2017 seminar talk: Iterates of $M_1$

Talk held by Yizheng Zhu (Universität Münster, Germany) at the KGRC seminar on 2017-10-12.


Assume boldface $\boldsymbol{\Delta}^1_{3}$-determinacy. Let $L_{\kappa_3}[T_2]$ be the admissible closure of the Martin-Solovay tree and let $M_{1,\infty}$ be the direct limit of $M_1$ via countable trees. We show that $L_{\kappa_3}[T_2] \cap V_{u_{\omega}} = M_{1,\infty} | u_{\omega}$. This is a continuation of my talk on 9th, March.

Bottom menu

Kurt Gödel Research Center for Mathematical Logic. Währinger Straße 25, 1090 Wien, Austria. Phone +43-1-4277-50501. Last updated: 2010-12-16, 04:37.