

On regular countably compact $\mathbb R\text{-rigid}$ spaces

Serhii Bardyla

Institute of Mathematics, KGRC

07.12.2021

< A

F 4 E F 4

프 > 프

Definition

A space X is called regular if any finite subset of X is closed, and for any $x \in X$ and neighborhood U of x there exists a neighborhood V of x such that $\overline{V} \subset U$.

Definition

A space X is called separable if it contains a dense countable subset.

Definition

A space X is called countably compact if every countable subset of X has an accumulation point.

Definition

A space X is called Y-rigid if any continuous map $f : X \to Y$ is constant.

Definition

A space X is called regular if any finite subset of X is closed, and for any $x \in X$ and neighborhood U of x there exists a neighborhood V of x such that $\overline{V} \subset U$.

Definition

A space X is called separable if it contains a dense countable subset.

Definition

A space X is called countably compact if every countable subset of X has an accumulation point.

Definition

A space X is called Y-rigid if any continuous map $f : X \rightarrow Y$ is constant.

Definition

A space X is called regular if any finite subset of X is closed, and for any $x \in X$ and neighborhood U of x there exists a neighborhood V of x such that $\overline{V} \subset U$.

Definition

A space X is called separable if it contains a dense countable subset.

Definition

A space X is called countably compact if every countable subset of X has an accumulation point.

Definition

A space X is called regular if any finite subset of X is closed, and for any $x \in X$ and neighborhood U of x there exists a neighborhood V of x such that $\overline{V} \subset U$.

Definition

A space X is called separable if it contains a dense countable subset.

Definition

A space X is called countably compact if every countable subset of X has an accumulation point.

Definition

A space X is called Y-rigid if any continuous map $f : X \to Y$ is constant.

イロト イポト イヨト イヨト

Previous results

University of Vienna

Question (Urysohn)

Is it true that each regular space admits a non-constant continuous real-valued function?

Theorem (Hewitt)

There exists a regular \mathbb{R} -rigid space.

Theorem (Herrlich)

For any T_1 space Y there exists a regular Y-rigid space X.

A pseudocharacter of a space Y is the smallest cardinal $\psi(Y)$ such that for any $y \in Y$ there exists a family of open sets \mathcal{U} of cardinality $\leq \psi(Y)$ such that $\{y\} = \cap \mathcal{U}$.

Theorem (Ciesielski, Wojciechowski)

Question (Urysohn)

Is it true that each regular space admits a non-constant continuous real-valued function?

Theorem (Hewitt)

There exists a regular $\mathbb R\text{-rigid}$ space.

Theorem (Herrlich)

For any T_1 space Y there exists a regular Y-rigid space X.

A pseudocharacter of a space Y is the smallest cardinal $\psi(Y)$ such that for any $y \in Y$ there exists a family of open sets \mathcal{U} of cardinality $\leq \psi(Y)$ such that $\{y\} = \cap \mathcal{U}$.

Theorem (Ciesielski, Wojciechowski)

Question (Urysohn)

Is it true that each regular space admits a non-constant continuous real-valued function?

Theorem (Hewitt)

There exists a regular \mathbb{R} -rigid space.

Theorem (Herrlich)

For any T_1 space Y there exists a regular Y-rigid space X.

A pseudocharacter of a space Y is the smallest cardinal $\psi(Y)$ such that for any $y \in Y$ there exists a family of open sets \mathcal{U} of cardinality $\leq \psi(Y)$ such that $\{y\} = \cap \mathcal{U}$.

Theorem (Ciesielski, Wojciechowski)

Question (Urysohn)

Is it true that each regular space admits a non-constant continuous real-valued function?

Theorem (Hewitt)

There exists a regular \mathbb{R} -rigid space.

Theorem (Herrlich)

For any T_1 space Y there exists a regular Y-rigid space X.

A pseudocharacter of a space Y is the smallest cardinal $\psi(Y)$ such that for any $y \in Y$ there exists a family of open sets \mathcal{U} of cardinality $\leq \psi(Y)$ such that $\{y\} = \cap \mathcal{U}$.

Theorem (Ciesielski, Wojciechowski)


```
Question (Urysohn)
```

Is it true that each regular space admits a non-constant continuous real-valued function?

```
Theorem (Hewitt)
```

There exists a regular \mathbb{R} -rigid space.

```
Theorem (Herrlich)
```

For any T_1 space Y there exists a regular Y-rigid space X.

A pseudocharacter of a space Y is the smallest cardinal $\psi(Y)$ such that for any $y \in Y$ there exists a family of open sets \mathcal{U} of cardinality $\leq \psi(Y)$ such that $\{y\} = \cap \mathcal{U}$.

Theorem (Ciesielski, Wojciechowski)

General question

Under which conditions a regular space X admits a continuous nonconstant real-valued function?

Few answers

- if X is Lindelöf or second-countable or disconnected;
- if X is a countably compact semitopological group (folklore);
- if X is a paratopological group (Banakh, Ravsky).

Note that a space is compact if and only if it is Lindelöf and countably compact.

Natural question What can we say about rigidity of countably compact regular spaces?

General question

Under which conditions a regular space X admits a continuous nonconstant real-valued function?

Few answers

- if *X* is Lindelöf or second-countable or disconnected;
- if X is a countably compact semitopological group (folklore);
- if X is a paratopological group (Banakh, Ravsky).

Note that a space is compact if and only if it is Lindelöf and countably compact.

Natural question

What can we say about rigidity of countably compact regular spaces?

< ロト < 回 > < 三 > < 三 >

General question

Under which conditions a regular space X admits a continuous nonconstant real-valued function?

Few answers

- if *X* is Lindelöf or second-countable or disconnected;
- if X is a countably compact semitopological group (folklore);
- if X is a paratopological group (Banakh, Ravsky).

Note that a space is compact if and only if it is Lindelöf and countably compact.

Natural question

What can we say about rigidity of countably compact regular spaces?

General question

Under which conditions a regular space X admits a continuous nonconstant real-valued function?

Few answers

- if *X* is Lindelöf or second-countable or disconnected;
- if X is a countably compact semitopological group (folklore);
- if X is a paratopological group (Banakh, Ravsky).

Note that a space is compact if and only if it is Lindelöf and countably compact.

Natural question

What can we say about rigidity of countably compact regular spaces?

イロト イポト イヨト イヨト

Countably compact \mathbb{R} -rigid spaces

University of Vienna

Theorem (Vaughan)

There exists a regular first-countable countably compact space which is not Tychonoff.

Theorem (Tzannes)

There exists a Hausdorff countably compact $\mathbb R$ -rigid space.

Nevertheless, the space of Tzannes is strongy nonregular in the sense that the closure of any two open sets in it has a nonempty intersection.

Problems (Tzannes, 2003)

■ Does there exist a regular (separable, first-countable) countably compact ℝ-rigid space?

Does there exist, for every Hausdorff space X, a regular (separable, first-countable) countably compact X-rigid space?

() < </p>

Countably compact \mathbb{R} -rigid spaces

University of Vienna

Theorem (Vaughan)

There exists a regular first-countable countably compact space which is not Tychonoff.

Theorem (Tzannes)

There exists a Hausdorff countably compact \mathbb{R} -rigid space.

Nevertheless, the space of Tzannes is strongy nonregular in the sense that the closure of any two open sets in it has a nonempty intersection.

Problems (Tzannes, 2003)

■ Does there exist a regular (separable, first-countable) countably compact ℝ-rigid space?

Does there exist, for every Hausdorff space X, a regular (separable, first-countable) countably compact X-rigid space?

イロト 人間ト 人団ト 人団ト

Theorem (Vaughan)

There exists a regular first-countable countably compact space which is not Tychonoff.

Theorem (Tzannes)

There exists a Hausdorff countably compact \mathbb{R} -rigid space.

Nevertheless, the space of Tzannes is strongy nonregular in the sense that the closure of any two open sets in it has a nonempty intersection.

Problems (Tzannes, 2003)

■ Does there exist a regular (separable, first-countable) countably compact ℝ-rigid space?

Does there exist, for every Hausdorff space X, a regular (separable, first-countable) countably compact X-rigid space?

() < </p>

Theorem (Vaughan)

There exists a regular first-countable countably compact space which is not Tychonoff.

Theorem (Tzannes)

There exists a Hausdorff countably compact \mathbb{R} -rigid space.

Nevertheless, the space of Tzannes is strongy nonregular in the sense that the closure of any two open sets in it has a nonempty intersection.

Problems (Tzannes, 2003)

1 Does there exist a regular (separable, first-countable) countably compact ℝ-rigid space?

Does there exist, for every Hausdorff space X, a regular (separable, first-countable) countably compact X-rigid space?

Э

Theorem (Vaughan)

There exists a regular first-countable countably compact space which is not Tychonoff.

Theorem (Tzannes)

There exists a Hausdorff countably compact \mathbb{R} -rigid space.

Nevertheless, the space of Tzannes is strongy nonregular in the sense that the closure of any two open sets in it has a nonempty intersection.

Problems (Tzannes, 2003)

- 1 Does there exist a regular (separable, first-countable) countably compact ℝ-rigid space?
- 2 Does there exist, for every Hausdorff space X, a regular (separable, first-countable) countably compact X-rigid space?

Э

イロト イポト イヨト

Definition

A topological space X is called κ -bounded if the closure of any subset $A \subset X$ of cardinality $\leq \kappa$ is compact.

The following theorem gives an affirmative answer to the above problems of Tzannes (without additional properties in brackets) and extends the mentioned before results of Ciesielski, Wojciechowski and Herrlich.

Theorem (B., Osipov)

For any cardinal κ there exists a regular κ -bounded space (of arbitrary large cardinality) which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

However our examples are neither separable nor first-countable.

Definition

A topological space X is called κ -bounded if the closure of any subset $A \subset X$ of cardinality $\leq \kappa$ is compact.

The following theorem gives an affirmative answer to the above problems of Tzannes (without additional properties in brackets) and extends the mentioned before results of Ciesielski, Wojciechowski and Herrlich.

Theorem (B., Osipov)

For any cardinal κ there exists a regular κ -bounded space (of arbitrary large cardinality) which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

However our examples are neither separable nor first-countable.

I D > 4 B > 4 B > 4

Definition

A topological space X is called κ -bounded if the closure of any subset $A \subset X$ of cardinality $\leq \kappa$ is compact.

The following theorem gives an affirmative answer to the above problems of Tzannes (without additional properties in brackets) and extends the mentioned before results of Ciesielski, Wojciechowski and Herrlich.

Theorem (B., Osipov)

For any cardinal κ there exists a regular κ -bounded space (of arbitrary large cardinality) which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

However our examples are neither separable nor first-countable.

イロト イポト イヨト イヨト

Definition

A topological space X is called κ -bounded if the closure of any subset $A \subset X$ of cardinality $\leq \kappa$ is compact.

The following theorem gives an affirmative answer to the above problems of Tzannes (without additional properties in brackets) and extends the mentioned before results of Ciesielski, Wojciechowski and Herrlich.

Theorem (B., Osipov)

For any cardinal κ there exists a regular κ -bounded space (of arbitrary large cardinality) which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

However our examples are neither separable nor first-countable.

イロト イポト イヨト イヨト

Question

What about separable or first-countable examples?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq 2^{c}$ there exists a separable regular space of cardinality κ which is Y-rigid with respect to any Hausdorff space Y of countable pseudocharacter.

A topological space X is called totally countably compact, if each set $A \subset X$ contains an infinite subset with compact closure in X. Clearly,

 ω -boundedness \Rightarrow total countable compactness \Rightarrow countable compactness.

Theorem (B., Zdomskyy)

There exists a regular **separable** totally countably compact \mathbb{R} -rigid space (of cardinality 2^c).

Question

What about separable or first-countable examples?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq 2^{\mathfrak{c}}$ there exists a separable regular space of cardinality κ which is Y-rigid with respect to any Hausdorff space Y of countable pseudocharacter.

A topological space X is called totally countably compact, if each set $A \subset X$ contains an infinite subset with compact closure in X. Clearly,

 ω -boundedness \Rightarrow total countable compactness \Rightarrow countable compactness.

Theorem (B., Zdomskyy)

There exists a regular **separable** totally countably compact \mathbb{R} -rigid space (of cardinality 2^c).

Question

What about separable or first-countable examples?

```
Theorem (Ciesielski, Wojciechowski)
```

For any uncountable cardinal $\kappa \leq 2^{\mathfrak{c}}$ there exists a separable regular space of cardinality κ which is Y-rigid with respect to any Hausdorff space Y of countable pseudocharacter.

A topological space X is called totally countably compact, if each set $A \subset X$ contains an infinite subset with compact closure in X. Clearly,

 ω -boundedness \Rightarrow total countable compactness \Rightarrow countable compactness.

Theorem (B., Zdomskyy)

There exists a regular **separable** totally countably compact \mathbb{R} -rigid space (of cardinality 2^c).

Ξ

《曰》 《國》 《臣》 《臣》

Question

What about separable or first-countable examples?

```
Theorem (Ciesielski, Wojciechowski)
```

For any uncountable cardinal $\kappa \leq 2^{c}$ there exists a separable regular space of cardinality κ which is Y-rigid with respect to any Hausdorff space Y of countable pseudocharacter.

A topological space X is called totally countably compact, if each set $A \subset X$ contains an infinite subset with compact closure in X. Clearly,

 ω -boundedness \Rightarrow total countable compactness \Rightarrow countable compactness.

Theorem (B., Zdomskyy)

There exists a regular **separable** totally countably compact \mathbb{R} -rigid space (of cardinality $2^{\mathfrak{c}}$).

《日》 《圖》 《문》 《문》

E

Theorem (B., Zdomskyy)

Let κ be any cardinal such that there exist a maximal tower $\mathcal{T} = \{T_{\alpha} : \alpha \in \lambda\}$ on ω such that the cardinal λ is regular and $\kappa^+ < \lambda$. Then there exists a regular separable totally countably compact space which is Y-rigid with respect to any \mathcal{T}_1 space Y of pseudocharacter $\leq \kappa$.

Corollary (B., Zdomskyy)

It is consistent with ZFC that for each $\kappa < \mathfrak{c}$, there exists a regular separable totally countably compact space which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

Remark

The latter theorem doesn't hold for $\kappa \ge \mathfrak{c}$, because any regular separable space X has pseudocharacter $\le \mathfrak{c}$. Hence the identity selfmap of X is not constant.

Theorem (B., Zdomskyy)

Let κ be any cardinal such that there exist a maximal tower $\mathcal{T} = \{T_{\alpha} : \alpha \in \lambda\}$ on ω such that the cardinal λ is regular and $\kappa^+ < \lambda$. Then there exists a regular separable totally countably compact space which is Y-rigid with respect to any \mathcal{T}_1 space Y of pseudocharacter $\leq \kappa$.

Corollary (B., Zdomskyy)

It is consistent with ZFC that for each $\kappa < \mathfrak{c}$, there exists a regular separable totally countably compact space which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

Remark

The latter theorem doesn't hold for $\kappa \ge \mathfrak{c}$, because any regular separable space X has pseudocharacter $\le \mathfrak{c}$. Hence the identity selfmap of X is not constant.

Theorem (B., Zdomskyy)

Let κ be any cardinal such that there exist a maximal tower $\mathcal{T} = \{T_{\alpha} : \alpha \in \lambda\}$ on ω such that the cardinal λ is regular and $\kappa^+ < \lambda$. Then there exists a regular separable totally countably compact space which is Y-rigid with respect to any \mathcal{T}_1 space Y of pseudocharacter $\leq \kappa$.

Corollary (B., Zdomskyy)

It is consistent with ZFC that for each $\kappa < \mathfrak{c}$, there exists a regular separable totally countably compact space which is Y-rigid with respect to any T_1 space Y of pseudocharacter $\leq \kappa$.

Remark

The latter theorem doesn't hold for $\kappa \ge \mathfrak{c}$, because any regular separable space X has pseudocharacter $\le \mathfrak{c}$. Hence the identity selfmap of X is not constant.

A sketch of constructing compact-like \mathbb{R} -rigid spaces

- Step 1: take an appropriate regular non-normal space X;
- Step 2: construct a regular space J(X) which contains two points a, b such that f(a) = f(b) for any continuous real-valued function f;
- Step 3: construct a regular ℝ-rigid extension D[J(X)] of the space J(X);
- Step 4: densely embed D[J(X)] into a regular compact-like space.

Natural question

Under which condition a regular space X can be (densely) embedded into a regular countably compact space Y?

イロト イロト イヨト イヨト

A sketch of constructing compact-like \mathbb{R} -rigid spaces

- Step 1: take an appropriate regular non-normal space X;
- Step 2: construct a regular space J(X) which contains two points a, b such that f(a) = f(b) for any continuous real-valued function f;
- Step 3: construct a regular ℝ-rigid extension D[J(X)] of the space J(X);
- Step 4: densely embed D[J(X)] into a regular compact-like space.

Natural question

Under which condition a regular space X can be (densely) embedded into a regular countably compact space Y?

イロト イロト イヨト イヨト

Definition. The space X is called totally $\overline{\kappa}$ -normal if we can separate (by disjoint open sets) any disjoint closed subsets $A, B \subset X$ providing one of them is contained in the closure of some set of cardinality $\leq \kappa$.

Definition. A space has property *D* if for any countable discrete subset $A \subset X$ there exists a locally finite family $\{U_a : a \in A\}$ of pairwise disjoint open sets such that $a \in U_a$ for any $a \in A$.

Theorem (Banakh, B., Ravsky)

For every infinite cardinal κ a regular totally $\overline{\kappa}$ -normal space can be (densely) embedded into a regular κ -bounded space.

Theorem (B., Zdomskyy)

Let X be a regular space which has property D and the family of all countable closed discrete subsets of X forms a P-ideal. Then X can be embedded into a regular countably compact space.

イロト イロト イヨト イヨト

Definition. The space X is called totally $\overline{\kappa}$ -normal if we can separate (by disjoint open sets) any disjoint closed subsets $A, B \subset X$ providing one of them is contained in the closure of some set of cardinality $\leq \kappa$. **Definition.** A space has property D if for any countable discrete subset $A \subset X$ there exists a locally finite family $\{U_a : a \in A\}$ of pairwise disjoint open sets such that $a \in U_a$ for any $a \in A$.

Theorem (Banakh, B., Ravsky)

For every infinite cardinal κ a regular totally $\overline{\kappa}$ -normal space can be (densely) embedded into a regular κ -bounded space.

Theorem (B., Zdomskyy)

Let X be a regular space which has property D and the family of all countable closed discrete subsets of X forms a P-ideal. Then X can be embedded into a regular countably compact space.

《日》 《國》 《문》 《문》

Definition. The space X is called totally $\overline{\kappa}$ -normal if we can separate (by disjoint open sets) any disjoint closed subsets $A, B \subset X$ providing one of them is contained in the closure of some set of cardinality $\leq \kappa$. **Definition.** A space has property D if for any countable discrete subset $A \subset X$ there exists a locally finite family $\{U_a : a \in A\}$ of pairwise disjoint open sets such that $a \in U_a$ for any $a \in A$.

Theorem (Banakh, B., Ravsky)

For every infinite cardinal κ a regular totally $\overline{\kappa}$ -normal space can be (densely) embedded into a regular κ -bounded space.

Theorem (B., Zdomskyy)

Let X be a regular space which has property D and the family of all countable closed discrete subsets of X forms a P-ideal. Then X can be embedded into a regular countably compact space.

《日》 《國》 《문》 《문》

Definition. The space X is called totally $\overline{\kappa}$ -normal if we can separate (by disjoint open sets) any disjoint closed subsets $A, B \subset X$ providing one of them is contained in the closure of some set of cardinality $\leq \kappa$. **Definition.** A space has property D if for any countable discrete subset $A \subset X$ there exists a locally finite family $\{U_a : a \in A\}$ of pairwise disjoint open sets such that $a \in U_a$ for any $a \in A$.

Theorem (Banakh, B., Ravsky)

For every infinite cardinal κ a regular totally $\overline{\kappa}$ -normal space can be (densely) embedded into a regular κ -bounded space.

Theorem (B., Zdomskyy)

Let X be a regular space which has property D and the family of all countable closed discrete subsets of X forms a P-ideal. Then X can be embedded into a regular countably compact space.

ヘロト 人間 とうほう くほとう

Definition. An ultrafilter u on ω is called a simple P_{c} -point if u possesses a base which is a tower of length c.

Theorem (B., Zdomskyy)

 $([\omega_1 < b = c] \land [\text{exists a simple } P_c\text{-point}])$ Every regular (separable) first-countable space of cardinality < c can be embedded into regular (separable) first-countable countably compact space.

The next examples show that the latter theorem cannot be proved within ZFC.

Example (Banakh, B., Ravsky)

There exists a regular separable first-countable scattered space X of cardinality ϑ which cannot be embedded into Urysohn countably compact spaces.

Definition. An ultrafilter u on ω is called a simple P_{c} -point if u possesses a base which is a tower of length c.

Theorem (B., Zdomskyy)

 $([\omega_1 < \mathfrak{b} = \mathfrak{c}] \land [\text{exists a simple } P_{\mathfrak{c}}\text{-point}])$ Every regular (separable) **first-countable** space of cardinality < \mathfrak{c} can be embedded into regular (separable) **first-countable** countably compact space.

The next examples show that the latter theorem cannot be proved within ZFC.

```
Example (Banakh, B., Ravsky)
```

There exists a regular separable first-countable scattered space X of cardinality ϑ which cannot be embedded into Urysohn countably compact spaces.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition. An ultrafilter u on ω is called a simple P_{c} -point if u possesses a base which is a tower of length c.

Theorem (B., Zdomskyy)

 $([\omega_1 < \mathfrak{b} = \mathfrak{c}] \land [\text{exists a simple } P_{\mathfrak{c}}\text{-point}])$ Every regular (separable) **first-countable** space of cardinality < \mathfrak{c} can be embedded into regular (separable) **first-countable** countably compact space.

The next examples show that the latter theorem cannot be proved within ZFC.

Example (Banakh, B., Ravsky)

There exists a regular separable first-countable scattered space X of cardinality ϑ which cannot be embedded into Urysohn countably compact spaces.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition. An ultrafilter u on ω is called a simple P_{c} -point if u possesses a base which is a tower of length c.

Theorem (B., Zdomskyy)

 $([\omega_1 < \mathfrak{b} = \mathfrak{c}] \land [\text{exists a simple } P_{\mathfrak{c}}\text{-point}])$ Every regular (separable) **first-countable** space of cardinality < \mathfrak{c} can be embedded into regular (separable) **first-countable** countably compact space.

The next examples show that the latter theorem cannot be proved within ZFC.

Example (Banakh, B., Ravsky)

There exists a regular separable first-countable scattered space X of cardinality ϑ which cannot be embedded into Urysohn countably compact spaces.

《曰》 《國》 《臣》 《臣》

Remark

Any Mrowka-Isbell space $\psi(\mathcal{A})$ over a MAD family \mathcal{A} is an example of a separable first-countable zero-dimensional (and hence regular) space which cannot be embedded into any Hausdorff countably compact space of character $< \mathfrak{b}$.

Corollary

The latter theorem doesn't hold in any model of $\min{\mathfrak{a}, \mathfrak{d}} < \mathfrak{c}$.

Remark

Any Mrowka-Isbell space $\psi(\mathcal{A})$ over a MAD family \mathcal{A} is an example of a separable first-countable zero-dimensional (and hence regular) space which cannot be embedded into any Hausdorff countably compact space of character $< \mathfrak{b}$.

Corollary

The latter theorem doesn't hold in any model of $\min\{\mathfrak{a},\mathfrak{d}\} < \mathfrak{c}$.

・ コ ト ・ 日 ト ・ 日 ト

Problem (Unofficially – early 70-th, officially – Nyikos, 1986)

Does there exist in ZFC a regular separable first-countable countably compact non-compact space?

Definition. A regular separable first-countable countably compact space is called a Nyikos space.

Theorem (Franklin, Rajagopalan)

 $(\mathfrak{t} = \omega_1)$ There exists a non-compact Nyikos space.

Definition. A space X is called perfectly normal if for every disjoint closed sets $A, B \subset X$ there exists a real-valued continuous function f such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$. **Definition.** A space is hereditary separable if every its subspace is separable.

< ロト < 回 > < 三 > < 三 >

Problem (Unofficially – early 70-th, officially – Nyikos, 1986)

Does there exist in ZFC a regular separable first-countable countably compact non-compact space?

Definition. A regular separable first-countable countably compact space is called a Nyikos space.

Theorem (Franklin, Rajagopalan)

 $(\mathfrak{t} = \omega_1)$ There exists a non-compact Nyikos space.

Definition. A space X is called perfectly normal if for every disjoint closed sets $A, B \subset X$ there exists a real-valued continuous function f such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$. **Definition.** A space is hereditary separable if every its subspace is separable.

イロト イロト イヨト イヨト

Problem (Unofficially – early 70-th, officially – Nyikos, 1986)

Does there exist in ZFC a regular separable first-countable countably compact non-compact space?

Definition. A regular separable first-countable countably compact space is called a Nyikos space.

Theorem (Franklin, Rajagopalan)

 $(\mathfrak{t} = \omega_1)$ There exists a non-compact Nyikos space.

Definition. A space X is called perfectly normal if for every disjoint closed sets $A, B \subset X$ there exists a real-valued continuous function f such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$. **Definition.** A space is hereditary separable if every its subspace is separable.

《日》 《圖》 《문》 《문》

Problem (Unofficially – early 70-th, officially – Nyikos, 1986)

Does there exist in ZFC a regular separable first-countable countably compact non-compact space?

Definition. A regular separable first-countable countably compact space is called a Nyikos space.

Theorem (Franklin, Rajagopalan)

 $(\mathfrak{t} = \omega_1)$ There exists a non-compact Nyikos space.

Definition. A space X is called perfectly normal if for every disjoint closed sets $A, B \subset X$ there exists a real-valued continuous function f such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Definition. A space is hereditary separable if every its subspace is separable.

《日》 《圖》 《臣》 《臣》

Problem (Unofficially – early 70-th, officially – Nyikos, 1986)

Does there exist in ZFC a regular separable first-countable countably compact non-compact space?

Definition. A regular separable first-countable countably compact space is called a Nyikos space.

Theorem (Franklin, Rajagopalan)

 $(\mathfrak{t} = \omega_1)$ There exists a non-compact Nyikos space.

Definition. A space X is called perfectly normal if for every disjoint closed sets $A, B \subset X$ there exists a real-valued continuous function f such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$. **Definition.** A space is hereditary separable if every its subspace is separable.

《日》 《圖》 《臣》 《臣》

Theorem (Ostaszewski)

 (\diamondsuit) There exists a hereditary separable perfectly normal non-compact Nyikos space.

Observation (van Douwen)

It is enough to assume b = c to get a non-compact Nyikos space using Ostaszewski's construction.

Theorem (Nyikos)

It is consistent that $\omega_1 < \mathfrak{t} = \mathfrak{b} < \mathfrak{c}$ and there exists a non-compact Nyikos space.

Theorem (Nyikos, Zdomskyy)

PFA implies that every first-countable **normal** countably compact space is ω -bounded.

Theorem (Ostaszewski)

 (\diamondsuit) There exists a hereditary separable perfectly normal non-compact Nyikos space.

Observation (van Douwen)

It is enough to assume $\mathfrak{b}=\mathfrak{c}$ to get a non-compact Nyikos space using Ostaszewski's construction.

Theorem (Nyikos)

It is consistent that $\omega_1 < \mathfrak{t} = \mathfrak{b} < \mathfrak{c}$ and there exists a non-compact Nyikos space.

Theorem (Nyikos, Zdomskyy)

PFA implies that every first-countable **normal** countably compact space is ω -bounded.

Theorem (Ostaszewski)

 (\diamondsuit) There exists a hereditary separable perfectly normal non-compact Nyikos space.

Observation (van Douwen)

It is enough to assume $\mathfrak{b}=\mathfrak{c}$ to get a non-compact Nyikos space using Ostaszewski's construction.

Theorem (Nyikos)

It is consistent that $\omega_1<\mathfrak{t}=\mathfrak{b}<\mathfrak{c}$ and there exists a non-compact Nyikos space.

Theorem (Nyikos, Zdomskyy)

PFA implies that every first-countable **normal** countably compact space is ω -bounded.

Theorem (Ostaszewski)

 (\diamondsuit) There exists a hereditary separable perfectly normal non-compact Nyikos space.

Observation (van Douwen)

It is enough to assume $\mathfrak{b}=\mathfrak{c}$ to get a non-compact Nyikos space using Ostaszewski's construction.

Theorem (Nyikos)

It is consistent that $\omega_1 < \mathfrak{t} = \mathfrak{b} < \mathfrak{c}$ and there exists a non-compact Nyikos space.

Theorem (Nyikos, Zdomskyy)

PFA implies that every first-countable **normal** countably compact space is ω -bounded.

Theorem (Ostaszewski)

 (\diamondsuit) There exists a hereditary separable perfectly normal non-compact Nyikos space.

Observation (van Douwen)

It is enough to assume $\mathfrak{b}=\mathfrak{c}$ to get a non-compact Nyikos space using Ostaszewski's construction.

Theorem (Nyikos)

It is consistent that $\omega_1 < \mathfrak{t} = \mathfrak{b} < \mathfrak{c}$ and there exists a non-compact Nyikos space.

Theorem (Nyikos, Zdomskyy)

PFA implies that every first-countable **normal** countably compact space is ω -bounded.

The problem is still open. It was reposed in: Open Problems in Topology I, II, and Open Problems from Topology Proceedings. In particular, the problem is included in the list of "Twenty problems in set-theoretic topology" by Hrušák and Moore.

 $\equiv 1$

University of Vienna

Definition. A space X is called sequentially compact if every sequence in X has a convergent subsequence.

 ω -bounded \longrightarrow totally countably compact \leftarrow sequentially compact countably compact

Every countably compact space of character < t is sequentially compact.

While working on embedding into compact-like space we jointly with Banakh and Ravsky came across the following question: Does every regular separable sequentially compact space embeds into a compact space? We constructed a consistent non-Tychonoff counterexample. This motivates us to pose the following question.

Question (Banakh, B., Ravsky)

University of Vienna

Definition. A space X is called sequentially compact if every sequence in X has a convergent subsequence.

 $\begin{array}{c} \omega \text{-bounded} \longrightarrow \text{totally countably compact} \xleftarrow{} \text{sequentially compact} \\ & \downarrow \\ & \text{countably compact} \end{array}$

Every countably compact space of character < t is sequentially compact.

While working on embedding into compact-like space we jointly with Banakh and Ravsky came across the following question: Does every regular separable sequentially compact space embeds into a compact space? We constructed a consistent non-Tychonoff counterexample. This motivates us to pose the following question.

Question (Banakh, B., Ravsky)

University of Vienna

Definition. A space X is called sequentially compact if every sequence in X has a convergent subsequence.

 ω -bounded \longrightarrow totally countably compact \iff sequentially compact

countably compact

Every countably compact space of character $< \mathfrak{t}$ is sequentially compact.

While working on embedding into compact-like space we jointly with Banakh and Ravsky came across the following question: Does every regular separable sequentially compact space embeds into a compact space? We constructed a consistent non-Tychonoff counterexample. This motivates us to pose the following question.

Question (Banakh, B., Ravsky)

University of Vienna

Definition. A space X is called sequentially compact if every sequence in X has a convergent subsequence.

 $\begin{array}{c} \omega \text{-bounded} \longrightarrow \text{totally countably compact} \xleftarrow{} \text{sequentially compact} \\ & & \downarrow \\ & & \text{countably compact} \end{array}$

Every countably compact space of character $< \mathfrak{t}$ is sequentially compact.

While working on embedding into compact-like space we jointly with Banakh and Ravsky came across the following question: Does every regular separable sequentially compact space embeds into a compact space? We constructed a consistent non-Tychonoff counterexample. This motivates us to pose the following question.

Question (Banakh, B., Ravsky)

University of Vienna

Definition. A space X is called sequentially compact if every sequence in X has a convergent subsequence.

 $\begin{array}{c} \omega \text{-bounded} \longrightarrow \text{totally countably compact} \xleftarrow{} \text{sequentially compact} \\ & & \downarrow \\ & & \text{countably compact} \end{array}$

Every countably compact space of character $< \mathfrak{t}$ is sequentially compact.

While working on embedding into compact-like space we jointly with Banakh and Ravsky came across the following question: Does every regular separable sequentially compact space embeds into a compact space? We constructed a consistent non-Tychonoff counterexample. This motivates us to pose the following question.

Question (Banakh, B., Ravsky)

Theorem (B., Zdomskyy)

There exists in ZFC a regular separable sequentially compact non-Tychonoff space.

It remains to consider the following question. What can we say about separable first-countable regular \mathbb{R} -rigid spaces?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq \mathfrak{c}$ there exists a separable first-countable regular \mathbb{R} -rigid space of cardinality κ .

The only known example of a non-normal Nyikos space was constructed by Nyikos and Vaughan under $\mathfrak{t} = \omega_1$.

Theorem (B., Zdomskyy)

There exists in ZFC a regular separable sequentially compact non-Tychonoff space.

It remains to consider the following question. What can we say about separable first-countable regular \mathbb{R} -rigid spaces?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq \mathfrak{c}$ there exists a separable first-countable regular \mathbb{R} -rigid space of cardinality κ .

The only known example of a non-normal Nyikos space was constructed by Nyikos and Vaughan under $\mathfrak{t} = \omega_1$.

Theorem (B., Zdomskyy)

There exists in ZFC a regular separable sequentially compact non-Tychonoff space.

It remains to consider the following question. What can we say about separable first-countable regular \mathbb{R} -rigid spaces?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq \mathfrak{c}$ there exists a separable first-countable regular \mathbb{R} -rigid space of cardinality κ .

The only known example of a non-normal Nyikos space was constructed by Nyikos and Vaughan under $\mathfrak{t} = \omega_1$.

イロト イロト イヨト イヨト

Theorem (B., Zdomskyy)

There exists in ZFC a regular separable sequentially compact non-Tychonoff space.

It remains to consider the following question. What can we say about separable first-countable regular \mathbb{R} -rigid spaces?

Theorem (Ciesielski, Wojciechowski)

For any uncountable cardinal $\kappa \leq \mathfrak{c}$ there exists a separable first-countable regular \mathbb{R} -rigid space of cardinality κ .

The only known example of a non-normal Nyikos space was constructed by Nyikos and Vaughan under $\mathfrak{t} = \omega_1$.

イロト イロト イヨト イヨト

The next theorem gives an affirmative answer to the strongest version of the Tzannes' problem.

Theorem (B., Zdomskyy)

$([\omega_1 < \mathfrak{b} = \mathfrak{c}] \land [\text{exists a simple } P_{\mathfrak{c}}\text{-point}])$ There exists an \mathbb{R} -rigid Nyikos space.

イロト イロト イヨト

The next theorem gives an affirmative answer to the strongest version of the Tzannes' problem.

Theorem (B., Zdomskyy)

 $([\omega_1 < \mathfrak{b} = \mathfrak{c}] \land [\text{exists a simple } P_{\mathfrak{c}}\text{-point}])$ There exists an \mathbb{R} -rigid Nyikos space.

イロト イポト イヨト イヨト

Theorem

There exists a regular separable sequentially compact non-Tychonoff space.

Fix any increasing maximal tower $\mathcal{T} = \{T_{\alpha} \mid \alpha \in \kappa\}$. Consider the space $Y = \mathcal{T} \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic open neighborhood of $\mathcal{T} \in \mathcal{T}$ has the form

$$B(S,T,F) = \{P \in \mathcal{T} \mid S \subset^* P \subseteq^* T\} \cup ((T \setminus S) \setminus F),$$

where $S \in \mathcal{T} \cup \{\emptyset\}$ satisfies $S \subset^* \mathcal{T}$ and F is a finite subset of ω . Observe that Y is separable normal locally compact and sequentially compact. By Y^* we denote the one point compactification of Y. Observe that the Tychonoff product of $Z = Y \times Y^*$ is separable regular and sequentially compact.

Claim

Theorem

There exists a regular separable sequentially compact non-Tychonoff space.

Fix any increasing maximal tower $\mathcal{T} = \{T_{\alpha} \mid \alpha \in \kappa\}$. Consider the space $Y = \mathcal{T} \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic open neighborhood of $\mathcal{T} \in \mathcal{T}$ has the form

 $B(S,T,F) = \{P \in \mathcal{T} \mid S \subset^* P \subseteq^* T\} \cup ((T \setminus S) \setminus F),$

where $S \in \mathcal{T} \cup \{\emptyset\}$ satisfies $S \subset^* \mathcal{T}$ and F is a finite subset of ω . Observe that Y is separable normal locally compact and sequentially compact. By Y^* we denote the one point compactification of Y. Observe that the Tychonoff product of $Z = Y \times Y^*$ is separable regular and sequentially compact.

Claim

Theorem

There exists a regular separable sequentially compact non-Tychonoff space.

Fix any increasing maximal tower $\mathcal{T} = \{T_{\alpha} \mid \alpha \in \kappa\}$. Consider the space $Y = \mathcal{T} \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic open neighborhood of $\mathcal{T} \in \mathcal{T}$ has the form

$$B(S,T,F) = \{P \in \mathcal{T} \mid S \subset^* P \subseteq^* T\} \cup ((T \setminus S) \setminus F),$$

where $S \in \mathcal{T} \cup \{\emptyset\}$ satisfies $S \subset^* T$ and F is a finite subset of ω . Observe that Y is separable normal locally compact and sequentially compact. By Y^* we denote the one point compactification of Y. Observe that the Tychonoff product of $Z = Y \times Y^*$ is separable regular and sequentially compact.

Claim

Theorem

There exists a regular separable sequentially compact non-Tychonoff space.

Fix any increasing maximal tower $\mathcal{T} = \{T_{\alpha} \mid \alpha \in \kappa\}$. Consider the space $Y = \mathcal{T} \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic open neighborhood of $T \in \mathcal{T}$ has the form

$$B(S,T,F) = \{P \in \mathcal{T} \mid S \subset^* P \subseteq^* T\} \cup ((T \setminus S) \setminus F),$$

where $S \in \mathcal{T} \cup \{\emptyset\}$ satisfies $S \subset^* \mathcal{T}$ and F is a finite subset of ω . Observe that Y is separable normal locally compact and sequentially compact. By Y^* we denote the one point compactification of Y. Observe that the Tychonoff product of $Z = Y \times Y^*$ is separable regular and sequentially compact.

Claim

Theorem

There exists a regular separable sequentially compact non-Tychonoff space.

Fix any increasing maximal tower $\mathcal{T} = \{T_{\alpha} \mid \alpha \in \kappa\}$. Consider the space $Y = \mathcal{T} \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic open neighborhood of $\mathcal{T} \in \mathcal{T}$ has the form

$$B(S,T,F) = \{P \in \mathcal{T} \mid S \subset^* P \subseteq^* T\} \cup ((T \setminus S) \setminus F),$$

where $S \in \mathcal{T} \cup \{\emptyset\}$ satisfies $S \subset^* \mathcal{T}$ and F is a finite subset of ω . Observe that Y is separable normal locally compact and sequentially compact. By Y^* we denote the one point compactification of Y. Observe that the Tychonoff product of $Z = Y \times Y^*$ is separable regular and sequentially compact.

Claim

```
The space Z is not normal.
```


Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y^* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

- 4 同 ト - 4 三 ト - 4

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y^* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

- 4 同下 - 4 日下 - 4 日下

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y^* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

- 4 同下 - 4 三下 - 4 三下

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y^* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

《日》 《圖》 《臣》 《臣》

Recall that the space Y contains a closed homeomorphic copy of the cardinal κ and the space Y^* contains a closed homeomorphic copy of the ordinal $\kappa + 1$. Therefore the space Z contains a closed homeomorphic copy of the Tychonoff product $K = \kappa \times (\kappa + 1)$. It remains to show that that the space K is not normal. To derive a contradiction, assume that K is normal. Consider the closed disjoint subsets $A = \{(\alpha, \alpha) \mid \alpha \in \kappa\}$ and $B = \{(\alpha, \kappa) \mid \alpha \in \kappa\}$ of K. Since K is pseudocompact, Glicksberg's Theorem implies that $\beta(K) = \beta(\kappa) \times \beta(\kappa + 1) = (\kappa + 1) \times (\kappa + 1)$. Since the space K is normal, $cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B) = \emptyset$. However, it is easy to see that $(\kappa, \kappa) \in cl_{\beta(K)}(A) \cap cl_{\beta(K)}(B)$ which implies a contradiction.

《日》 《國》 《臣》 《臣》

Thank You for attention!

Serhii Bardyla

On regular countably compact \mathbb{R} -rigid spaces

(日) (同) (日) (日) (日)

Ξ