Type Omission and Subcompact cardinals

Yair Hayut

Kurt Gödel Research Center

March 5, 2020
Definition

Strongly compact cardinals have many equivalent definitions:
Strongly compact cardinals have many equivalent definitions:

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let κ be an uncountable cardinal. The following are equivalent:</td>
</tr>
</tbody>
</table>

1. The κ-compactness theorem for $L_{\kappa, \kappa}$.
2. Every κ-complete filter can be extended to κ-complete ultrafilter.
3. For every $\lambda \geq \kappa$, there is a fine κ-complete ultrafilter on $P_{\kappa \lambda}$.
4. For every λ, there is an elementary embedding $j: V \to M$, M is transitive, $\text{crit } j = \kappa$ and $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
5. κ is inaccessible for every λ, and every $P_{\kappa \lambda}$-tree has a branch.
Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1. The κ-compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1. The κ-compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
2. Every κ-complete filter can be extended to κ-complete ultrafilter.
Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1. The κ-compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
2. Every κ-complete filter can be extended to κ-complete ultrafilter.
3. For every $\lambda \geq \kappa$, there is a fine κ-complete ultrafilter on $P_{\kappa,\lambda}$.
Definition

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1. The κ-compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
2. Every κ-complete filter can be extended to κ-complete ultrafilter.
3. For every $\lambda \geq \kappa$, there is a fine κ-complete ultrafilter on $P_{\kappa,\lambda}$.
4. For every λ, there is an elementary embedding $j : V \rightarrow M$, M is transitive, $\text{crit } j = \kappa$ and $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
Definition

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1. The κ-compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
2. Every κ-complete filter can be extended to κ-complete ultrafilter.
3. For every $\lambda \geq \kappa$, there is a fine κ-complete ultrafilter on $P_{\kappa}\lambda$.
4. For every λ, there is an elementary embedding $j : V \to M$, M is transitive, $\text{crit } j = \kappa$ and $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
5. κ is inaccessible for every λ, and every $P_{\kappa}\lambda$-tree has a branch.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^\kappa < \kappa$ be regular cardinals. The following are equivalent:

1. Compactness of $L_{\kappa,\kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa,\lambda}$-tree has a branch.
3. If M is a model of set theory of size λ, $M \subseteq M^*$, then there is a transitive model N and an elementary embedding $j: M \to N$, with $\text{crit} j = \kappa$, $j[M] \subseteq s \in N$, $|s|_N < j(\kappa)$.

If $\lambda = 2^\mu$ we can add:

4. Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $L_{\kappa, \kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa, \lambda}$-tree has a branch.
3. If M is a model of set theory of size λ, $M^\kappa \subseteq M$, then there is a transitive model N and an elementary embedding $j : M \rightarrow N$, with $\text{crit} j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^{\mu}$ we can add:

4. Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $L_{\kappa,\kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa,\lambda}$-tree has a branch.

If $\lambda = 2^\mu$ we can add:

4. Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa \lambda}$-tree has a branch.
3. If M is a model of set theory of size λ, $^{<\kappa} M \subseteq M$, then there is a transitive model N and an elementary embedding $j : M \to N$, with $\text{crit } j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^{\mu}$ we can add:

4. Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa \lambda}$-tree has a branch.
3. If M is a model of set theory of size λ, $<\kappa M \subseteq M$, then there is a transitive model N and an elementary embedding $j : M \rightarrow N$, with $\text{crit } j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^{\mu}$ we can add:
Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ.
2. κ is inaccessible and every $P_{\kappa,\lambda}$-tree has a branch.
3. If M is a model of set theory of size λ, $^{<\kappa}M \subseteq M$, then there is a transitive model N and an elementary embedding $j: M \rightarrow N$, with $\text{crit } j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^\mu$ we can add:

4. Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^\kappa < \kappa$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.

2. There is a κ-complete fine ultrafilter on $P^{\kappa \lambda}$.

3. There is an elementary embedding $j : V \rightarrow M$ with $\text{crit} j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.
2. There is a κ-complete fine ultrafilter on P^{κ}_{λ}.
3. There is an elementary embedding $j: V \rightarrow M$ with $\text{crit} j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.

2. There is a κ-complete fine ultrafilter on $P_\kappa \lambda$.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.
2. There is a κ-complete fine ultrafilter on $P_{\kappa}\lambda$.
3. There is an elementary embedding $j : V \rightarrow M$ with $\text{crit} \ j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. Every κ-complete filter, which is generated by λ sets can be extended to a κ-complete ultrafilter.
2. There is a κ-complete fine ultrafilter on $P_{\kappa}\lambda$.
3. There is an elementary embedding $j : V \rightarrow M$ with $\text{crit } j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
What does λ-compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:
What does λ-compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1. There is a κ-complete fine ultrafilter on $P_\kappa 2^\lambda$.

For example, take $\kappa = \lambda$.

What does λ-compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1. There is a κ-complete fine ultrafilter on $P_\kappa 2^\lambda$.
2. Every κ-complete filter on λ can be extended to a κ-complete ultrafilter.
What does λ-compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1. There is a κ-complete fine ultrafilter on $P_\kappa 2^\lambda$.
2. Every κ-complete filter on λ can be extended to a κ-complete ultrafilter.
3. There is a κ-complete fine ultrafilter on $P_\kappa \lambda$.
What does λ-compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1. There is a κ-complete fine ultrafilter on $P_\kappa 2^\lambda$.
2. Every κ-complete filter on λ can be extended to a κ-complete ultrafilter.
3. There is a κ-complete fine ultrafilter on $P_\kappa \lambda$.
4. $\mathcal{L}_{\kappa,\kappa}$-compactness for languages of size λ.
What does \(\lambda \)-compactness mean?

Those two versions are not equivalent:

Theorem

Let \(\kappa \leq \lambda = \lambda^{<\kappa} \) be regular cardinals. Each of the following statements is strictly stronger than the next:

1. There is a \(\kappa \)-complete fine ultrafilter on \(P_\kappa 2^\lambda \).
2. Every \(\kappa \)-complete filter on \(\lambda \) can be extended to a \(\kappa \)-complete ultrafilter.
3. There is a \(\kappa \)-complete fine ultrafilter on \(P_\kappa \lambda \).
4. \(\mathcal{L}_\kappa,\kappa \)-compactness for languages of size \(\lambda \).

For example, take \(\kappa = \lambda \).
Supercompact cardinals are the normal version of the strongly compact cardinals.
Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the \(\kappa \)-complete fine ultrafilter characterization.
Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ-complete fine ultrafilter characterization. In terms of elementary embeddings, κ is supercompact iff for every $\lambda \geq \kappa$, there is $j: V \rightarrow M$ such that $j[\lambda] \in M$, $\lambda < j(\kappa)$.
Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the \(\kappa \)-complete fine ultrafilter characterization. In terms of elementary embeddings, \(\kappa \) is supercompact iff for every \(\lambda \geq \kappa \), there is \(j : V \to M \) such that \(j[\lambda] \in M \), \(\lambda < j(\kappa) \) (or equivalently, there is \(j : V \to M \), \(\text{crit} \, j = \kappa \), \(j(\kappa) > \lambda \), \({}^{\lambda}M \subseteq M \)).
Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ-complete fine ultrafilter characterization. In terms of elementary embeddings, κ is supercompact iff for every $\lambda \geq \kappa$, there is $j : V \rightarrow M$ such that $j[\lambda] \in M$, $\lambda < j(\kappa)$ (or equivalently, there is $j : V \rightarrow M$, $\text{crit } j = \kappa$, $j(\kappa) > \lambda$, $\lambda M \subseteq M$).

We want to have a normal analogue to each of the other characterizations of strong compactness.
Type Omission

One of the classical theorems in first order logic is the type omission theorem:
One of the classical theorems in first order logic is the type omission theorem:

Theorem (Henkin-Orey)

Let T be a consistent theory and let $p(x)$ be a complete type (over a countable language). If there is no φ such that $T \vdash \exists x \varphi(x)$ and for all $\psi(x) \in p(x)$, $T \vdash \forall x (\varphi(x) \rightarrow \psi(x))$ then there is a model M of T that omits p.
One of the classical theorems in first order logic is the type omission theorem:

Theorem (Henkin-Orey)

Let T be a consistent theory and let $p(x)$ be a complete type (over a countable language). If there is no φ such that $T \vdash \exists x \varphi(x)$ and for all $\psi(x) \in p(x)$, $T \vdash \forall x (\varphi(x) \rightarrow \psi(x))$ then there is a model M of T that omits p.

What is the $\mathcal{L}_{\kappa,\kappa}$-analogue?
Compactness of type omission

Let T be an $\mathcal{L}_{\kappa,\kappa}$-theory and let $p(x)$ be an $\mathcal{L}_{\kappa,\kappa}$-type with a single variable x. We say that T can omit p if there is a model of T that omits p.
Compactness of type omission

Let T be an $\mathcal{L}_{\kappa,\kappa}$-theory and let $p(x)$ be an $\mathcal{L}_{\kappa,\kappa}$-type with a single variable x. We say that T can omit p if there is a model of T that omits p.

Theorem (Benda, 1976)

κ is supercompact if and only if for every $\mathcal{L}_{\kappa,\kappa}$-theory T and $\mathcal{L}_{\kappa,\kappa}$-type such that for club many $T' \cup p' \in P_\kappa(T \cup p)$, T' can omit p', then T can omit p.

We call this property κ-compactness for type omission.
How to localize it?

Benda’s argument provides directly a normal measure on $P_{\kappa} \lambda$.
How to localize it?

Benda’s argument provides directly a normal measure on $P_{\kappa} \lambda$. Nevertheless it seems a bit wasteful:
How to localize it?

Benda’s argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. κ-compactness for type omissions over $L_{\kappa,\kappa}$ with a language of size λ.
2. For every transitive model M of size λ, $\kappa \subseteq M$, there is an elementary embedding $j: M \rightarrow N$, N transitive, $\text{crit}(j) = \kappa$, $j[M] \in N$.
How to localize it?

Benda’s argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. κ-compactness for type omissions over $\mathcal{L}_{\kappa,\kappa}$ with a language of size λ.
How to localize it?

Benda’s argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1. κ-compactness for type omissions over $L_{\kappa,\kappa}$ with a language of size λ.
2. For every transitive model M of size λ, $^{<\kappa}M \subseteq M$, there is an elementary embedding $j : M \rightarrow N$, N transitive, $\text{crit } j = \kappa$, $j[M] \in N$.
Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to λ-Π^1_1-subcompactness.
Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to λ-Π^1_1-subcompactness. By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, p is first order and we just add a single $\mathcal{L}_{\omega_1,\omega_1}$ sentence, saying “There are no infinite E-decreasing sequences”.
If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to λ-Π^1_1-subcompactness.

By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, p is first order and we just add a single L_{ω_1,ω_1} sentence, saying “There are no infinite E-decreasing sequences”. Equivalently, supercompactness is equivalent to κ-compactness of type omissions over first order logic with well-founded models.
Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to λ-Π_1^1-subcompactness.
By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, ρ is first order and we just add a single L_{ω_1,ω_1} sentence, saying “There are no infinite E-decreasing sequences”. Equivalently, supercompactness is equivalent to κ-compactness of type omissions over first order logic with well-founded models.

In particular, the supercompact analogue of ω_1-compactness is simply supercompactness.
At the beginning, I cited Jech’s characterization of strong compactness using $\mathbb{P}_{\kappa\lambda}$-trees.
The strong tree property

At the beginning, I cited Jech’s characterization of strong compactness using $P_{\kappa} \lambda$-trees.

Definition

Let κ be a regular cardinal, $\lambda \geq \kappa$. A $P_{\kappa} \lambda$-tree \mathcal{T} is a function, with domain $P_{\kappa} \lambda$ and $\mathcal{T}(x) \subseteq \mathcal{P}(x)$, $|\mathcal{T}(x)| < \kappa$.

Moreover, for every x, $|\mathcal{T}(x)| \neq \emptyset$ and if $x \subseteq y$ and $z \in \mathcal{T}(y)$ then $z \cap x \in \mathcal{T}(x)$.

A cofinal branch in \mathcal{T} is a set $b \subseteq \lambda$, such that $b \cap x \in \mathcal{T}(x)$ for all x.
Ineffable Tree Property

Shortly after Jech published his characterization of strong compactness, Magidor defined the *ineffable tree property* and proved that it characterizes supercompactness.
Ineffable Tree Property

Shortly after Jech published his characterization of strong compactness, Magidor defined the *ineffable tree property* and proved that it characterizes supercompactness.

But this is not the right *normalized* version of the strong tree property, since when taking $\lambda = \kappa$, we get weakly compact on one hand and ineffable cardinal in the other.
The normalized strong tree property

Let T be a $P_{\kappa}\lambda$ tree. We say that L is a ladder system on T if

- $\text{dom } L \subseteq P_{\kappa}\lambda$ and contains a club,
The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a ladder system on \mathcal{T} if

- $\text{dom } L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and
The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a ladder system on \mathcal{T} if

- $\text{dom } L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and
- for every $y \in L(x)$ such that $\text{cf}(|x \cap \kappa|) > \omega$ there is a club $E_{x,y} \subseteq P_{|x \cap \kappa|}x$, such that for all $z \in E_{x,y}$, z belongs to the domain of L and $y \cap z \in L(z)$.
The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a ladder system on \mathcal{T} if

- $\text{dom } L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and
- for every $y \in L(x)$ such that $\text{cf}(|x \cap \kappa|) > \omega$ there is a club $E_{x,y} \subseteq P_{|x \cap \kappa|}x$, such that for all $z \in E_{x,y}$, z belongs to the domain of L and $y \cap z \in L(z)$.

Definition

Let $\kappa \leq \lambda$ be regular cardinals. We say that κ has the $P_{\kappa}\lambda$-tree property with ladder systems catching if every $P_{\kappa}\lambda$-tree \mathcal{T} and a ladder system L, there is a cofinal branch b such that $\{x \in P_{\kappa}\lambda \mid b \cap x \in L(x)\}$ is cofinal.
Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\lambda}$ be regular cardinals. The following are equivalent:

- κ is λ-Π^1_1-subcompact.
- κ has the $P_{\kappa, \lambda}$-tree property with ladder systems catching.
The Subcompactness Hierarchy

We starting to fill out the picture, but still a lot is missing:
The Subcompactness Hierarchy

We starting to fill out the picture, but still a lot is missing:

<table>
<thead>
<tr>
<th>Strong compactness</th>
<th>Supercompactness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine measure on $P_{\kappa}\lambda$</td>
<td>Normal measure on $P_{\kappa}\lambda$</td>
</tr>
<tr>
<td>$\mathcal{L}_{\kappa,\kappa}$-compactness for size λ</td>
<td>Ineffable tree property for $P_{\kappa}\lambda$</td>
</tr>
<tr>
<td></td>
<td>Π^1_1-λ-subcompactness</td>
</tr>
<tr>
<td></td>
<td>λ-subcomapctness</td>
</tr>
</tbody>
</table>