteton parts of the abstracts.

Substitution operation on L is a homomorphism, and can be
computed by first-order term rewriting (explicit substitution
without renaming).

Induction principle on L is structural and follow the pattern of
the inductive definition of the datatype.

L is isomorphic to the datatype of raw λ-terms modulo
α-equivalence, and also is isomprphic to the datatype of de
Bruijn-expressions. These isomorphisms respect substitution
operations.

We are almost finishing formal verifications of all the technical
results in the proof assistants Isabelle/{HOL, Nominal} and
Minlog.

