Definability of maximal families of reals in forcing extensions

Jonathan Schilhan

Institute of Mathematics, University of Vienna

KGRC Seminar, 01.10.2020

generous support through FWF Project Y1012-N35
History and motivation

Many types of special sets of reals are central in fields such as set theory, topology, measure theory or algebra:

Well-orders, ultrafilters, mad families, Vitali sets (E_0-transversals), Hamel bases, maximal independent families (mif), maximal sets of orthogonal measures (mof), maximal Turing-independent families, maximal cofinitary groups (mcg), eventually different families (med), towers, scales (in ω^ω), ...

Their existence is guaranteed by the Axiom of Choice, which has the controversy of not giving explicit definitions.

Under certain circumstances though, these sets can be *nicely definable* (OD, OD(\mathbb{R}), projective, Δ^1_2, Σ^1_2, Π^1_1, Borel).
One of the earliest results in this direction is due to Gödel:

Theorem (Gödel 1940)

*There is a Δ^1_2-definable well-order of the reals in the constructible universe L.***

The technique is very general and can be used to construct Δ^1_2 witnesses in L for all examples above. In some cases, this is the best possible:

Fact

A Vitali set is a non-measurable set of reals. In particular, it cannot be $\Sigma^1_1 \cup \Pi^1_1$. E.g. the same holds true for ultrafilters. Also well-orders.

Theorem (Erdős, Kunen, Mauldin 1981)

*There is a Π^1_1 scale in L.***

Their technique was streamlined by A. Miller who applied it to many other examples.

Theorem (Miller 1989)

*There is a Π^1_1 mad family, maximal independent family, Hamel basis in L.***
History and motivation

On the other hand, it was known that Σ_1^1 definitions typically do not work.

Theorem (Mathias 1977)

There is no Σ_1^1-definable mad family.

Theorem (Miller 1989)

There is no Σ_1^1-definable maximal independent family or Hamel basis.

Some mysterious exceptions:

Theorem (Horowitz, Shelah 2016)

There is a Borel mcg and med.
Recent results

In the last decade, research in the area has become very active (with a lot of emphasis on mad families). A few new phenomena have been discovered.

For example:

▶ If there is a $\Sigma^1_2(r)$ mad family, then there is also a $\Pi^1_1(r)$ one. (Törnquist 2013)
▶ If there is a $\Sigma^1_2(r)$ mif, then there is also a $\Pi^1_1(r)$ one. (Brendle, Fischer, Khomskii 2019)
▶ If there is a $\Sigma^1_2(r)$ ultrafilter, then there is a $\Pi^1_1(r)$ ultrafilter base. (S. 2019)

Also:

▶ If there is a $\Sigma^1_2(r)$ mad family, then $\omega_1 = \omega^L_1[r]$.
▶ If there is a $\Sigma^1_2(r)$ mif, then $\omega_1 = \omega^L_1[r]$.
▶ ...

In particular, we can not be too far away from L for Σ^1_2 definability.
Recent results

So far we have only mentioned positive definability results in L. What happens in forcing extensions of L?

Fact

$(V=L)$ There is a Π_1^1-definable Cohen-, Sacks-, Random-, Miller-indestructible mad family.

Known techniques for indestructible mad families + making the construction Σ_2^1-definable + evaluates to the same set in the extension + $\Sigma_2^1 \rightarrow \Pi_1^1$

What about other forcing notions?

Theorem (Brendle, Khomskii 2013)

There is a Π_1^1 mad family in the Hechler extension of L.

Completely different technique: All mad families in L are destroyed. Really the **definition** is preserved.
Borelized cardinal invariants

Definition

\[a = \min\{|A| : A \text{ is a mad family}\} \]
\[a_B = \min\{|B| : B \subseteq \Delta^1_1, \bigcup B \text{ is a mad family}\} \]

Obviously \(a_B \leq a \). Note that if there is a \(\Sigma^1_2 \) mad family, then \(a_B = \aleph_1 \) (since \(a_B > \aleph_0 \) since there is no Borel mad family).

Brendle and Khomskii in fact first showed

Theorem

\[a_B = \aleph_1 \text{ in the Hechler model (so } \text{CON}(a_B < b = a)). \]

They construct a sequence \(\langle B_\alpha : \alpha < \omega_1 \rangle \) of Borel sets coded in \(L \), such that \(\models \bigcup_{\alpha<\omega_1} B_\alpha \) is a mad family. Then, using the standard techniques, this construction can be turned into a \(\Sigma^1_2 \)-definition.
Ultimate goal: Understand the definability of various types of families in forcing extensions of L.

Observation: Many of the examples we gave can be framed as maximal independent sets in hypergraphs.

Definition
A hypergraph on a set X is a collection E (the edges) of finite non-empty subsets of X, i.e. $E \subseteq \mathcal{P}(X)^{<\omega} \setminus \{\emptyset\}$. We say that $Y \subseteq X$ is E-independent if $[Y]^{<\omega} \cap E = \emptyset$. Y is maximal E-independent if Y is maximal under inclusion as an E-independent subset of X.

If X is a Polish space, then $\mathcal{P}(X)^{<\omega}$ also has a natural Polish topology and we can study definable hypergraphs E and definable maximal E-independent sets.

Fact
In L, every analytic hypergraph on a Polish space X has a Δ^1_2 maximal independent set.

Note: $\Delta^1_2 \iff \Sigma^1_2$
Example (MIF)

\(Y \subseteq \mathcal{P}(\omega) \) is an independent family if for all finite disjoint \(A, B \subseteq Y \),
\[\bigcap_{x \in A} x \cap \bigcap_{x \in B} \omega \setminus x \text{ is infinite}. \]
Letting
\[E_i := \{ A \cup B \in [\mathcal{P}(\omega)]^{<\omega} : \bigcap_{x \in A} x \cap \bigcap_{x \in B} \omega \setminus x \text{ is finite} \} \]

an independent family is an \(E_i \)-independent set.

The definability of maximal independent families has been recently studied by Brendle, Fischer and Khomskii. One of their main open questions was

Question

Is it consistent that \(i > \aleph_1 \), while there is a \(\Pi^1_1 \) maximal independent family? Is \(i_B < i \) consistent?

Can we destroy all ground model mif’s while preserving a \(\Pi^1_1 \) definition?
Example (Ultrafilter)

Let $E_u := \{ A \in [\mathcal{P}(\omega)]^{<\omega} : \cap A \text{ is finite} \}$. Then an ultrafilter is a maximal E_u-independent set.

In a recent paper, we studied the definability of ultrafilters and asked

Question

Is it consistent that $u > \aleph_1$, while there is a Δ^1_2 ultrafilter? Is $u_B < u$ consistent?

Can we destroy all ground model ultrafilters (ultrafilter bases) while preserving a Δ^1_2 definition?
Examples

Example (Hamel basis)

Let $E_h := \{ A \in [\mathbb{R}]^{<\omega} : A \text{ is linearly dependent over } \mathbb{Q} \}$. Then a Hamel basis is a maximal E_h-independent set.

Every Hamel basis has size 2^{\aleph_0}. This is reflected by the fact that adding a single real destroys every ground model Hamel basis.

Question

Is it consistent that $\neg \text{CH}$, while there is a Δ^1_2 Hamel basis?

Can we destroy all ground model Hamel bases (i.e. add a new real) while preserving a Δ^1_2 definition?

For mad families, Vitali sets or mof’s, 2-dimensional hypergraphs (i.e. usual graphs) suffice.

Theorem (Schrittesser 2016)

After forcing with a csi of Sacks forcing over L, every analytic (2-dimensional hyper)graph on a Polish space has a Δ^1_2 maximal independent set.

Adding a single real, destroys every ground model maximal orthogonal family of measures.
How to increase u and i? How to destroy ultrafilters and maximal independent families (and, well, Hamel bases)? Add splitting reals!

Definition

A real $x \in [\omega]^{\omega}$ is splitting over V if for every $y \in [\omega]^{\omega} \cap V$, $|x \cap y| = \omega$ and $|y \setminus x| = \omega$.

Classical forcing notions adding splitting reals are: Cohen, Random, Silver and forcings adding dominating reals.

Unfortunately they don’t work:

Theorem (S.)

In extensions via the posets above there are reals that are splitting over any $\Sigma_2^1(r)$ set with the finite intersection property, for any $r \in V$. (for Cohen, Random, Silver: any OD(V) set)

(For a definable independent family, there are countably many (similarly) definable families with the FIP so that any splitting real over all of them witnesses the non-maximality of it.)
Splitting forcing

There is another less known forcing adding splitting reals.

Definition
A set $A \subseteq 2^{<\omega}$ is called *fat* if there is $m = m(A) \in \omega$ so that for every $n \geq m$, $i \in 2$, there is $s \in A$ so that $s(n) = i$.

Let $T \subseteq 2^{<\omega}$ be a perfect tree. Then T is a *splitting tree* if for every $s \in T$, T_s is fat.

(Recall: $T_s = \{ t \in T : t \not\perp s \}$)

Splitting forcing $\mathbb{S} \mathbb{P}$ consists of all splitting trees ordered by inclusion ($T \subseteq S$), as usual.

Fact
- $\mathbb{S} \mathbb{P}$ adds a generic splitting real $x_G \in 2^\omega (\cong \mathcal{P}(\omega))$,
- $\mathbb{S} \mathbb{P}$ is proper (Axiom A),
- $\mathbb{S} \mathbb{P}$ has continuous reading of names: whenever \dot{y} is a name for an element of a Polish space X (coded in the ground model), $S \in \mathbb{S} \mathbb{P}$, there is $T \subseteq S$ and $f : [T] \to X$ continuous such that $T \models \dot{y} = f(x_G)$,
- $V^{\mathbb{S} \mathbb{P}}$ is a minimal extension of V.

Recall: Sacks forcing \mathbb{S} consists of all perfect subtrees of $2^{<\omega}$.

Definability of maximal families of reals in forcing extensions

Institute of Mathematics, University of Vienna
How to preserve?

Does splitting forcing work? Can we maybe treat ultrafilters and maximal independent families in the same way? What about Hamel bases?

Maybe we should first ask a more general question: What does it mean for a forcing \mathbb{P} to preserve a union of Borel sets $Y = \bigcup B \subseteq X$ maximal E-independent?

Let \dot{y} be a \mathbb{P}-name for an element of X. Potentially \dot{y} could be a threat to the maximality of (the reinterpretation of) Y. Say B is closed under finite unions.

Then, necessarily, for a dense set of $q \in \mathbb{P}$, there is $B \in \mathcal{B}$ so that

1. either $q \Vdash \dot{y} \in B$,
2. or $q \Vdash \{\dot{y}\} \cup B$ is not E-independent.

On the other hand the following is sufficient:

For every name \dot{y}, every analytic hypergraph H and $p \in \mathbb{P}$, there is $q \leq p$ and an H-independent Borel set B such that

1. either $q \Vdash \dot{y} \in B$,
2. or $q \Vdash \{\dot{y}\} \cup B$ is not H-independent.
How to construct?

Why?

Let $\langle \dot{y}_\alpha, p_\alpha : \alpha < \omega_1 \rangle$ enumerate all pairs of (nice) \mathbb{P}-names for elements of X ($|\mathbb{P}| = \aleph_1$ for now, \mathbb{P} proper) and conditions in \mathbb{P}. We recursively construct Borel sets $\langle B_\alpha : \alpha < \omega_1 \rangle$.

At stage α : Let H_α be the hypergraph on X where $\{x_0, \ldots, x_{n-1}\} \in H_\alpha$ iff $\{x_0, \ldots, x_{n-1}\} \cup \bigcup_{i < \alpha} B_i$ is not E-independent. Then there is $q \leq p_\alpha$ and an H_α-independent Borel set B so that

1. either $q \models \dot{y}_\alpha \in B$,
2. or $q \models \{\dot{y}_\alpha\} \cup B$ is not H-independent.

Translated this means that $B_\alpha = B \cup \bigcup_{i < \alpha} B_i$ is E-independent and

1. either $q \models \dot{y}_\alpha \in B_\alpha$,
2. or $q \models \{\dot{y}_\alpha\} \cup B_\alpha$ is not E-independent.

Finally let $Y = \bigcup_{\alpha < \omega_1} B_\alpha$. By genericity, we have taken care of every potential threat \dot{y}.

Definability of maximal families of reals in forcing extensions Institute of Mathematics, University of Vienna
Combinatorial reformulation

Remember the desirable property:

For every name \(\dot{y} \), every analytic hypergraph \(H \) and \(p \in \mathbb{P} \), there is \(q \leq p \) and an \(H \)-independent Borel set \(B \) such that

1. either \(q \Vdash \dot{y} \in B \),
2. or \(q \Vdash \{ \dot{y} \} \cup B \) is not \(H \)-independent.

If \(\mathbb{P} \) is a tree forcing (say subtrees of \(2^{<\omega} \)) with continuous reading of names, we can forget about names and pull everything back to conditions \(T \in \mathbb{P} \):

For every analytic hypergraph \(H \) on \(2^\omega \) and \(T \in \mathbb{P} \), there is \(S \leq T \) such that

1. either \([S] \) is \(H \)-independent,
2. or there are continuous functions \(\phi_0, \ldots, \phi_{N-1} : [S] \to 2^\omega \) so that

\[
\bigcup_{i < N} \phi_i''[S] \text{ is } H\text{-independent, but } \forall x \in [S] (\{x\} \cup \{\phi_0(x), \ldots, \phi_{n-1}(x)\} \in H).
\]

This is a purely combinatorial statement about trees in \(\mathbb{P} \).
Mutual Cohen genericity

The key idea is going to be mutual genericity.

Definition
Let M be a countable transitive model of set theory (ctm), $X \in M$ a (code for a) Polish space. Then $x \in X$ is called *Cohen generic in X over M* if for every open dense subset $O \in M$ (coded in M) of X, $x \in O$. $x_0, \ldots, x_{n-1} \in X$ are *mutually Cohen generic (mCg) in X over M* if $(y_0, \ldots, y_{n'-1})$ is generic in $X^{n'}$ over M, where $y_0, \ldots, y_{n'-1}$ enumerate x_0, \ldots, x_{n-1}.

Lemma
Let M be a ctm, $T \in M$ a perfect subtree of $2^{<\omega}$, i.e. $T \in S$.

- There is $S \leq T$, a perfect tree (i.e. $S \in S$), so that any $x_0, \ldots, x_{n-1} \in [S]$ are mCg in $[T]$ over M.
- If $T \in SP$, there is $S \leq T$, $S \in SP$, so that any $x_0, \ldots, x_{n-1} \in [S]$ are mCg in $[T]$ over M.
- In fact, if \mathbb{P} is any weighted tree forcing, and $T \in \mathbb{P}$ then there is $S \leq T$, $S \in \mathbb{P}$, so that any $x_0, \ldots, x_{n-1} \in [S]$ are mCg in $[T]$ over M.

Definition
A tree forcing \mathbb{P} is weighted, if ...something technical...

S and SP are examples + generalizations.
Key Lemma 1

Key Lemma

Let H be an analytic hypergraph on X. Then there is a ctm M so that

1. either, for any $x_0, \ldots, x_{n-1} \in X$ that are mCg over M, $\{x_0, \ldots, x_{n-1}\}$ is H-independent,

2. or, there are $c_0, \ldots, c_{N-1} \in X$ and a non-empty open set $O \subseteq X$, so that for any $x \in O$ Cohen generic over M, $\{c_0, \ldots, c_{N-1}\}$ is H-independent but $\{c_0, \ldots, c_{N-1}\} \cup \{x\} \in H$.

Proof.

Let M_0 be the transitive collapse of a countable elementary model containing H and X. Suppose 1. fails for $M = M_0$. Then there is a counter-example of minimal size: $c_0, \ldots, c_{N-1}, c_N$ mCg over M, $\{c_0, \ldots, c_{N-1}\}$ H-independent, but $\{c_0, \ldots, c_{N-1}, c_N\} \in H$. Consider $M = M_0[c_0, \ldots, c_{N-1}]$. As c_N is generic over M, there is an open set (a condition) $O \in M$ with $c_N \in O$ and

$$O \models \{\dot{c}\} \cup \{c_0, \ldots, c_{N-1}\} \in H.$$

Thus for any generic $x \in O$, $M[x] \models \{x, c_0, \ldots, c_{N-1}\} \in H$. By Σ^1_1-absoluteness indeed, $\{x, c_0, \ldots, c_{N-1}\} \in H$. □
Key Lemma 1

Key Lemma

Let H be an analytic hypergraph on X. Then there is a ctm M so that

1. either, for any $x_0,\ldots,x_{n-1} \in X$ that are mCg over M, $\{x_0,\ldots,x_{n-1}\}$ is H-independent,

2. or, there are $c_0,\ldots,c_{N-1} \in X$ and a non-empty open set $O \subseteq X$, so that for any $x \in O$ Cohen generic over M, $\{c_0,\ldots,c_{N-1}\}$ is H-independent but $\{c_0,\ldots,c_{N-1}\} \cup \{x\} \in H$.

Putting things together:

H a hypergraph on $[T]$, T a condition. Applying the key lemma, get the model M:

1. Let $S \leq T$ be as in the first lemma: all $x_0,\ldots,x_{n-1} \in [S]$ are mCg in $[T]$ over M $\rightarrow \{x_0,\ldots,x_{n-1}\} \notin H \rightarrow [S]$ is H-independent

2. Define ϕ_0,\ldots,ϕ_{N-1} constant, $\phi_i(x) = c_i$. Let $s \in T$, $[s] \subseteq O$ and apply the first lemma to get $S \leq T_s$: every $x \in [S]$ is Cohen generic in $[T] \cap O$ over $M \rightarrow$

$$\bigcup_{i < N} \phi_i''[S] \text{ is } H\text{-independent, but } \forall x \in [S](\{x\} \cup \{\phi_0(x),\ldots,\phi_{n-1}(x)\} \in H).$$
Partial answer/result

Theorem

(V=L) For any $\Sigma^1_1(r)$ hypergraph E, there is a (ground model coded) $\Delta^1_2(r)$ maximal E-independent set after adding a single Sacks or a single splitting real (via \mathbb{SP}).

We can preserve the definition of an ultrafilter/mif/Hamel basis while destroying all ultrafilters/mifs/Hamel bases.

More generally: Any proper weighted tree forcing with continuous reading of names.

This is a good first step. But this is far from a model where u, i or c is greater than \aleph_1.

What about adding more than one real? \mathbb{SP}^k, \mathbb{S}^k for $k \in \omega$?

- Conditions are easy to work with: (T_0, \ldots, T_{k-1}).
- We have a natural analogue of continuous reading of names: $f : \prod_{i<k}[T_i] \to X$, $(T_0, \ldots, T_{k-1}) \models f(\bar{x}_G) = \check{y}$.
- Maybe a similar argument works? The combinatorial reformulation is straightforward: For every hypergraph H on $(2^\omega)^k$, $\bar{T} \in \mathbb{P}^k$, there is $\bar{S} \leq \bar{T}$ so that either, $[\bar{S}] = \prod_{i<k}[S_i]$ is H-independent or, there are $\phi_0, \ldots, \phi_{N-1}$ continuous, $\bigcup_{i<N} \phi_i''[\bar{S}]$ is H-independent, $\{\bar{x}, \phi_i(\bar{x}) : i < N\} \in H$ for $\bar{x} \in [\bar{S}]$.
Definition

Let M be a ctm, $\langle X_l : l < k \rangle \in M$ be (codes for) Polish spaces. Then we say that $\bar{x}_0, \ldots, \bar{x}_{n-1} \in \prod_{l<k} X_l$ are *mutually Cohen generic (mCg)* with respect to the product $\prod_{l<k} X_l$ over M, if

$$(y^0_0, \ldots, y^{K_0-1}_0, \ldots, y^0_{k-1}, \ldots, y^{K_{k-1}-1}_{k-1})$$ is Cohen generic in $\prod_{l<k} X^K_l$ over M, where $\langle y^i_l : i < K_l \rangle$ is some, equivalently any, enumeration of $\{x_i(l) : i < n\}$ for each $l < k$.
Key Lemma 2: finite products

Lemma
Let M be a ctm, $T_0, \ldots, T_{k-1} \in M \cap \mathbb{P}$, where \mathbb{P} is a weighted tree forcing (e.g. \mathbb{S} or \mathbb{SP}). Then there are $S_0 \leq T_0, \ldots, S_{k-1} \leq T_{k-1}$ so that any $\bar{x}_0, \ldots, \bar{x}_{n-1} \in \prod_{i<k} [S_i]$ are mCg wrt $\prod_{i<k} [T_i]$ over M.

Key Lemma
Let H be an analytic hypergraph on $(2^\omega)^k$. Then there is a ctm M so that

1. either, for any $\bar{x}_0, \ldots, \bar{x}_{n-1} \in (2^\omega)^k$ that are mCg over M, $\{\bar{x}_0, \ldots, \bar{x}_{n-1}\}$ is H-independent,

2. or, there are $\phi_0, \ldots, \phi_{N-1} : (2^\omega)^k \to (2^\omega)^k$ continuous, $\bar{s} \in (2^{<\omega})^k$, so that for any mCg $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{s}]$ over M, $\{\phi_i(\bar{x}_j) : i < N, j < n\}$ is H-independent but $\{\bar{x}_0, \phi_i(\bar{x}_0) : i < N\} \in H$.

Proof.
Much more complicated than before. Uses ideas from Harrington's forcing proof of Halpern-Läuchli.
Key Lemma 2: finite products

Example
Let $k = 2$, $H \subseteq [2^\omega \times 2^\omega]^2$ where $\{\bar{x}_0 \neq \bar{x}_1\} \in H$ iff $x_0(0) = x_1(0)$.

Case 1 is impossible. So we are in case 2: Let $c \in 2^\omega$ be arbitrary, $c \in M$ a ctm and let $\phi(\bar{x}) = (x(0), c)$. Then $\{\bar{x}, \phi(\bar{x})\} \in H$ for every \bar{x} with $x(1) \neq c$ (e.g. \bar{x} generic over M). On the other hand, if $\phi(\bar{x}_0) \neq \phi(\bar{x}_1)$, then $\phi(\bar{x}_0)(0) \neq \phi(\bar{x}_1)(0)$ so $\{\phi(\bar{x}_0), \phi(\bar{x}_1)\} \notin H$.

Example
Let $k = 2$, $H \subseteq [2^\omega \times 2^\omega]^2$ where $\{\bar{x}_0 \neq \bar{x}_1\} \in H$ iff $x_0(0) = x_1(0)$ or $x_0(1) = x_1(1)$.

Again, case 1 is impossible. Instead of a constant $c \in 2^\omega$, let $f : 2^\omega \to 1 \cup 2^\omega$ be a continuous injection, $f \in M$ a ctm and let $\phi(\bar{x}) = (x(0), f(x(0))), \bar{s} = (\emptyset, \langle 0 \rangle)$. Then $\{\bar{x}, \phi(\bar{x})\} \in H$ for every $\bar{x} \in [\bar{s}]$. If $\phi(\bar{x}_0) \neq \phi(\bar{x}_1)$, then $x_0(0) \neq x_1(0)$ and then $\phi(\bar{x}_0)$ and $\phi(\bar{x}_1)$ are different in both coordinates, so $\{\phi(\bar{x}_0), \phi(\bar{x}_1)\} \notin H$.
Partial answer/result 2

Theorem

(V=L) For $\Sigma_1^1(r)$ hypergraph E, there is a $\Delta_2^1(r)$ maximal E-independent set after forcing with S^k or $\mathbb{S}P^k$, $k \in \omega$.

More generally: any finite product of proper weighted tree forcings with crn, e.g. $S^{k_0} \times \mathbb{S}P^{k_1}$.

Great! We only need to generalize to infinite products. The csp of S, $\mathbb{S}P$ is proper and has continuous reading of names.

Counterexample

Consider E_1 on $(2^\omega)^\omega$ where $\{\bar{x}_0 \neq \bar{x}_1\} \in E_1$ iff $\forall^\infty n \in \omega (x_0(n) = x_1(n))$.

Let $(S_i)_{i \in \omega}$ be perfect trees (a condition in S^ω or $\mathbb{S}P^\omega$). Then $\prod_{i \in \omega} [S_i]$ is never E_1-independent (i.e. a partial transversal for E_1). On the other hand, any continuous

$\phi : \prod_{i \in \omega} [S_i] \to \prod_{i \in \omega} [S_i]$ so that

$$\{ \phi(\bar{x}), \bar{x} \} \in E_1 \text{ for every } \bar{x} \in \prod_{i \in \omega} [S_i] \text{ and } \phi'' \prod_{i \in \omega} [S_i] \text{ is } E_1\text{-independent},$$

is a continuous selector for $E_1 \upharpoonright \prod_{i \in \omega} [S_i] \cong_B E_1$.
The iteration

Corollary

In an extension by \mathbb{S}^ω, there is no Δ^1_2-definable E_1-transversal. For \mathbb{S}_ω, this follows by a simpler homogeneity argument and holds for all sets definable over the ground model.

We could ask:

Question

Can we characterize hypergraphs for which countable support products of, say \mathbb{S}, work? For which hypergraphs does the combinatorial reformulation hold true?

Iterations on the other hand seem promising, since conditions are “smaller” than in products. For instance, the argument for E_1 fails:

Fact

For any $\vec{p} \in \mathbb{S}^*\omega$, there is $\vec{q} \leq \vec{p}$ so that for any $\mathbb{S}^*\omega$-generics $\vec{x}_0 \neq \vec{x}_1$ with \vec{q} in the corresponding generic filter, $x_0(n) \neq x_1(n)$ for all $n \geq \min\{m : x_0(m) \neq x_1(m)\}$.

Conditions in iterations are harder to work with though. Also what does continuous reading of names mean now?
Good master conditions

Let $\langle P_\beta, Q_\beta : \beta \leq \lambda \rangle$ be a countable support iteration, where for each $\beta < \lambda$, Q_β is a tree forcing, Q_β is an analytic subset of a Polish space and there is a sequence $\langle \leq_\beta, n : n \in \omega \rangle$ of analytic partial orders on Q_β witnessing the Axiom A with continuous reading of names.

Assume each Q_β consists of subtrees of $2^{<\omega}$.

Lemma

For any $\bar{p} \in P_\lambda$, M a countable elementary model with $P_\lambda, \bar{p} \in M$, there is $\bar{q} \leq \bar{p}$ a master condition over M together with a unique closed set $[\bar{q}] \subseteq (2^\omega)^\lambda$ so that

1. $\bar{q} \Vdash \bar{x}_G \in [\bar{q}]$,
 for every $\beta < \lambda$,

2. $\bar{q} \Vdash \bar{q}(\beta) = \{ s \in 2^{<\omega} : \exists \bar{z} \in [\bar{q}] (\bar{z} \upharpoonright \beta = \bar{x}_G \upharpoonright \beta \land s \subseteq z(\beta)) \}$,

3. the map sending $\bar{x} \in [\bar{q}] \upharpoonright \beta$ to $\{ s \in 2^{<\omega} : \exists \bar{z} \in [\bar{q}] (\bar{z} \upharpoonright \beta = \bar{x} \land s \subseteq z(\beta)) \}$ is continuous and maps to Q_β,

and for every name $\dot{y} \in M$ for an element of a Polish space X,

4. there is a continuous function $f : [\bar{q}] \to X$ so that $\bar{q} \Vdash \dot{y} = f(\bar{x}_G)$.

Moreover, there is a countable set $A \subseteq \lambda$ so that $[\bar{q}] = (2^\omega)^{\lambda \setminus A} \times [\bar{q}] \upharpoonright A$ and all continuous functions above are supported on A.

\bar{q} is called a good master condition over M.

Definability of maximal families of reals in forcing extensions

Institute of Mathematics, University of Vienna
Good master conditions

On the other hand: whenever A is countable, $C \subseteq (2^\omega)^A$ is a closed set where for each $\beta \in A$ and $\bar{x} \in C \upharpoonright \beta$:

$$\{ s \in 2^{<\omega} : \exists \bar{z} \in C(\bar{z} \upharpoonright \beta = \bar{x} \land s \subseteq z(\beta)) \} \in \mathbb{Q}_\beta,$$

then there is a good master condition $\bar{q} \in \mathbb{P}_\lambda$ such that $[\bar{q}] \upharpoonright A \subseteq C$.

Remember that for any perfect tree $T \subseteq 2^{<\omega}$, there is a canonical homeomorphism $\eta_T : [T] \to 2^\omega$. If \bar{q} is a good master condition and $A \subseteq \lambda$ as before, we can use this to define a canonical homeomorphism

$$\Phi_{\bar{q}} : [\bar{q}] \upharpoonright A \to (2^\omega)^\alpha,$$

where $\alpha = \text{otp}(A)$, witnessed by $\iota : A \to \alpha$, and for each $\beta \in A$, $\bar{x} \in [\bar{q}] \upharpoonright A$,

$$\Phi_{\bar{q}}(\bar{x})(\iota(\beta)) = \eta_T(x(\beta)),$$

with $T = \{ s \in 2^{<\omega} : \exists \bar{z} \in [\bar{q}] \upharpoonright A(\bar{z} \upharpoonright \beta = \bar{x} \upharpoonright \beta \land s \subseteq z(\beta)) \}$.
Mutual Cohen genericity revisited again

This time we have an infinite product \((2^\omega)^\alpha\).

Definition

Let \(\alpha < \omega_1\), \(M\) a ctm with \(\alpha \in M\). Then we say that \(\bar{x}_0, \ldots, \bar{x}_{n-1}\) are mCg with respect to the product \(\prod_{\beta < \alpha} 2^\omega\) over \(M\), if there is a partition \(\xi_0 = 0 < \cdots < \xi_k = \alpha, \ k \in \omega\), so that

\[
\bar{x}_0, \ldots, \bar{x}_{n-1} \text{ are mCg with respect to } \prod_{l < k} Y_l \text{ over } M,
\]

where \(Y_l = (2^\omega)[\xi_l, \xi_{l+1}),\ l < k\).

![Diagram showing the partition and products](image-url)
Mutual Cohen genericity revisited again

Definition

Let $\alpha < \omega_1$, M a ctm with $\alpha \in M$. Then we say that $\bar{x}_0, \ldots, \bar{x}_{n-1}$ are **strongly** mCg with respect to the product $\prod_{\beta < \alpha} 2^\omega$ over M, if they are mCg (as before) and for any $i, j < n$ if $\xi = \min \{ \beta : x_i(\beta) \neq x_j(\beta) \}$, then for all $\beta \geq \xi$, $x_i(\beta) \neq x_j(\beta)$.

![Graph](image.png)
Key Lemma 3: infinite products

Key Lemma

Let $\alpha < \omega_1$ and H an analytic hypergraph on $(2^\omega)^\alpha$. Then there is a ctm M, $\alpha \in M$, so that

1. either, for any $\bar{x}_0, \ldots, \bar{x}_{n-1} \in (2^\omega)^\alpha$ that are strongly mCg over M (wrt $\prod_{\beta < \alpha} 2^\omega$), $\{\bar{x}_0, \ldots, \bar{x}_{n-1}\}$ is H-independent,

2. or, there are $\phi_0, \ldots, \phi_{N-1} : (2^\omega)^\alpha \to (2^\omega)^\alpha$ continuous, $\bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega}$, so that for any strongly mCg $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{s}]$ over M (wrt $\prod_{\beta < \alpha} 2^\omega$), $\{\phi_i(\bar{x}_j) : i < N, j < n\}$ is H-independent but $\{\bar{x}_0, \phi_i(\bar{x}_0) : i < N\} \in H$.

$\bigotimes_{\beta < \alpha} 2^{<\omega}$ is the set of finite partial functions $\alpha \to 2^{<\omega}$. $\bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega}$ defines a basic open set $[\bar{s}]$ of $(2^\omega)^\alpha$.

Sketch of the limit case.

Assume the statement is true for all $\xi < \alpha$. We define a hypergraph H_ξ on $(2^\omega)^\xi$ for every $\xi < \alpha$, where $\{\bar{x}_0, \ldots, \bar{x}_{n-1}\} \in H_\xi \cap [(2^\omega)^\xi]^n$ iff $\exists p \in (\bigotimes_{\beta \in [\xi, \alpha]} 2^{<\omega})^n$ so that

$$p \models \{\bar{x}_0 \bowtie \dot{c}_0, \ldots, \bar{x}_{n-1} \bowtie \dot{c}_{n-1}\} \in H.$$

If 1. holds true for every H_ξ, as witnessed by M_ξ, then we find $M \supseteq M_\xi$ for every $\xi < \alpha$ and 1. holds true for H and M.
Key Lemma 3: infinite products

...

If 2. holds for some H_ξ, witnessed by M' and $\phi'_0, \ldots, \phi'_{N-1}, \bar{s}'$, then we can assume wlog that there is a fixed p so that

\[p \vdash \{ \bar{x} \sim \dot{c}_0, \phi'_0(\bar{x}) \sim \dot{c}_1, \ldots \phi'_{N-1}(\bar{x}) \sim \dot{c}_N \} \in H. \]

Now we force continuous functions $\chi_i : (2^\omega)^\xi \to (2^\omega)^{[\xi, \alpha)} \cap [p(i + 1)]$ for $i < N$ over M' and let $M = M'[\langle \chi_i : i < N \rangle]$. Finally:

\[\phi_i(\bar{x}) = \phi'(\bar{x}) \sim \chi_i(\phi'(\bar{x})), i < N \]

and

\[\bar{s} = \bar{s}' \sim p(0). \]

Together with the lemma for finite products this lets us induct up to ω.

\[\square \]
MCG for conditions

Now assume that the Q_β in the iteration $\langle P_\beta, \dot{Q}_\beta : \beta \leq \lambda \rangle$ are either S or \mathcal{SP} (or any “Borel-” weighted tree forcing).

Lemma

Let $\alpha < \omega_1$, M be a ctm with $\alpha \in M$ and $\bar{q} \in P_\lambda$ a good master condition, $\Phi_{\bar{q}} : [\bar{q}] \upharpoonright A \rightarrow (2^\omega)^\alpha$ as before. Let $\bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega}$. Then there is $\bar{r} \leq \bar{q}$ a good master condition so that any $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{r}] \upharpoonright A$,

$$\Phi_{\bar{q}}(\bar{x}_0), \ldots, \Phi_{\bar{q}}(\bar{x}_{n-1}) \in (2^\omega)^\alpha \cap [\bar{s}]$$

are strongly mCg wrt $\prod_{\beta < \alpha} 2^\omega$ over M.

Proof Idea.

We can assume without loss of generality that $[\bar{q}] \upharpoonright A = (2^\omega)^\alpha$, via the map $\Phi_{\bar{q}}$, and imagine \bar{q} to be the trivial condition in an iteration of length α of (slightly different) weighted tree forcings, let’s call it $\langle R_\beta, \dot{S}_\beta : \beta \leq \alpha \rangle$.

We construct a closed set $C \subseteq (2^\omega)^\alpha \cap [\bar{s}]$ in a way that there is $\bar{r} \in R_\alpha$ with $[\bar{r}] \subseteq C$. We recursively construct $C_\beta = C \upharpoonright \beta \subseteq (2^\omega)^\beta \cap [\bar{s} \upharpoonright \beta]$ for $\beta \leq \alpha$ “generically” over M in a finite support iteration.
Each C_β is a set of mCgs over M wrt $\prod_{\xi<\beta} 2^\omega$.

At each step β the iteration adds a continuous function $F : C_\beta \to T$ (perfect subtrees of $2^{<\omega}$) over $M[C_\beta]$ so that $[F(\bar{x}_0)] \cap [F(\bar{x}_1)] = \emptyset$ and $\bigcup_{i<n} [F(\bar{x}_i)]$ consists of mCgs in 2^ω over $M[\bar{x}_0, \ldots, \bar{x}_{n-1}]$ for $\bar{x}_0, \ldots, \bar{x}_{n-1} \in C_\beta$ pairwise distinct.

Also, we ensure that $F(\bar{x}) \in S_\beta$ for every $\bar{x} \in C_\beta$. Then
\[
C_{\beta+1} := \{ \bar{x} \mapsto z : z \in [F(\bar{x})] \}.
\]
Main result

Whenever H is an analytic hypergraph on a Polish space X, $f : [\bar{q}] \upharpoonright A \to X$ continuous, we can pull back H to $(2^\omega)^\alpha$ via f and $\Phi_{\bar{q}}$ and apply the lemmas to get the desirable property of \mathcal{P}_λ.

Altogether:

Theorem

After forcing with a csi of Sacks or splitting forcing over L, every analytic hypergraph in a Polish space has a Δ^1_2 maximal independent set.

Remark

▶ There is a universal analytic hypergraph on $2^\omega \times 2^\omega$, which is coded in the ground model. A maximal independent set then induces one for every analytic hypergraph.

▶ $|\mathbb{P}_\lambda| > \aleph_1$ and there are more than \aleph_1 many names for reals. But we can treat good master conditions and names as reals themselves (of which there are \aleph_1 many) through their representation as spaces $[\bar{q}] \upharpoonright A$ and continuous functions $f : [\bar{q}] \upharpoonright A \to X$.

▶ This is a key ingredient to make the construction Σ^1_2-definable.
Answering the questions

Corollary

It is consistent that there is a \(\Pi^1_1 \) mif, a \(\Delta^1_2 \) ultrafilter and a \(\Delta^1_2 \) Hamel basis while \(\aleph_1 < i, u, c \). In particular, it is consistent that \(i_B, u_B < i, u \).

Proof.

Force with \(\mathcal{SP} \) in a \(\omega_2 \)-length countable support iteration. \(\square \)

Corollary

The reaping number \(r \) is never a (ZFC provable) lower bound of "Borelized cardinal invariants" (if they fit in the framework of analytic hypergraphs).

Corollary of the construction

There is a \((\Delta^1_2) \) P-point after iterating \(\mathcal{SP} \) or \(\mathbb{S} \) over \(L \).

The key point is that the Borel sets \(\langle B_\alpha : \alpha < \omega_1 \rangle \) that we construct can be chosen to be compact (due to \([\bar{q}]\) being compact). For an \(F_\sigma \) filter \(B \) there is a single compact set \(K \) so that \(B \cup K \) generates a filter and \(K \) has a pseudointersection for every countable subset of \(B \).
Concluding remarks

What about other tree forcings?

Theorem (Schrittesser, Törnquist 2018)

After adding a single Miller real over L every Σ^1_1 (2-dimensional hyper)graph on a Polish space has a Δ^1_2 maximal independent set.

A strengthening to the csi should not be too hard. Consider:

Theorem (Spinas 2001)

For every Miller tree T there is a master condition $S \leq T$ so that any $x_0 \neq x_1 \in [S]$ are \mathbb{M}^2 generic (over some countable model M).

On the other hand, Miller genericity behaves very different from Cohen genericity. Also, \mathbb{M}^3 adds a Cohen real, so finite products of \mathbb{M} do not work.

Question

Does the main result (for hypergraphs) hold true for csi of Miller forcing? Laver forcing and G_δ hypergraphs?
Thank you!