Analytic eventually different families of functions are not maximal

Asger Törnquist (Copenhagen)

asgert@math.ku.dk

Sy's B-day bash, July 9, 2013

Definition

・ロン ・回と ・ヨン・

æ

Definition

1. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called almost disjoint (a.d.) if for any two distinct $x, y \in \mathcal{F}$ we have

 $|x \cap y| < \aleph_0.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

1. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called almost disjoint (a.d.) if for any two distinct $x, y \in \mathcal{F}$ we have

$$|x\cap y|<\aleph_0.$$

2. An a.d. family is maximal, or mad, if it is maximal among a.d. families under inclusion.

伺 とう ヨン うちょう

Definition

1. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called almost disjoint (a.d.) if for any two distinct $x, y \in \mathcal{F}$ we have

$$|x\cap y|<\aleph_0.$$

- 2. An a.d. family is maximal, or mad, if it is maximal among a.d. families under inclusion.
- 3. An a.d. family A is analytic if it is analytic as a subset of $\mathcal{P}(\omega) \simeq 2^{\omega}$ (Cantor space).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

1. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called almost disjoint (a.d.) if for any two distinct $x, y \in \mathcal{F}$ we have

$$|x\cap y|<\aleph_0.$$

- 2. An a.d. family is maximal, or mad, if it is maximal among a.d. families under inclusion.
- 3. An a.d. family A is analytic if it is analytic as a subset of $\mathcal{P}(\omega) \simeq 2^{\omega}$ (Cantor space).

Theorem (Mathias, 1967?)

An infinite analytic a.d. family in ω is not maximal.

• E •

イロン 不同と 不同と 不同と

æ

1. A family $\mathcal{F} \subseteq \omega^{\omega}$ is called **eventually different** (e.d.) if for any two distinct $f, g \in \mathcal{F}$ we have

$$|\{n \in \omega : f(n) = g(n)\}| < \aleph_0.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

3

1. A family $\mathcal{F} \subseteq \omega^{\omega}$ is called **eventually different** (e.d.) if for any two distinct $f, g \in \mathcal{F}$ we have

$$|\{n \in \omega : f(n) = g(n)\}| < \aleph_0.$$

2. An e.d. family is **maximal** if it is maximal among e.d. families under inclusion.

・ 同 ト ・ ヨ ト ・ ヨ ト

1. A family $\mathcal{F} \subseteq \omega^{\omega}$ is called **eventually different** (e.d.) if for any two distinct $f, g \in \mathcal{F}$ we have

$$|\{n \in \omega : f(n) = g(n)\}| < \aleph_0.$$

- 2. An e.d. family is **maximal** if it is maximal among e.d. families under inclusion.
- 3. An e.d. family A is **analytic** if it is analytic as a subset of ω^{ω} (Baire space).

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

1. A family $\mathcal{F} \subseteq \omega^{\omega}$ is called **eventually different** (e.d.) if for any two distinct $f, g \in \mathcal{F}$ we have

$$|\{n \in \omega : f(n) = g(n)\}| < \aleph_0.$$

- 2. An e.d. family is **maximal** if it is maximal among e.d. families under inclusion.
- 3. An e.d. family A is **analytic** if it is analytic as a subset of ω^{ω} (Baire space).

Question. Can an analytic e.d. family be maximal?

(4月) (3日) (3日) 日

An analytic eventually different family in ω^{ω} is **never** maximal.

同 ト イヨ ト イヨト

An analytic eventually different family in ω^{ω} is **never** maximal.

 Unlike Mathias' proof of his theorem, the proof of the above uses only classical ideas from descriptive set theory.

向下 イヨト イヨト

An analytic eventually different family in ω^{ω} is **never** maximal.

- Unlike Mathias' proof of his theorem, the proof of the above uses only classical ideas from descriptive set theory.
- The same ideas yield a new, "classical" proof of Mathias' theorem.

高 とう ヨン うまと

An analytic eventually different family in ω^{ω} is **never** maximal.

- Unlike Mathias' proof of his theorem, the proof of the above uses only classical ideas from descriptive set theory.
- The same ideas yield a new, "classical" proof of Mathias' theorem.
- Moreover, the ideas also make it possible to answer similar questions about eventually different (a.k.a. cofinitary) families and groups of *permutations* (which seem to have been posed by Andreas Blass about a decade ago): Analytic such families and groups are never maximal.

・ 「 ト ・ ヨ ト ・ ヨ ト ・

We will say that a tree T is **perfect in the first coordinate** if for every $t \in T$ there are $u, v \supseteq t$ such that $u^0 \perp v^0$.

(周) (ヨ) (ヨ) (ヨ)

We will say that a tree T is **perfect in the first coordinate** if for every $t \in T$ there are $u, v \supseteq t$ such that $u^0 \perp v^0$.

Theorem (Perfect set theorem for analytic sets)

・吊り ・ヨン ・ヨン ・ヨ

We will say that a tree T is **perfect in the first coordinate** if for every $t \in T$ there are $u, v \supseteq t$ such that $u^0 \perp v^0$.

Theorem (Perfect set theorem for analytic sets) Let T be a tree on $\omega \times \omega$. Then there is a tree $\hat{T} \subseteq T$ and a countable set $C \subseteq \omega^{\omega}$ such that

・吊り イヨト イヨト ニヨ

We will say that a tree T is **perfect in the first coordinate** if for every $t \in T$ there are $u, v \supseteq t$ such that $u^0 \perp v^0$.

Theorem (Perfect set theorem for analytic sets) Let T be a tree on $\omega \times \omega$. Then there is a tree $\hat{T} \subseteq T$ and a countable set $C \subseteq \omega^{\omega}$ such that

1.
$$p[T] = C \cup p[\hat{T}].$$

・吊り イヨト イヨト ニヨ

We will say that a tree T is **perfect in the first coordinate** if for every $t \in T$ there are $u, v \supseteq t$ such that $u^0 \perp v^0$.

Theorem (Perfect set theorem for analytic sets) Let T be a tree on $\omega \times \omega$. Then there is a tree $\hat{T} \subseteq T$ and a countable set $C \subseteq \omega^{\omega}$ such that

p[T] = C ∪ p[Î].
 Î (which may be empty) is perfect in the first coordinate.

The perfect set theorem and ordinal analysis revisited, II

Proof.

伺下 イヨト イヨト

In general, for a tree S on $\omega \times \omega$, define

$$S' = \{t \in S : (\exists u, v)t \subseteq u, v \land u^0 \perp v^0\}.$$

向下 イヨト イヨト

In general, for a tree S on $\omega imes \omega$, define

$$S' = \{t \in S : (\exists u, v)t \subseteq u, v \land u^0 \perp v^0\}.$$

For T as in the theorem, let

► $T^0 = T$

向下 イヨト イヨト

In general, for a tree S on $\omega \times \omega$, define

$$S' = \{t \in S : (\exists u, v)t \subseteq u, v \land u^0 \perp v^0\}.$$

For T as in the theorem, let

•
$$T^0 = T$$

• $T^{\alpha+1} = (T^{\alpha})^{\prime}$

伺下 イヨト イヨト

In general, for a tree S on $\omega imes \omega$, define

$$S' = \{t \in S : (\exists u, v)t \subseteq u, v \land u^0 \perp v^0\}.$$

For T as in the theorem, let

 $T^{0} = T$ $T^{\alpha+1} = (T^{\alpha})'$ $T^{\lambda} = \bigcap_{\alpha < \lambda} T^{\alpha}$

伺 と く き と く き と

In general, for a tree S on $\omega imes \omega$, define

$$S' = \{t \in S : (\exists u, v)t \subseteq u, v \land u^0 \perp v^0\}.$$

For T as in the theorem, let

 $T^{0} = T$ $T^{\alpha+1} = (T^{\alpha})'$ $T^{\lambda} = \bigcap_{\alpha < \lambda} T^{\alpha}$

Since T is countable, there is $\lambda < \omega_1$ where $T^{\lambda+1} = T^{\lambda}$. Let $\hat{T} = T^{\lambda}$. If $x \in C = p[T] \setminus p[\hat{T}]$ then there is some $\alpha < \lambda$ and $t \in T^{\alpha}$ such that x is the only branch in T^{α} extending t. Whence C is countable.

通 と く ヨ と く ヨ と

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

Abus de langage: From now on, we will simultaneously use the same symbol for a function and its graph.

- 「同下」 (日下) (日下) 日

Abus de langage: From now on, we will simultaneously use the same symbol for a function and its graph.

Definition

- 「同下」 (日下) (日下) 日

Abus de langage: From now on, we will simultaneously use the same symbol for a function and its graph.

Definition

Call a sequence $(t_i)_{i \in \omega}$ in T a **diagonal sequence** if for all $i \neq j$, and all $y \in p[T_{t_i}]$, $z \in p[T_{t_i}]$ we have

$$y \cap z \subseteq t_i^0 \cap t_j^0.$$

回 と く ヨ と く ヨ と

Suppose T is perfect in the first coordinate and p[T] is an e.d. family. Then T admits a diagonal sequence.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose T is perfect in the first coordinate and p[T] is an e.d. family. Then T admits a diagonal sequence.

Proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose T is perfect in the first coordinate and p[T] is an e.d. family. Then T admits a diagonal sequence.

Proof.

Claim: If $s, v \in T$ and $s^0 \perp v^0$, then there are $t, w \in T$ with $t \supseteq s$ and $w \supseteq v$ such that for all $y \in p[T_t]$ and all $z \in p[T_w]$ we have $y \cap z \subseteq t^0 \cap w^0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose T is perfect in the first coordinate and p[T] is an e.d. family. Then T admits a diagonal sequence.

Proof.

Claim: If $s, v \in T$ and $s^0 \perp v^0$, then there are $t, w \in T$ with $t \supseteq s$ and $w \supseteq v$ such that for all $y \in p[T_t]$ and all $z \in p[T_w]$ we have $y \cap z \subseteq t^0 \cap w^0$.

Proof of claim: Otherwise, find $s \subseteq s_1 \subseteq \cdots$ and $v \subseteq v_1 \subseteq \cdots$ such that $|s_i^0 \cap v_i^0| \ge i$, contradicting that p[T] is e.d.

(本間) (本語) (本語) (語)

Suppose T is perfect in the first coordinate and p[T] is an e.d. family. Then T admits a diagonal sequence.

Proof.

Claim: If $s, v \in T$ and $s^0 \perp v^0$, then there are $t, w \in T$ with $t \supseteq s$ and $w \supseteq v$ such that for all $y \in p[T_t]$ and all $z \in p[T_w]$ we have $y \cap z \subseteq t^0 \cap w^0$.

Proof of claim: Otherwise, find $s \subseteq s_1 \subseteq \cdots$ and $v \subseteq v_1 \subseteq \cdots$ such that $|s_i^0 \cap v_i^0| \ge i$, contradicting that p[T] is e.d.

Fixing $s_0, v_0 \in T$ with $s^0 \perp v^0$, get $t \supseteq s_0$ and $w \supseteq v_0$ as in the claim and let $t_0 = t$. Since T is perfect in the first coordinate, find $s_1, v_1 \supseteq w$ with $s_1^0 \perp v_1^0$, and repeat...

Ordinal analysis for e.d. families

Lemma

æ

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

・ 同 ト ・ ヨ ト ・ ヨ ト

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1. $\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$.

・吊り ・ヨト ・ヨト ・ヨ

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1.
$$\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$$
.

2.
$$T^{\alpha} = T \setminus \{t \in T : (\exists \beta < \alpha) (\exists i < \omega) t \supseteq t_i^{\beta}\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1.
$$\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$$
.
2. $T^{\alpha} = T \setminus \{t \in T : (\exists \beta < \alpha) (\exists i < \omega) t \supseteq t_{i}^{\beta} \}$
3. $\hat{T}^{\lambda} = \emptyset$, that is, $p[T^{\lambda}]$ is countable.

< 同 > < 注 > < 注 > … 注

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1.
$$\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$$
.
2. $T^{\alpha} = T \setminus \{t \in T : (\exists \beta < \alpha) (\exists i < \omega) t \supseteq t_{i}^{\beta}\}.$
3. $\hat{T}^{\lambda} = \emptyset$, that is, $p[T^{\lambda}]$ is countable.

Proof.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1.
$$\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$$
.
2. $T^{\alpha} = T \setminus \{t \in T : (\exists \beta < \alpha) (\exists i < \omega) t \supseteq t_{i}^{\beta}\}.$
3. $\hat{T}^{\lambda} = \emptyset$, that is, $p[T^{\lambda}]$ is countable.

Proof.

Go on doing this for as long as you can, but since T is countable, you'll have to stop at some $\lambda < \omega_1$.

伺い イヨト イヨト 三日

Let T be a tree on $\omega \times \omega$ such that p[T] is an e.d. family. Then there is an ordinal $\lambda < \omega_1$, trees $T^{\alpha} \subseteq T$ for $\alpha \leq \lambda$, and diaginal sequences $(t_i^{\alpha})_{i \in \omega}$ in \hat{T}^{α} for $\alpha < \lambda$ such that

1.
$$\beta < \alpha \implies T^{\alpha} \subseteq T^{\beta}$$
.
2. $T^{\alpha} = T \setminus \{t \in T : (\exists \beta < \alpha) (\exists i < \omega) t \supseteq t_{i}^{\beta}\}.$
3. $\hat{T}^{\lambda} = \emptyset$, that is, $p[T^{\lambda}]$ is countable.

Proof.

Go on doing this for as long as you can, but since T is countable, you'll have to stop at some $\lambda < \omega_1$.

Definition. We call the triple $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_i^{\alpha})_{i < \omega, \alpha < \lambda})$ an *ordinal analysis* of T.

(本間) (本語) (本語) (語)

Asger Törnquist (Copenhagen) Analytic eventually different families of functions are not maxim

æ

If T is a tree on $\omega \times \omega$ s.t. $\mathcal{A} = p[T]$ is an e.d. family then there is a countable set $C \subseteq \omega^{\omega}$ and an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_{i}^{\alpha})_{i < \omega, \alpha < \lambda})$ of T such that:

・日・ ・ ヨ・ ・ ヨ・

If T is a tree on $\omega \times \omega$ s.t. $\mathcal{A} = p[T]$ is an e.d. family then there is a countable set $C \subseteq \omega^{\omega}$ and an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_{i}^{\alpha})_{i < \omega, \alpha < \lambda})$ of T such that:

For all $x \in \mathcal{A}$ either

 $x \in C$

・ 同 ト ・ ヨ ト ・ ヨ ト

If T is a tree on $\omega \times \omega$ s.t. $\mathcal{A} = p[T]$ is an e.d. family then there is a countable set $C \subseteq \omega^{\omega}$ and an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_{i}^{\alpha})_{i < \omega, \alpha < \lambda})$ of T such that:

For all $x \in \mathcal{A}$ either

 $x \in C$

or

$$(\exists \alpha < \lambda)(\exists i < \omega) \ x \in p[\hat{T}^{\alpha}_{t^{\alpha}_{i}}].$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

A corollary and its proof

Proof.

Asger Törnquist (Copenhagen) Analytic eventually different families of functions are not maxim

イロン 不同と 不同と 不同と

æ

Proof.

For each $\alpha \leq \lambda$, let $C_{\alpha} \subseteq \omega^{\omega}$ be a countable set such that $p[T^{\alpha}] = C_{\alpha} \cup p[\hat{T}_{\alpha}]$, and let

$$C = \bigcup_{\alpha \leq \lambda} C_{\alpha}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof.

For each $\alpha \leq \lambda$, let $C_{\alpha} \subseteq \omega^{\omega}$ be a countable set such that $p[T^{\alpha}] = C_{\alpha} \cup p[\hat{T}_{\alpha}]$, and let

$$C = \bigcup_{\alpha \leq \lambda} C_{\alpha}.$$

For $x \in \mathcal{A}$, fix y such that $(x, y) \in [T]$, and assume $x \notin C$. Let α be least such that $x \notin p[T^{\alpha}]$, and $\beta < \alpha$ least such that $(x, y) \supseteq t_i^{\beta}$ for some $i < \omega$. Now $(x, y) \in [T_{t_i^{\beta}}^{\beta}]$, and so since $x \notin C$, we must have $x \in p[\hat{T}_{t_i^{\beta}}]$.

伺い イヨト イヨト 三日

回 と く ヨ と く ヨ と

• a tree T with p[T] = A;

▲圖▶ ▲屋▶ ▲屋▶

- a tree T with p[T] = A;
- an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_i^{\alpha})_{i < \omega, \alpha < \lambda});$

▲□→ ▲ 国 → ▲ 国 →

- a tree T with p[T] = A;
- an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_{i}^{\alpha})_{i < \omega, \alpha < \lambda});$
- a countable $C \subseteq \omega^{\omega}$ as in the corollary.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- a tree T with p[T] = A;
- an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_i^{\alpha})_{i < \omega, \alpha < \lambda}\};$
- a countable $C \subseteq \omega^{\omega}$ as in the corollary.

For simplicity, assume $\lambda \geq \omega$.

・吊り ・ヨト ・ヨト ・ヨ

- a tree T with p[T] = A;
- an ordinal analysis $(\lambda, (T^{\alpha})_{\alpha \leq \lambda}, (t_i^{\alpha})_{i < \omega, \alpha < \lambda}\};$
- a countable $C \subseteq \omega^{\omega}$ as in the corollary.

For simplicity, assume $\lambda \geq \omega$.

Enumerate λ as $(\alpha_j)_{j < \omega}$ and enumerate C as $(c_j)_{j < \omega}$.

・吊り ・ヨン ・ヨン ・ヨ

 $n_0 < n_1 < \ldots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 $n_0 < n_1 < \dots$

and functions $f_i : n_i \rightarrow \omega$ such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 $n_0 < n_1 < \dots$

and functions $f_i : n_i \rightarrow \omega$ such that

1. $f_{i+1} \supseteq f_i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 $n_0 < n_1 < \dots$

and functions $f_i: n_i \rightarrow \omega$ such that

1.
$$f_{i+1} \supseteq f_i$$

2. $\ln(f_i) = n_i = \max\{\ln(t_i^{\alpha_j}) : j \le i \land l \le 2i+3\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

 $n_0 < n_1 < \dots$

and functions $f_i : n_i \rightarrow \omega$ such that

1.
$$f_{i+1} \supseteq f_i$$

2. $\ln(f_i) = n_i = \max\{\ln(t_i^{\alpha_j}) : j \le i \land l \le 2i + 3\}$
3. For all $k \in [n_i, n_{i+1}), j, l \le i$ and
 $z \in p[\hat{T}_{t_i^{\alpha_j}}^{\alpha_j}] \cup \{c_k : k \le i\}$

we have

 $f_{i+1}(k) \neq z(k)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let β_0, \ldots, β_i enumerate the set $\{\alpha_j : j \leq i\}$ in increasing order. Fix also $k_0 \in [n_i, n_{i+1})$.

伺下 イヨト イヨト

Let β_0, \ldots, β_i enumerate the set $\{\alpha_j : j \leq i\}$ in increasing order. Fix also $k_0 \in [n_i, n_{i+1})$.

Definition

For $q \leq i$ and $i < l \leq 2i + 3$, we say that (q, l) is **covered** at k_0 if for any $g \in p[\hat{T}_{t_i}^{\beta_q}]$ we have:

□→ ★ 国 → ★ 国 → □ 国

Let β_0, \ldots, β_i enumerate the set $\{\alpha_j : j \leq i\}$ in increasing order. Fix also $k_0 \in [n_i, n_{i+1})$.

Definition

For $q \leq i$ and $i < l \leq 2i + 3$, we say that (q, l) is **covered** at k_0 if for any $g \in p[\hat{T}_{t_i}^{\beta_q}]$ we have:

Either there is some $j \leq i$ such that

$$c_j(k_0) = g(k_0)$$

□→ ★ 国 → ★ 国 → □ 国

Let β_0, \ldots, β_i enumerate the set $\{\alpha_j : j \leq i\}$ in increasing order. Fix also $k_0 \in [n_i, n_{i+1})$.

Definition

For $q \leq i$ and $i < l \leq 2i + 3$, we say that (q, l) is **covered** at k_0 if for any $g \in p[\hat{T}_{t_i}^{\beta_q}]$ we have:

Either there is some $j \leq i$ such that

$$c_j(k_0) = g(k_0)$$

or there is $q' \leq q$ and $j \leq i$ and

$$h \in p[\hat{T}_{\substack{\beta_{q'}\\t_j}}^{\beta_{q'}}]$$

such that

$$h(k_0)=g(k_0).$$

伺い イヨト イヨト 三日

• An e.d. family in S_{∞} (the group of permutations of ω) is called a **cofinitary** family of permutations. A cofinitary family is maximal if it is **maximal** under inclusion.

(本間) (本語) (本語) (二語)

- An e.d. family in S_∞ (the group of permutations of ω) is called a cofinitary family of permutations. A cofinitary family is maximal if it is maximal under inclusion.
- ► A cofinitary group is a cofinitary family which forms a subgroup of S_∞. A cofinitary group is maximal if it is maximal under inclusion among cofinitary groups.

- An e.d. family in S_∞ (the group of permutations of ω) is called a cofinitary family of permutations. A cofinitary family is maximal if it is maximal under inclusion.
- ► A cofinitary group is a cofinitary family which forms a subgroup of S_∞. A cofinitary group is maximal if it is maximal under inclusion among cofinitary groups.

Theorem (T., 2013)

1. An analytic cofinitary family in S_{∞} is never maximal.

- An e.d. family in S_∞ (the group of permutations of ω) is called a cofinitary family of permutations. A cofinitary family is maximal if it is maximal under inclusion.
- ► A cofinitary group is a cofinitary family which forms a subgroup of S_∞. A cofinitary group is maximal if it is maximal under inclusion among cofinitary groups.

Theorem (T., 2013)

1. An analytic cofinitary family in S_{∞} is never maximal. 2. An analytic cofinitary group in S_{∞} is never maximal.

Happy Birthday, Sy!

・日・ ・ ヨ・ ・ ヨ・

э