

KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC

UNIVERSITÄT WIEN

1090 WIEN, WÄHRINGER STRASSE 25

O.UNIV.-PROF. DR. SY-DAVID FRIEDMAN

INVITATION

KEITA YOKOYAMA

(Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan and University of Berkeley, California, USA)

THE PROOF-THEORETIC STRENGTH OF RAMSEY'S THEOREM FOR PAIRS AND TWO COLORS

Abstract:

In the study of reverse mathematics, determining the first-order strength of Ramsey's theorem for pairs and two colors (RT_2^2) is a long-term open problem. Hirst showed that RT_2^2 implies Σ_2^0 -bounding and Cholak/Jockusch/Slaman showed that RT_2^2 is Π_1^1 -conservative over Σ_2^0 -indiction. Note that the prooftheoretic strength of Σ_2^0 -bounding is the same as that of Σ_1^0 -induction, so the proof-theoretic strength (or consistency strength) of RT_2^2 is in between Σ_1^0 -induction and Σ_2^0 -indiction. Recently, the project of deciding the first-order strength of RT_2^2 has been strongly carried out using forcing constructions or priority arguments on nonstandard models of Σ_2^0 -bounding mainly by Chong, Slaman and Yang, and they proved in particular that RT_2^2 does not imply Σ_2^0 -indiction. In this talk, we use a hybrid of forcing construction, indicator arguments, and proof-theoretic technique to show that the Π_3^0 -part of RT_2^2 is exactly the same as Σ_1^0 -induction, thus, the proof-theoretic strength of RT_2^2 is exactly the same as Σ_1^0 -induction.

This is a joint work with Ludovic Patey.

THURSDAY, FEBRUARY 11, 2016 Tea at 3:30pm in the KGRC meeting room (room 104) Talk at 4:00pm in the KGRC lecture room (room 101) GÖDEL RESEARCH CENTER JOSEPHINUM, 1090 WIEN, WÄHRINGER STRASSE 25

o.Univ.-Prof. Dr. Sy-David Friedman