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Mad families and Adrian Mathias, circa 1967

Definition

1. A family F ⊆ P(ω) is called almost disjoint (a.d.) if for any
two distinct x , y ∈ F we have

|x ∩ y | < ℵ0.

2. An a.d. family is maximal, or mad, if it is maximal among a.d.
families under inclusion.

3. An a.d. family A is analytic if it is analytic as a subset of
P(ω) ' 2ω (Cantor space).

Theorem (Mathias, 1967?)

An infinite analytic a.d. family in ω is not maximal.
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The definition - The question

Definition

1. A family F ⊆ ωω is called eventually different (e.d.) if for
any two distinct f , g ∈ F we have

|{n ∈ ω : f (n) = g(n)}| < ℵ0.

2. An e.d. family is maximal if it is maximal among e.d. families
under inclusion.

3. An e.d. family A is analytic if it is analytic as a subset of ωω

(Baire space).

Question. Can an analytic e.d. family be maximal?
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The answer - The moreover

Theorem (T., 2013)

An analytic eventually different family in ωω is never maximal.

I Unlike Mathias’ proof of his theorem, the proof of the above
uses only classical ideas from descriptive set theory.

I The same ideas yield a new, “classical” proof of Mathias’
theorem.

I Moreover, the ideas also make it possible to answer similar
questions about eventually different (a.k.a. cofinitary)
families and groups of permutations (which seem to have
been posed by Andreas Blass about a decade ago): Analytic
such families and groups are never maximal.
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The perfect set theorem and ordinal analysis revisited, I

Recall that A ⊆ ωω is analytic iff there is a tree T on ω × ω such
that A = p[T ], i.e., A is the projection of the (closed) set [T ] of
infinite branches through T . For t ∈ T , we define t0, t1 ∈ ω<ω by
t = (t0, t1).

We will say that a tree T is perfect in the first coordinate if for
every t ∈ T there are u, v ⊇ t such that u0 ⊥ v0.

Theorem (Perfect set theorem for analytic sets)

Let T be a tree on ω × ω. Then there is a tree T̂ ⊆ T and a
countable set C ⊆ ωω such that

1. p[T ] = C ∪ p[T̂ ].

2. T̂ (which may be empty) is perfect in the first coordinate.
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The perfect set theorem and ordinal analysis revisited, II

Proof.

In general, for a tree S on ω × ω, define

S ′ = {t ∈ S : (∃u, v)t ⊆ u, v ∧ u0 ⊥ v0}.

For T as in the theorem, let

I T 0 = T

I Tα+1 = (Tα)′

I Tλ =
⋂
α<λ T

α

Since T is countable, there is λ < ω1 where Tλ+1 = Tλ. Let
T̂ = Tλ. If x ∈ C = p[T ] \ p[T̂ ] then there is some α < λ and
t ∈ Tα such that x is the only branch in Tα extending t. Whence
C is countable.
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Diagonal sequences

We now fix a tree T on ω×ω such that p[T ] is e.d. For t ∈ T , let
Tt = {u ∈ T : u is compatible with t}.

Abus de langage: From now on, we will simultaneously use the
same symbol for a function and its graph.

Definition
Call a sequence (ti )i∈ω in T a diagonal sequence if for all i 6= j ,
and all y ∈ p[Tti ], z ∈ p[Ttj ] we have

y ∩ z ⊆ t0i ∩ t0j .
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Existence of diagonal sequences

Lemma

Suppose T is perfect in the first coordinate and p[T ] is an e.d.
family. Then T admits a diagonal sequence.

Proof.
Claim: If s, v ∈ T and s0 ⊥ v0, then there are t,w ∈ T with
t ⊇ s and w ⊇ v such that for all y ∈ p[Tt ] and all z ∈ p[Tw ] we
have y ∩ z ⊆ t0 ∩ w0.

Proof of claim: Otherwise, find s ⊆ s1 ⊆ · · · and v ⊆ v1 ⊆ · · ·
such that |s0i ∩ v0i | ≥ i , contradicting that p[T ] is e.d.

Fixing s0, v0 ∈ T with s0 ⊥ v0, get t ⊇ s0 and w ⊇ v0 as in the
claim and let t0 = t. Since T is perfect in the first coordinate, find
s1, v1 ⊇ w with s01 ⊥ v01 , and repeat...
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Ordinal analysis for e.d. families

Lemma

Let T be a tree on ω × ω such that p[T ] is an e.d. family. Then
there is an ordinal λ < ω1, trees Tα ⊆ T for α ≤ λ, and diaginal
sequences (tαi )i∈ω in T̂α for α < λ such that

1. β < α =⇒ Tα ⊆ T β.

2. Tα = T \ {t ∈ T : (∃β < α)(∃i < ω)t ⊇ tβi }.
3. T̂λ = ∅, that is, p[Tλ] is countable.

Proof.
Go on doing this for as long as you can, but since T is countable,
you’ll have to stop at some λ < ω1.

Definition. We call the triple (λ, (Tα)α≤λ, (t
α
i )i<ω,α<λ) an

ordinal analysis of T .
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A corollary

Corollary

If T is a tree on ω × ω s.t. A = p[T ] is an e.d. family then there
is a countable set C ⊆ ωω and an ordinal analysis
(λ, (Tα)α≤λ, (t

α
i )i<ω,α<λ) of T such that:

For all x ∈ A either
x ∈ C

or
(∃α < λ)(∃i < ω) x ∈ p[T̂α

tαi
].
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A corollary and its proof

Proof.

For each α ≤ λ, let Cα ⊆ ωω be a countable set such that
p[Tα] = Cα ∪ p[T̂α], and let

C =
⋃
α≤λ

Cα.

For x ∈ A, fix y such that (x , y) ∈ [T ], and assume x /∈ C . Let α
be least such that x /∈ p[Tα], and β < α least such that

(x , y) ⊇ tβi for some i < ω. Now (x , y) ∈ [T β

tβi
], and so since

x /∈ C , we must have x ∈ p[T̂
tβi

].
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Proof of the main theorem

Let A be an analytic e.d. family, and fix:

I a tree T with p[T ] = A;

I an ordinal analysis (λ, (Tα)α≤λ, (t
α
i )i<ω,α<λ};

I a countable C ⊆ ωω as in the corollary.

For simplicity, assume λ ≥ ω.

Enumerate λ as (αj)j<ω and enumerate C as (cj)j<ω.
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Inductive construction

We will construct an increasing sequence of natural numbers

n0 < n1 < . . .

and functions fi : ni → ω such that

1. fi+1 ⊇ fi

2. lh(fi ) = ni = max{lh(t
αj

l ) : j ≤ i ∧ l ≤ 2i + 3}
3. For all k ∈ [ni , ni+1), j , l ≤ i and

z ∈ p[T̂
αj

t
αj
l

] ∪ {ck : k ≤ i}

we have
fi+1(k) 6= z(k)
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Inductive step and covering

Let β0, . . . , βi enumerate the set {αj : j ≤ i} in increasing order.
Fix also k0 ∈ [ni , ni+1).

Definition
For q ≤ i and i < l ≤ 2i + 3, we say that (q, l) is covered at k0 if

for any g ∈ p[T̂
βq

t
βq
l

] we have:

Either there is some j ≤ i such that

cj(k0) = g(k0)

or there is q′ ≤ q and j ≤ i and

h ∈ p[T̂
βq′

t
βq′
j

]

such that
h(k0) = g(k0).
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Cofinitary families and groups

Definition

I An e.d. family in S∞ (the group of permutations of ω) is
called a cofinitary family of permutations. A cofinitary family
is maximal if it is maximal under inclusion.

I A cofinitary group is a cofinitary family which forms a
subgroup of S∞. A cofinitary group is maximal if it is
maximal under inclusion among cofinitary groups.

Theorem (T., 2013)

1. An analytic cofinitary family in S∞ is never maximal.

2. An analytic cofinitary group in S∞ is never maximal.
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Happy Birthday, Sy!
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