# KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC

### UNIVERSITÄT WIEN

## 1090 WIEN, WÄHRINGER STRASSE 25

### O.UNIV.-PROF. DR. SY-DAVID FRIEDMAN

INVITATION

PETER NYIKOS (University of South Carolina, Columbia, USA)

## CARDINALITY RESTRICTIONS ON SOME KINDS OF LOCALLY COMPACT SPACES

Abstract:

In what follows, "space" means "Hausdorff  $(T_2)$  topological space."

Some of the theorems and problems to be discussed include:

Theorem 1. It is ZFC-independent whether every locally compact,  $\omega_1$ -compact space of cardinality  $\aleph_1$  is the union of countably many countably compact spaces.

[' $\omega_1$ -compact' means that every closed discrete subspace is countable. This is obviously implied by being the union of countably many countably compact spaces, but the converse is not true.]

Problem 1. Is it consistent that every locally compact,  $\omega_1$ -compact space of cardinality  $\aleph_2$  is the union of countably many countably compact spaces?

Problem 2. Is ZFC enough to imply that there is a normal, locally countable, countably compact space of cardinality greater than  $\aleph_1$ ?

Problem 3. Is it consistent that there exists a normal, locally countable, countably compact space of cardinality greater than  $\aleph_2$ ?

The spaces involved in Problem 2 and Problem 3 are automatically locally compact, because regularity is already enough to give every point a countable countably compact (hence compact) neighborhood.

Problem 4 [Problem 5]. Is there an upper bound on the cardinalities of regular [resp. normal], locally countable, countably compact spaces?

Theorem 2. The axiom  $\Box_{\aleph_1}$  implies that there is a normal, locally countable, countably compact space of cardinality  $\aleph_2$ .

The statement in Theorem 1 was shown consistent by Lyubomyr Zdomskyy, assuming  $\mathfrak{p} > \aleph_1$  plus P-Ideal Dichotomy (PID). Counterexamples have long been known to exist under  $\mathfrak{b} = \aleph_1$ , under  $\clubsuit$ , and under the existence of a Souslin tree.

Theorem 2 may be the first application of  $\Box_{\aleph_1}$  to construct a topological space whose existence in ZFC is unknown.



#### THURSDAY, JUNE 29, 2017

Talk at 2:00pm in the KGRC lecture room (room 101) Tea at 3:30pm in the KGRC meeting room (room 104) GÖDEL RESEARCH CENTER JOSEPHINUM, 1090 WIEN, WÄHRINGER STRASSE 25

o.Univ.-Prof. Dr. Sy-David Friedman