### 

# KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC

### UNIVERSITÄT WIEN

## 1090 WIEN, WÄHRINGER STRASSE 25

### O.UNIV.-PROF. DR. SY-DAVID FRIEDMAN

INVITATION

# YIJIA CHEN (Fudan University, Shanghai, People's Republic of China)

# SLICEWISE DEFINABILITY IN FIRST-ORDER LOGIC WITH BOUNDED QUANTIFIER RANK

### Abstract:

For every  $q \in \mathbb{N}$  let  $\mathrm{FO}_q$  denote the class of sentences of first-order logic FO of quantifier rank at most q. If a graph property can be defined in  $\mathrm{FO}_q$ , then it can be decided in time  $O(n^q)$ . Thus, minimizing q has favorable algorithmic consequences. Many graph properties amount to the existence of a certain set of vertices of size k. Usually this can only be expressed by a sentence of quantifier rank at least k. We use the color-coding method to demonstrate that some (hyper)graph problems can be defined in  $\mathrm{FO}_q$ , where q is independent of k.

It is crucial for our results that the FO-sentences have access to built-in addition and multiplication. It is known that then FO corresponds to the circuit complexity class uniform  $AC^0$ . We explore the connection between the quantifier rank of FO-sentences and the depth of  $AC^0$ -circuits, and prove that  $FO_q \subsetneq FO_{q+1}$  for structures with built-in addition and multiplication.



THURSDAY, AUGUST 17, 2017 Tea at 3:30pm in the KGRC meeting room (room 104) Talk at 4:00pm in the KGRC lecture room (room 101) GÖDEL RESEARCH CENTER JOSEPHINUM, 1090 WIEN, WÄHRINGER STRASSE 25

o.Univ.-Prof. Dr. Sy-David Friedman