Products of CW complexes

Andrew Brooke-Taylor

UNIVERSITY OF LEEDS
CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.
For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For $n \in \mathbb{N}$, denote by
- D^n the closed ball of radius 1 about the origin in \mathbb{R}^n (the n-disc),
- $\overset{\circ}{D^n}$ its interior, and
- S^{n-1} its boundary (the $(n-1)$-sphere).
CW complexes

Definition

A Hausdorff space \(X \) is a **CW complex** if there exists a set of continuous functions \(\varphi_\alpha : D^n \rightarrow X \) (characteristic maps), for \(\alpha \) in an arbitrary index set and \(n \in \mathbb{N} \) a function of \(\alpha \), such that:

1. \(\varphi_\alpha \mid D^n \) is a homeomorphism to its image, and \(X \) is the disjoint union as \(\alpha \) varies of these homeomorphic images \(\varphi_\alpha[D^n] \) (“cells”).

- Closure-finiteness: For each \(\varphi_\alpha \), \(\varphi_\alpha[S^{n-1}] \) is contained in finitely many cells all of dimension less than \(n \).

- Weak topology: A set is closed if and only if its intersection with each closed cell \(\varphi_\alpha[D^n] \) is closed.

We often denote \(\varphi_\alpha[D^n] \) by \(e_n^\alpha \) or just \(e^\alpha \).
Definition

A Hausdorff space X is a **CW complex** if there exists a set of continuous functions $\varphi_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi_\alpha \upharpoonright \overset{\circ}{D^n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_\alpha[D^n]$ (“cells”).

2. **Closure-finiteness**: For each φ_α, $\varphi_\alpha[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

Andrew Brooke-Taylor (Leeds)
Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi_\alpha|\overset{\circ}{D^n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_\alpha[D^n]$ ("cells").

2. Closure-finiteness: For each φ_α, $\varphi_\alpha[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

3. Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_\alpha[D^n]$ is closed.
Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_\alpha : D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:

1. $\varphi_\alpha \upharpoonright D^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_\alpha[D^n]$ (“cells”).
2. **Closure-finiteness**: For each φ_α, $\varphi_\alpha[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.
3. **Weak topology**: A set is closed if and only if its intersection with each closed cell $\varphi_\alpha[D^n]$ is closed.

We often denote $\varphi_\alpha[D^n]$ by e^n_α or just e_α.
Let X be the "star" with a central vertex x_0 and countably many edges $e_1, \ldots, e_n (n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof: Identify each edge with the unit interval, with x_0 at 0. For every $f: \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with e_1, \ldots, e_n is the interval $[0, 1/(f(n) + 1)]$.

These form a neighbourhood base, but for any countably many f_i, there is a g that is not dominated by any of them, so $U(x_0; g)$ does not contain any of the $U(x_0; f_i)$.
Not necessarily metrizable

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).
Let \(X \) be the “star” with a central vertex \(x_0 \) and countably many edges \(e_{X,n}^1 \) (\(n \in \mathbb{N} \)) emanating from it (and the countably many “other end” vertices of those edges).

\(X \) is not metrizable, as \(x_0 \) does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with \(x_0 \) at 0. For every \(f : \mathbb{N} \to \mathbb{N} \), consider the open neighbourhood \(U(x_0; f) \) of \(x_0 \) whose intersection with \(e_{X,n}^1 \) is the interval \([0, 1/(f(n) + 1)]\).

These form a neighbourhood base, but for any countably many \(f_i \), there is a \(g \) that is not dominated by any of them, so \(U(x_0; g) \) does not contain any of the \(U(x_0; f_i) \).
The Cartesian product of two CW complexes \(X\) and \(Y\), with the product topology, need not be a CW complex. Since \(D_m \times D_n \sim = D_{m+n}\), there is a natural cell structure on \(X \times Y\), which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention

In this talk, \(X \times Y\) is always taken to have the product topology, so "\(X \times Y\) is a CW complex" means "the product topology on \(X \times Y\) is the same as the weak topology."
Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \simeq D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.
Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention
In this talk, $X \times Y$ is always taken to have the product topology, so “$X \times Y$ is a CW complex” means “the product topology on $X \times Y$ is the same as the weak topology”.
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e^{1}_{X,n}$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and $2^{\mathbb{N}_0}$ many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^{\mathbb{N}}$) emanating from it (and the other ends).
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).

Let Y be the “star” with a central vertex y_0 and $2^{\mathbb{N}_0}$ many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^\mathbb{N}$) emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.
Let X be the “star” with a central vertex x_0 and countably many edges $e^1_{X,n} \ (n \in \mathbb{N})$ emanating from it (and the countably many “other end” vertices of those edges).
Let Y be the “star” with a central vertex y_0 and 2^{\aleph_0} many edges $e^1_{Y,f} \ (f \in \mathbb{N}^\mathbb{N})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n)} + 1, \frac{1}{f(n)} + 1 \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e^1_{X,n} \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U \) for every \(n \in \mathbb{N} \).
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, \frac{1}{g(n)}) \subset e_{X,n}^1 \cap U \) for every \(n \in \mathbb{N} \).

Consider the edge \(e_{Y,g}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V \).
Example (Dowker, 1952)

\[
H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}
\]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, \frac{1}{g(n)}) \subset e_{X,n}^1 \cap U \) for every \(n \in \mathbb{N} \).

Consider the edge \(e_{Y,g}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V \).

Then \(\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \bar{H} \).
More preliminaries: subcomplexes

A *subcomplex* A of a CW complex X is what you would expect.

E.g. For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition

Let κ be a cardinal. We say that a CW complex X is *locally less than* κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write *locally finite* for locally less than \aleph_0, and *locally countable* for locally less than \aleph_1.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^n \subseteq A$ then its closure $\overline{e}_{\alpha}^n = \varphi_{\alpha}[D^n]$ is contained in A.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\bar{e}^n_\alpha = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\bar{e}_\alpha^n = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\bar{e}^n_\alpha = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.
More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\bar{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition
Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write locally finite for locally less than \aleph_0, and locally countable for locally less than \aleph_1.
Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

\Leftarrow is trivial. For \Rightarrow, given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way if $\kappa < 2^{\aleph_0}$. \Box
What was known

Suppose X and Y are CW complexes.
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.
Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.
Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: “I do not know if this restriction on $[X$ or $Y]$ is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.
What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, \(X \times Y \) is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming \(b = \aleph_1 \), \(X \times Y \) is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.
What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)
Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)
Assuming $b = \aleph_1$, $X \times Y$ is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable.
Can we do better?

Question
Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable?
Question
Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either
- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka’s work)
No.
Can we nevertheless do better?

Updated question
Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?
Can we nevertheless do better?

Updated question
Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)
Yes!
Pushing Dowker’s example harder

In the argument for Dowker’s example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.
In the argument for Dowker’s example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Recall

- For $f, g \in \mathbb{N}^\mathbb{N}$, we write $f \leq^* g$ if for all but finitely many $n \in \mathbb{N}$, $f(n) \leq g(n)$.
- The bounding number b is the least cardinality of a set of functions that is unbounded with respect to \leq^*, i.e. such that no one g is \geq^* them all, i.e.,

$$b = \min \{|\mathcal{F}| : \mathcal{F} \subseteq \mathbb{N}^\mathbb{N} \land \forall g \in \mathbb{N}^\mathbb{N} \exists f \in \mathcal{F} \neg (f \leq^* g)\}.$$
Example (Dowker, 1952)

Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ ($n \in \mathbb{N}$) emanating from it (and the countably many “other end” vertices of those edges).
Let Y be the “star” with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ ($f \in \mathbb{N}^\mathbb{N}$) emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Let X be the “star” with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many “other end” vertices of those edges).
Let Y be the “star” with a central vertex y_0 and b many edges $e_{Y,f}^1 (f \in \mathcal{F})$ emanating from it (and the other ends) where $\mathcal{F} \subseteq \mathbb{N}^\mathbb{N}$ is unbounded w.r.t. \leq^*.

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.
Example (Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^\mathbb{N} \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e^1_{X,n} \) of \(X \):

Let \(g : \mathbb{N} \rightarrow \mathbb{N}^+ \) be an increasing function such that \([0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U\) for every \(n \in \mathbb{N} \).

Consider the edge \(e^1_{Y,g} \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V \).

Then \(\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \bar{H} \).
Example (Folklore based on Dowker, 1952)

\[H = \left\{ \left(\frac{1}{f(n) + 1}, \frac{1}{f(n) + 1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in F \right\} \]

Let \(U \times V \) be a member of the open neighbourhood base about \((x_0, y_0)\) in the product topology on \(X \times Y \) — so \(x_0 \in U \) an open subset of \(X \), and \(y_0 \in V \) an open subset of \(Y \).

Consider the edges \(e_{X,n}^1 \) of \(X \):

Let \(g : \mathbb{N} \to \mathbb{N}^+ \) be an increasing function such that \([0, \frac{1}{g(n)}) \subset e_{X,n}^1 \cap U\) for every \(n \in \mathbb{N} \). Take \(f \in F \) such that \(f \not \leq^* g \).

Consider the edge \(e_{Y,f}^1 \) of \(Y \):

Let \(k \in \mathbb{N} \) be such that \(\frac{1}{f(k)+1} \in e_{Y,f}^1 \cap V \) and \(f(k) > g(k) \).

Then \(\left(\frac{1}{f(k)+1}, \frac{1}{f(k)+1} \right) \in U \times V \cap H \). So in the product topology, \((x_0, y_0) \in \overline{H} \).
Is this harder-working Dowker example optimal?
Is this harder-working Dowker example optimal?

Yes!
A complete characterisation

Theorem (B.-T.)

Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:

1. X or Y is locally finite.
2. One of X and Y is locally countable, and the other is locally less than b.
Proof

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than b, then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than b many cells.
Proof

⇒:
Proof

⇒: follows from the work of Tanaka (1982).
Proof
⇒: follows from the work of Tanaka (1982).

⇐:
Proof

⇒: follows from the work of Tanaka (1982).

Proof

⇒: follows from the work of Tanaka (1982).

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than b, then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than b many cells.
Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}^n_α is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is compactly generated}$$

i.e. a set is closed if and only if its intersection with every compact set is closed.
Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_α^n is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is compactly generated}$$

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the compact space $\omega + 1$ (with the order topology).

Definition

A topological space Z is sequential if for every subset C of Z, C is closed if and only if C contains the limit of every convergent countable sequence from C (C is sequentially closed).
Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}_α^n is compact. So

$$X \text{ has the weak topology } \iff \text{ the topology is compactly generated}$$

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the compact space $\omega + 1$ (with the order topology).

Definition

A topological space Z is *sequential* if for every subset C of Z, C is closed if and only if C contains the limit of every convergent countable sequence from C (C is *sequentially closed*).

Any sequential space is compactly generated. Since D^n is sequential for every n, we have that CW complexes are sequential.
Need to show: $X \times Y$ is sequential.
Need to show: $X \times Y$ is sequential.

So suppose

- $H \subseteq X \times Y$ is sequentially closed, and
- $(x_0, y_0) \in X \times Y \setminus H$.

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ_α of an open ball in ∂D^n.
We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ_α of an open ball in \mathring{D}^n. This defines $U \cap X^n$.
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ_α of an open ball in \dot{D}^n. This defines $U \cap X^n$.
- Once $U \cap X^k$ is defined, for each $(k + 1)$-cell e^{k+1}_β whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $\varphi^{-1}_\beta(U \cap X^k)$ in D^{k+1}: for any positive integer m, we can take a collar of the form

$$\left(\frac{m - 1}{m}, 1\right] \cdot \varphi^{-1}_\beta(U \cap X^k) \subset D^{k+1} \subset \mathbb{R}^{k+1}.$$
Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e^n_\alpha \subset X$, start with the image under φ_α of an open ball in \mathring{D}^n. This defines $U \cap X^n$.
- Once $U \cap X^k$ is defined, for each $(k+1)$-cell e^{k+1}_β whose boundary intersects $U \cap X^k$, take a collar neighbourhood of $\varphi^{-1}_\beta(U \cap X^k)$ in D^{k+1}: for any positive integer m, we can take a collar of the form

$$\left(\frac{m-1}{m}, 1\right) \cdot \varphi^{-1}_\beta(U \cap X^k) \subset D^{k+1} \subset \mathbb{R}^{k+1}.$$

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood $U(x; f)$, taking radius/collar width $\frac{1}{f(\beta)+1}$ for the cell β step.
Lemma

*Such open neighbourhoods form a base for the topology on X.**
Lemma

Such open neighbourhoods form a base for the topology on X.

Proof.

Follow your nose, recursively constructing a neighbourhood of this form whose closure is a subset of any given open neighbourhood. Since each S^k is compact, there will be a collar width m sufficiently large to do this for each subsequent cell.

\square
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose W and Z are CW complexes, W' is a finite subcomplex of W, Z' is a finite subcomplex of Z, $U \subseteq W'$ is open in W', $V \subseteq Z'$ is open in Z', and H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V_{e,p}$ is V extended by the width $1/(p+1)$ collar in e, then $U \times V_{e,p}$ has closure disjoint from H.

Proof sketch. Use the fact that $W' \times (Z' \cup e)$ is sequential, normal, and compact.
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)
Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width $1/(p + 1)$ collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

Proof sketch. Use the fact that $W' \times (Z' \cup e)$ is sequential, normal, and compact.
Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- H is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from H.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width $1/(p+1)$ collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

Proof sketch.

Use the fact that $W' \times (Z' \cup e)$ is sequential, normal, and compact.
We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.
Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.
Back to the proof of the Theorem

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

First idea
Simultaneous induction on dimension on each side.

For each new cell e^k_α that you consider on the Y side, you get a function f_α defining an open subset of X^k avoiding H. Since there are fewer than b many α, they can be eventually dominated by a single function f, which is taken to define the open set on X^k, and with respect to which the e^k_α collar can be chosen.
We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

First idea
Simultaneous induction on dimension on each side.

For each new cell e^k_α that you consider on the Y side, you get a function f_α defining an open subset of X^k avoiding H. Since there are fewer than b many α, they can be eventually dominated by a single function f, which is taken to define the open set on X^k, and with respect to which the e^k_α collar can be chosen.

This doesn’t work ($f_\alpha \leq^* f$ isn’t good enough).
\leq^* isn’t good enough

If $f_\alpha(n) \leq f(n)$ for all n, then $U(x; f_\alpha) \supseteq U(x; f)$.

If $f_\alpha(n) \leq^* f(n)$, then there may be finitely many n for which $f_\alpha(n) > f(n)$.
\(\leq^* \) isn’t good enough

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \leq^* f(n) \), then there may be finitely many \(n \) for which \(f_\alpha(n) > f(n) \).

- For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.
\[\leq^{*} \text{ isn't good enough} \]

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \leq^{*} f(n) \), then there may be finitely many \(n \) for which \(f_\alpha(n) > f(n) \).

- For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it’s a problem.
\(\preceq^* \) isn’t good enough

If \(f_\alpha(n) \leq f(n) \) for all \(n \), then \(U(x; f_\alpha) \supseteq U(x; f) \).

If \(f_\alpha(n) \preceq^* f(n) \), then there may be finitely many \(n \) for which \(f_\alpha(n) > f(n) \).

- For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it’s a problem.

Solution

Hechler conditions!
The construction is actually by recursion on dimension on the Y side, and simultaneously, constructing f as the limit of a sequence of *Hechler conditions*, that is:

- finite initial segments of f, and
- promises to dominate some function F thereafter.
Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let Y' be a finite subcomplex of Y containing y_0, $F : \mathbb{N} \to \mathbb{N}$ be a function, $i \in \mathbb{N}$, s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, and $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.

Then there is a function $f : \mathbb{N} \to \mathbb{N}$ such that

1. $f(n) \geq F(n)$ for all n in \mathbb{N},
2. for every $f' : \mathbb{N} \to \mathbb{N}$ such that $f' \geq \ast f$ and $f' \geq F$, there is a $q \in \mathbb{N}$ such that $U(x_0; f') \times U(y_0; s \cup \{(\alpha, q)\})$ has closure disjoint from H.

Andrew Brooke-Taylor (Leeds)
Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let
- Y' be a finite subcomplex of Y containing y_0,
- $F : \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$,
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, and
- $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.

Andrew Brooke-Taylor (Leeds)
Making it work

Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let

- Y' be a finite subcomplex of Y containing y_0,
- $F : \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$,
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, and
- $Y'' = Y' \cup e_\alpha$ for some cell e_α of Y not in Y'.

Then there is a function $f : \mathbb{N} \to \mathbb{N}$ such that

1. $f(n) \geq F(n)$ for all n in \mathbb{N}, and $f(n) = F(N)$ for all $n < i$,
2. for every $f' : \mathbb{N} \to \mathbb{N}$ such that $f' \succeq^* f$ and $f' \geq F$, there is a $q \in \mathbb{N}$ such that $U(x_0; f') \times U(y_0; s \cup \{(\alpha, q)\})$ has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.
Proof of Lemma 2

For every finite tuple r of length n such that $r \geq F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

Then by Lemma 1 again, there is $p \in \mathbb{N}$ such that $U(x_0; r \cup \{(n, p)\}) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.
Now, assuming by induction we have defined $f \upharpoonright n$ for some $n \geq i$, there are only finitely many r with $F \upharpoonright n \leq r \leq f \upharpoonright n$; follow this procedure for all of them, and take the maximum of the resulting values p to be $f(n)$. Recursively do this for all $n \geq i$.

Then for any $f' \geq F$ with $f' \geq^* f$, $f' \geq r \cup (f \upharpoonright [n, \infty))$ for some $n \geq i$ and some r of length n as above, so

$$U(x_0; f' \upharpoonright n + 1) \times U(y_0; s \cup \{(\alpha, q_r)\})$$

has closure disjoint from H, and in fact

$$U(x_0; f') \times U(y_0; s \cup \{(\alpha, q_r)\})$$

has closure disjoint from H.

Lemma 2
Finishing the proof of the Theorem

With Lemma 2 in hand, the argument is now basically as outlined in the “First idea”:

Proceed by induction on dimension on the Y side. Assume we have defined $f_k : \mathbb{N} \to \mathbb{N}$ and $g \upharpoonright Y^k$. For each $(k + 1)$-dimensional cell e_α on the Y side, use Lemma 2 with

- f_k as F,
- k as i,
- the minimal (finite) subcomplex of Y containing e_α and y_0 as Y'', and
- $g \upharpoonright (Y'' \setminus e_\alpha)$ as s

to get $f_{\alpha,k+1}$. There are fewer than b many such $f_{\alpha,k+1}$, so take $f_{k+1} \geq f_k$ with $f_{k+1} \upharpoonright k = f_k \upharpoonright k$ eventually dominating all of them. Then take q as given by Lemma 2 (with f_{k+1} as f') as $g(\alpha)$.

Finally, take f to be the (componentwise) limit of the f_{k+1}; these f and g are such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H. \qed