Custom-made Souslin trees

Ari Meir Brodsky ©

Bar-Ilan University

Thursday, January 21, 2016 Kurt Gödel Research Center, Vienna

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is joint work with Assaf Rinot, and still in progress. This project is partially supported by German-Israeli Foundation for Scientific Research and Development, Grant No. I-2354-304.6/2014.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Souslin trees — higher cardinals

Recall:

Definition

For any regular cardinal κ , a tree T is κ -Souslin if:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- it has height κ,
- it has no chain of size κ,
- it has no antichain of size κ .

Souslin trees — higher cardinals

Recall:

Definition

For any regular cardinal κ , a tree T is κ -Souslin if:

- it has height κ,
- it has no chain of size κ,
- it has no antichain of size κ .

What does it take to construct a κ -Souslin tree for arbitrary regular cardinal κ ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What does it take to build a κ -Souslin tree?

Theorem (Jensen, 1972)

Suppose λ is a regular cardinal. Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$, there exists a λ^{+} -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What does it take to build a κ -Souslin tree?

Theorem (Jensen, 1972)

- Suppose λ is a regular cardinal. Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$, there exists a λ^{+} -Souslin tree.
- Suppose λ is a singular cardinal. Assuming GCH and □_λ, there exists a λ⁺-Souslin tree.

What does it take to build a κ -Souslin tree?

Theorem (Jensen, 1972)

- Suppose λ is a regular cardinal. Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^{+}})$, there exists a λ^{+} -Souslin tree.
- Suppose λ is a singular cardinal. Assuming GCH and □_λ, there exists a λ⁺-Souslin tree.
- If V = L, then for every regular uncountable cardinal κ that is not weakly compact, there exists a κ-Souslin tree.

We write CH_{λ} for the assertion that $2^{\lambda} = \lambda^+$.

Theorem (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and there exists a non-reflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We write CH_{λ} for the assertion that $2^{\lambda} = \lambda^+$.

Theorem (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and there exists a non-reflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem (Shelah, 1984)

If CH holds and NS is saturated, then there exists an \aleph_2 -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We write CH_{λ} for the assertion that $2^{\lambda} = \lambda^+$.

Theorem (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and there exists a non-reflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem (Shelah, 1984)

If CH holds and NS is saturated, then there exists an \aleph_2 -Souslin tree.

Theorem (Ben-David & Shelah, 1986) If $\boxminus_{\lambda, \geq \chi}$ and CH_{λ} for cardinals $\chi < \lambda$ where λ is a singular strong

limit cardinal, then there exists a λ^+ -Souslin tree.

We write CH_{λ} for the assertion that $2^{\lambda} = \lambda^+$.

Theorem (Gregory, 1976)

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and there exists a non-reflecting stationary subset of $E_{<\lambda}^{\lambda^+}$, then there exists a λ^+ -Souslin tree.

Theorem (Shelah, 1984)

If CH holds and NS is saturated, then there exists an \aleph_2 -Souslin tree.

Theorem (Ben-David & Shelah, 1986)

If $\boxminus_{\lambda, \geq \chi}$ and CH_{λ} for cardinals $\chi < \lambda$ where λ is a singular strong limit cardinal, then there exists a λ^+ -Souslin tree.

Baumgartner proved that $\boxminus_{\lambda,\geq\chi}$ is consistent with the failure of \square_{λ} and even \square_{λ}^* .

Theorem (König, Larson & Yoshinobu, 2007) If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a λ^+ -Souslin tree.

Theorem (König, Larson & Yoshinobu, 2007) If $\lambda^{<\lambda} = \lambda$, CH_{λ}, and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a λ^+ -Souslin tree.

Theorem (Rinot, 2011) If $\lambda^{<\lambda} = \lambda$ and $\langle \lambda \rangle_{E_{\lambda}^{\lambda+}}^{-}$ holds for a regular uncountable cardinal λ , then there exists a λ^{+} -Souslin tree.

Theorem (König, Larson & Yoshinobu, 2007) If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a λ^+ -Souslin tree.

Theorem (Rinot, 2011) If $\lambda^{<\lambda} = \lambda$ and $\langle \lambda \rangle_{E_{\lambda}^{+}}^{-}$ holds for a regular uncountable cardinal λ , then there exists a λ^{+} -Souslin tree.

These principles $(\wedge^*(\lambda, E_{\lambda}^{\lambda^+}), \langle \lambda \rangle_{E_{\lambda}^{\lambda^+}}^{-})$ are consistent with the failure of $\Diamond(E_{\lambda}^{\lambda^+})$.

The classical constructions of κ-Souslin trees generally depend on the nature of κ: successor of regular, successor of singular, or inaccessible.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- The classical constructions of κ-Souslin trees generally depend on the nature of κ: successor of regular, successor of singular, or inaccessible.
- Constructions include extensive bookkeeping, counters, timers, coding and decoding whose particular nature makes it difficult to transfer the process from one cardinal to another.

- The classical constructions of κ-Souslin trees generally depend on the nature of κ: successor of regular, successor of singular, or inaccessible.
- Constructions include extensive bookkeeping, counters, timers, coding and decoding whose particular nature makes it difficult to transfer the process from one cardinal to another.

For inaccessible κ, there is a dearth of axiom-based constructions.

- The classical constructions of κ-Souslin trees generally depend on the nature of κ: successor of regular, successor of singular, or inaccessible.
- Constructions include extensive bookkeeping, counters, timers, coding and decoding whose particular nature makes it difficult to transfer the process from one cardinal to another.
- For inaccessible κ, there is a dearth of axiom-based constructions.
- ► The classical ◊-based constructions all require ◊ to concentrate on a non-reflecting stationary set, in order to ensure that we don't get stuck when sealing antichains.

- The classical constructions of κ-Souslin trees generally depend on the nature of κ: successor of regular, successor of singular, or inaccessible.
- Constructions include extensive bookkeeping, counters, timers, coding and decoding whose particular nature makes it difficult to transfer the process from one cardinal to another.
- For inaccessible κ, there is a dearth of axiom-based constructions.
- ► The classical ◊-based constructions all require ◊ to concentrate on a non-reflecting stationary set, in order to ensure that we don't get stuck when sealing antichains.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Can we overcome these limitations?

Souslin trees with extra properties

What additional properties might a κ -Souslin tree satisfy?

Theorem (Kurepa)

The square of a κ -Souslin tree T cannot be κ -Souslin.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Kurepa)

The square of a κ -Souslin tree T cannot be κ -Souslin. How close can we get?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Kurepa)

The square of a κ -Souslin tree T cannot be κ -Souslin.

How close can we get?

Definition

A κ -Souslin tree $\langle T, <_T \rangle$ is said to be free if for every nonzero $n < \omega$, any $\beta < \kappa$, and any sequence of distinct nodes $\langle w_0, \ldots, w_{n-1} \rangle \in {}^nT_{\beta}$, the derived tree $w_0^{\uparrow} \otimes \cdots \otimes w_{n-1}^{\uparrow}$ is again a κ -Souslin tree.

Theorem (Kurepa)

The square of a κ -Souslin tree T cannot be κ -Souslin.

How close can we get?

Definition

A κ -Souslin tree $\langle T, <_T \rangle$ is said to be free if for every nonzero $n < \omega$, any $\beta < \kappa$, and any sequence of distinct nodes $\langle w_0, \ldots, w_{n-1} \rangle \in {}^nT_{\beta}$, the derived tree $w_0^{\uparrow} \otimes \cdots \otimes w_{n-1}^{\uparrow}$ is again a κ -Souslin tree.

Here, the derived tree $w_0^{\uparrow} \otimes \cdots \otimes w_{n-1}^{\uparrow}$ stands for the tree $(\hat{T}, <_{\hat{T}})$, as follows:

▶
$$\hat{T} = \{ \langle z_0, \dots, z_{n-1} \rangle \in {}^nT \mid \exists \delta < \kappa \forall i < n(z_i \in T_\delta \text{ and } z_i \text{ is } <_T\text{-compatible with } w_i) \};$$

•
$$\vec{y} <_{\hat{T}} \vec{z}$$
 iff $y_i <_T z_i$ for all $i < n$.

Theorem (Kurepa)

The square of a κ -Souslin tree T cannot be κ -Souslin.

How close can we get?

Definition

A κ -Souslin tree $\langle T, <_T \rangle$ is said to be free if for every nonzero $n < \omega$, any $\beta < \kappa$, and any sequence of distinct nodes $\langle w_0, \ldots, w_{n-1} \rangle \in {}^nT_{\beta}$, the derived tree $w_0^{\uparrow} \otimes \cdots \otimes w_{n-1}^{\uparrow}$ is again a κ -Souslin tree.

Here, the derived tree $w_0^{\uparrow} \otimes \cdots \otimes w_{n-1}^{\uparrow}$ stands for the tree $(\hat{T}, <_{\hat{T}})$, as follows:

▶
$$\hat{T} = \{ \langle z_0, \dots, z_{n-1} \rangle \in {}^nT \mid \exists \delta < \kappa \forall i < n(z_i \in T_\delta \text{ and } z_i \text{ is } <_T\text{-compatible with } w_i) \};$$

•
$$\vec{y} <_{\hat{T}} \vec{z}$$
 iff $y_i <_T z_i$ for all $i < n$.

Can we construct a free κ -Souslin tree?

Theorem (Jensen) Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This is the only classical construction of a free Souslin tree.

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

This is the only classical construction of a free Souslin tree. What if we replace $\Diamond(E_{\lambda}^{\lambda^+})$ by the axiom $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$, which was sufficient to construct a λ^+ -Souslin tree for regular λ ?

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

This is the only classical construction of a free Souslin tree. What if we replace $\Diamond(E_{\lambda}^{\lambda^+})$ by the axiom $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$, which was sufficient to construct a λ^+ -Souslin tree for regular λ ? Can we construct a κ -Souslin tree for κ inaccessible?

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

This is the only classical construction of a free Souslin tree. What if we replace $\Diamond(E_{\lambda}^{\lambda^+})$ by the axiom $\bot^*(\lambda, E_{\lambda}^{\lambda^+})$, which was sufficient to construct a λ^+ -Souslin tree for regular λ ? Can we construct a κ -Souslin tree for κ inaccessible? What about κ successor of singular?

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

This is the only classical construction of a free Souslin tree. What if we replace $\Diamond(E_{\lambda}^{\lambda^+})$ by the axiom $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$, which was sufficient to construct a λ^+ -Souslin tree for regular λ ? Can we construct a κ -Souslin tree for κ inaccessible? What about κ successor of singular? What about successor of singular when \Box_{λ}^* fails (as in the Ben-David & Shelah scenario).

Theorem (Jensen)

Assuming $\lambda^{<\lambda} = \lambda$ and $\Diamond(E_{\lambda}^{\lambda^+})$, there exists a free λ^+ -Souslin tree.

This is the only classical construction of a free Souslin tree. What if we replace $\diamondsuit(E_{\lambda}^{\lambda^{+}})$ by the axiom $\wedge^{*}(\lambda, E_{\lambda}^{\lambda^{+}})$, which was sufficient to construct a λ^{+} -Souslin tree for regular λ ? Can we construct a κ -Souslin tree for κ inaccessible? What about κ successor of singular? What about successor of singular when \Box_{λ}^{*} fails (as in the Ben-David & Shelah scenario). Are we going to go over each of these models and tailor each of these particular constructions in order to get a free Souslin tree? We have a zoo of consistent constructions of κ -Souslin trees! Construction of a κ -Souslin tree with any desired property seems to depend on the nature of κ , and in some cases even depends on whether κ is successor of a singular of countable or of uncountable cofinality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have a zoo of consistent constructions of κ -Souslin trees! Construction of a κ -Souslin tree with any desired property seems to depend on the nature of κ , and in some cases even depends on whether κ is successor of a singular of countable or of uncountable cofinality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Does it have to be this way?

Looking for an alternative to \Box

Notation For any set of ordinals *D*:

> $\operatorname{acc}(D) = \{ \alpha \in D \mid \sup(D \cap \alpha) = \alpha > 0 \};$ and $\operatorname{nacc}(D) = D \setminus \operatorname{acc}(D).$

> > ▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Looking for an alternative to \Box

Notation

For any set of ordinals D:

$$\operatorname{acc}(D) = \{ \alpha \in D \mid \sup(D \cap \alpha) = \alpha > 0 \}; \text{ and}$$

 $\operatorname{nacc}(D) = D \setminus \operatorname{acc}(D).$

Recall Jensen's square principle, designed to enable construction of $\lambda^+\text{-}\mathsf{Souslin}$ trees:

Definition (Jensen, 1972)

For an infinite cardinal λ , \Box_{λ} asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \lambda^+ \rangle$ such that:

• C_{α} is a club in α for all limit $\alpha < \lambda^+$;

• if
$$\bar{\alpha} \in \operatorname{acc}(\mathcal{C}_{\alpha})$$
, then $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;

Notation

For any set of ordinals D:

$$\operatorname{acc}(D) = \{ \alpha \in D \mid \sup(D \cap \alpha) = \alpha > 0 \};$$
 and
 $\operatorname{nacc}(D) = D \setminus \operatorname{acc}(D).$

Recall Jensen's square principle, designed to enable construction of $\lambda^+\text{-}\mathsf{Souslin}$ trees:

Definition (Jensen, 1972)

For an infinite cardinal λ , \Box_{λ} asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \lambda^+ \rangle$ such that:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- C_{α} is a club in α for all limit $\alpha < \lambda^+$;
- if $\bar{\alpha} \in \operatorname{acc}(\mathcal{C}_{\alpha})$, then $\mathcal{C}_{\bar{\alpha}} = \mathcal{C}_{\alpha} \cap \bar{\alpha}$;
- $otp(C_{\alpha}) \leq \lambda$ for all $\alpha < \lambda^+$.

Why is \Box_{λ} not ideal for our purpose?

It becomes trivial at the level of ℵ₁, that is, □_{ℵ₀} is always true, thus it provides no information to help us build ℵ₁-Souslin trees

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Why is \Box_{λ} not ideal for our purpose?

It becomes trivial at the level of ℵ₁, that is, □_{ℵ₀} is always true, thus it provides no information to help us build ℵ₁-Souslin trees

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

It has no appropriate analogue for inaccessible cardinals

Why is \Box_{λ} not ideal for our purpose?

- It becomes trivial at the level of ℵ₁, that is, □_{ℵ₀} is always true, thus it provides no information to help us build ℵ₁-Souslin trees
- It has no appropriate analogue for inaccessible cardinals
- It is tied to non-reflecting stationary sets, which we want to be able to avoid

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Fix a regular uncountable cardinal κ . The principle $\boxtimes^{-}(\kappa)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Fix a regular uncountable cardinal κ . The principle $\boxtimes^{-}(\kappa)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• C_{α} is a club subset of α for every limit ordinal $\alpha < \kappa$;

Definition

Fix a regular uncountable cardinal κ . The principle $\boxtimes^{-}(\kappa)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_{α} is a club subset of α for every limit ordinal $\alpha < \kappa$;
- C_ᾱ = C_α ∩ ᾱ for all ordinals α < κ and ᾱ ∈ acc(C_α);

Definition

Fix a regular uncountable cardinal κ . The principle $\boxtimes^{-}(\kappa)$ asserts the existence of a sequence $\langle C_{\alpha} | \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- ▶ for every cofinal subset $B \subseteq \kappa$, there exist stationarily many $\alpha < \kappa$ satisfying

$$\sup(\operatorname{\mathsf{nacc}}(\mathcal{C}_{lpha})\cap B)=lpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

For any regular uncountable cardinal κ , $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$ implies the existence of a κ -Souslin tree.

Theorem

For any regular uncountable cardinal κ , $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$ implies the existence of a κ -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What will our tree $\langle T, <_T \rangle$ look like?

► $\langle T, <_T \rangle$ will be a normal downward-closed subtree of $\langle {}^{<\kappa}2, \subset \rangle$. In particular:

Theorem

For any regular uncountable cardinal κ , $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$ implies the existence of a κ -Souslin tree.

What will our tree $\langle T, <_T \rangle$ look like?

- ► $\langle T, <_T \rangle$ will be a normal downward-closed subtree of $\langle {}^{<\kappa}2, \subset \rangle$. In particular:
- Each node t ∈ T is a function t : α → 2 for some ordinal α < κ;</p>
- ► The tree order <_T is simply extension of functions ⊂;
- If $t : \alpha \to 2$ is in T, then $t \upharpoonright \beta \in T$ for every $\beta < \alpha$.
- ▶ For all $t \in T$, ht(t) = dom(t) and $t_{\downarrow} = \{t \restriction \beta \mid \beta < dom(t)\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For all $\alpha < \kappa$, the level $T_{\alpha} = T \cap {}^{\alpha}2$.

Theorem

For any regular uncountable cardinal κ , $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$ implies the existence of a κ -Souslin tree.

What will our tree $\langle T, <_T \rangle$ look like?

- ► $\langle T, <_T \rangle$ will be a normal downward-closed subtree of $\langle {}^{<\kappa}2, \subset \rangle$. In particular:
- Each node t ∈ T is a function t : α → 2 for some ordinal α < κ;</p>
- ► The tree order <_T is simply extension of functions ⊂;
- If $t : \alpha \to 2$ is in T, then $t \upharpoonright \beta \in T$ for every $\beta < \alpha$.
- ▶ For all $t \in T$, ht(t) = dom(t) and $t_{\downarrow} = \{t \restriction \beta \mid \beta < dom(t)\}.$
- For all α < κ, the level T_α = T ∩ ^α2.
 Motivation: ease of completing a branch at a limit level.
 If ⟨t_α | α < β⟩ (for some β < κ) is a ⊆-increasing sequence of nodes in T, then the (unique) limit of this sequence, which may or may not be a member of T, is simply ⋃_{α<β}t_α.

Fix a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(\kappa)$ asserts the existence of a sequence $\langle Z_{\beta} \mid \beta < \kappa \rangle$ such that for every $Z \subseteq \kappa$, the set $\{\beta < \kappa \mid Z \cap \beta = Z_{\beta}\}$ is stationary in κ .

Fix a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(\kappa)$ asserts the existence of a sequence $\langle Z_{\beta} | \beta < \kappa \rangle$ such that for every $Z \subseteq \kappa$, the set $\{\beta < \kappa | Z \cap \beta = Z_{\beta}\}$ is stationary in κ .

Definition

 $\Diamond(H_{\kappa})$ asserts the existence of

a sequence $\langle \Omega_eta \mid eta < \kappa
angle$ such that for every $p \in H_{\kappa^+}$ and

 $\Omega\subseteq H_{\kappa}$, there exists an elementary submodel $\mathcal{M}\prec H_{\kappa^+}$ such that

▶
$$p \in \mathcal{M}$$
;

• $\mathcal{M} \cap \kappa \in \kappa;$

 $\blacktriangleright \mathcal{M} \cap \Omega = \Omega_{\mathcal{M} \cap \kappa}.$

Here, H_{λ} denotes the collection of all sets of hereditary cardinality less than λ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(\kappa)$ asserts the existence of a sequence $\langle Z_{\beta} \mid \beta < \kappa \rangle$ such that for every $Z \subseteq \kappa$, the set $\{\beta < \kappa \mid Z \cap \beta = Z_{\beta}\}$ is stationary in κ .

Definition

 $\diamond(H_{\kappa})$ asserts the existence of a partition $\langle R_i \mid i < \kappa \rangle$ of κ and a sequence $\langle \Omega_{\beta} \mid \beta < \kappa \rangle$ such that for every $p \in H_{\kappa^+}$, $i < \kappa$, and $\Omega \subseteq H_{\kappa}$, there exists an elementary submodel $\mathcal{M} \prec H_{\kappa^+}$ such that

- ▶ $p \in \mathcal{M}$;
- $\mathcal{M} \cap \kappa \in \mathbf{R}_i$;

 $\blacktriangleright \mathcal{M} \cap \Omega = \Omega_{\mathcal{M} \cap \kappa}.$

Here, H_{λ} denotes the collection of all sets of hereditary cardinality less than λ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix a regular uncountable cardinal κ .

Definition (Jensen, 1972)

 $\Diamond(\kappa)$ asserts the existence of a sequence $\langle Z_{\beta} | \beta < \kappa \rangle$ such that for every $Z \subseteq \kappa$, the set $\{\beta < \kappa | Z \cap \beta = Z_{\beta}\}$ is stationary in κ .

Definition

 $\diamond(H_{\kappa})$ asserts the existence of a partition $\langle R_i \mid i < \kappa \rangle$ of κ and a sequence $\langle \Omega_{\beta} \mid \beta < \kappa \rangle$ such that for every $p \in H_{\kappa^+}$, $i < \kappa$, and $\Omega \subseteq H_{\kappa}$, there exists an elementary submodel $\mathcal{M} \prec H_{\kappa^+}$ such that

- ▶ $p \in \mathcal{M}$;
- $\mathcal{M} \cap \kappa \in \mathbf{R}_i$;

 $\blacktriangleright \mathcal{M} \cap \Omega = \Omega_{\mathcal{M} \cap \kappa}.$

Here, H_{λ} denotes the collection of all sets of hereditary cardinality less than λ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition

 $\Diamond(\kappa)$ is equivalent to $\Diamond(H_{\kappa})$.

Preliminaries

Let $\langle R_i \mid i < \kappa \rangle$ and $\langle \Omega_\beta \mid \beta < \kappa \rangle$ together witness $\Diamond(H_\kappa)$. Fix a sequence $\langle C_\alpha \mid \alpha < \kappa \rangle$ witnessing $\boxtimes^-(\kappa)$. Fix a well-ordering \lhd on H_κ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The easy part

Let $T_0 = \{\emptyset\}$.

The easy part

Let $T_0 = \{\emptyset\}$. For every $\alpha < \kappa$, define

$$\mathcal{T}_{lpha+1} = \{ s^{\frown} \langle i \rangle \mid s \in \mathcal{T}_{lpha}, i < 2 \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The hard part

What do we do at limit levels?

Fix a limit ordinal $\alpha < \kappa$, and assume $T \upharpoonright \alpha = \bigcup_{\beta < \alpha} T_{\beta}$ has already been defined.

We need to decide which branches through $T \upharpoonright \alpha$ will have their limits placed in the level T_{α} of the tree.

We need T_{α} to contain enough nodes so that the tree is normal. That is, for every $x \in T \upharpoonright \alpha$, we need to place some node \mathbf{b}_{x}^{α} in T_{α} above x.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The node \mathbf{b}_{x}^{α} will be the limit of some sequence b_{x}^{α} in $T \upharpoonright \alpha$. But we have to choose these sequences carefully, so that the resulting tree doesn't have large antichains.

Identifying cofinal branches

Recall that C_{α} is a club subset of α .

For every $x \in T \upharpoonright C_{\alpha}$, we will use C_{α} to identify a cofinal branch b_x^{α} through $\langle T \upharpoonright \alpha, \subseteq \rangle$, containing x, as follows:

- b_x^{α} will be an increasing, continuous sequence of nodes.
- dom $(b_x^{\alpha}) = C_{\alpha} \setminus \operatorname{ht}(x).$
- $\blacktriangleright \ b_x^{\alpha}(\operatorname{ht}(x)) = x.$
- We will need to identify $b_x^{\alpha}(\beta) \in T_{\beta}$ for all $\beta \in C_{\alpha}$ with $\beta > ht(x)$.

We will do this by recursion over β , considering the cases $\beta \in \operatorname{nacc}(C_{\alpha})$ and $\beta \in \operatorname{acc}(C_{\alpha})$ in turn.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intersecting a maximal antichain at levels in nacc(C_{α})

Suppose $\beta \in \operatorname{nacc}(C_{\alpha})$ with $\beta > \operatorname{ht}(x)$. Denote $\beta^{-} = \max(C_{\alpha} \cap \beta)$.

This exists and is in dom (b_x^{α}) , so that $b_x^{\alpha}(\beta^-)$ has been defined. We need to identify $b_x^{\alpha}(\beta) \in T_{\beta}$, extending $b_x^{\alpha}(\beta^-)$. Consider two possibilities:

- If there is some $y \in \Omega_{\beta}$ and $z \in T_{\beta}$ such that $b_x^{\alpha}(\beta^-) \cup y \subseteq z$, then let $b_x^{\alpha}(\beta)$ be the \triangleleft -least such z.
- Otherwise, let b^α_x(β) be the ⊲-least element of T_β extending b^α_x(β[−]). Such a node must exist, because we are ensuring that the tree is normal as we construct every level.

Notice that if Ω_{β} is a maximal antichain through $T \upharpoonright \beta$, then in particular there is some $y \in \Omega_{\beta} \cap (T \upharpoonright \beta)$ compatible with $b_x^{\alpha}(\beta^-)$, so that $b_x^{\alpha}(\beta^-) \cup y \in T \upharpoonright \beta$, and then by normality there is $z \in T_{\beta}$ extending this, so that the first option applies.

Will we get stuck at levels in $\operatorname{acc}(C_{\alpha})$?

Suppose $\beta \in \operatorname{acc}(C_{\alpha})$ with $\beta > \operatorname{ht}(x)$. We want b_x^{α} to be continuous, so the only possible definition is:

$$b^lpha_x(eta) = igcup_{\gamma\in \mathsf{dom}(b^lpha_x)\capeta} b^lpha_x(\gamma).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Clearly $b_x^{\alpha}(\beta) \in {}^{\beta}2$, but how do we know that $b_x^{\alpha}(\beta) \in T_{\beta}$? This question highlights the difference between the classical approach and our new framework.

Coherence to the rescue!

Since $\beta \in \operatorname{acc}(C_{\alpha})$, our choice of the sequence satisfying $\boxtimes^{-}(\kappa)$ gives $C_{\beta} = C_{\alpha} \cap \beta$.

For every $\gamma \in \text{dom}(b_x^{\alpha}) \cap \beta$, the value of $b_x^{\beta}(\gamma)$ was determined in exactly the same way as $b_x^{\alpha}(\gamma)$:

- starting with $b_x^{\beta}(ht(x)) = x = b_x^{\alpha}(ht(x));$
- ▶ for $\gamma \in \operatorname{nacc}(C_{\alpha})$: depending only on $b_{x}^{\alpha}(\gamma^{-})$, Ω_{γ} , and T_{γ} ;

• for
$$\gamma \in \operatorname{acc}(\mathcal{C}_{\alpha})$$
: taking limits.

It follows that

$$b^{lpha}_x(eta) = igcup_{\gamma\in \mathsf{dom}(b^{lpha}_x)\capeta} b^{lpha}_x(\gamma) = igcup_{\gamma\in \mathsf{dom}(b^{eta}_x)} b^{eta}_x(\gamma) = \mathbf{b}^{eta}_x$$

Since $\beta < \alpha$, the level T_{β} has already been constructed, and the construction guarantees that we have included the limit \mathbf{b}_{x}^{β} of the sequence b_{x}^{β} into T_{β} . But we have just shown that this is exactly $b_{x}^{\alpha}(\beta)$, so that $b_{x}^{\alpha}(\beta) \in T_{\beta}$, as required.

Completing the construction of T_{lpha}

The sequence b_x^{α} just identified determines a cofinal branch through $T \upharpoonright \alpha$ containing x. As promised, we take its limit

$$\mathbf{b}^{lpha}_x = igcup_{eta\in\mathsf{dom}(b^{lpha}_x)} b^{lpha}_x(eta),$$

which is an element of $^{\alpha}2$.

Completing the construction of T_{α}

The sequence b_x^{α} just identified determines a cofinal branch through $T \upharpoonright \alpha$ containing x. As promised, we take its limit

$$\mathbf{b}^{lpha}_{x} = igcup_{eta\in \mathsf{dom}(b^{lpha}_{x})} b^{lpha}_{x}(eta),$$

which is an element of $\alpha 2$.

Finally, we collect all nodes constructed in this way, and let

$$T_{\alpha} = \{ \mathbf{b}_{x}^{\alpha} \mid x \in T \upharpoonright C_{\alpha} \} \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Completing the construction of T_{lpha}

The sequence b_x^{α} just identified determines a cofinal branch through $T \upharpoonright \alpha$ containing x. As promised, we take its limit

$$\mathbf{b}^{lpha}_{x} = igcup_{eta\in \mathsf{dom}(b^{lpha}_{x})} b^{lpha}_{x}(eta),$$

which is an element of $^{\alpha}2$.

Finally, we collect all nodes constructed in this way, and let

$$T_{\alpha} = \{ \mathbf{b}_{x}^{\alpha} \mid x \in T \upharpoonright C_{\alpha} \} \,.$$

Having constructed all levels of the tree, we then let

$$T = \bigcup_{\alpha < \kappa} T_{\alpha}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here we use $\diamondsuit(H_{\kappa})$

Claim Suppose $A \subseteq T$ is a maximal antichain. Then the set

 $B = \{\beta < \kappa \mid A \cap (T \upharpoonright \beta) = \Omega_{\beta} \text{ is a maximal antichain in } T \upharpoonright \beta\}.$

is a stationary subset of κ .

Proof.

Let $D \subseteq \kappa$ be an arbitrary club. We must show that $D \cap B \neq \emptyset$. Put $p = \{A, T, D\}$. Using the fact that the sequence $\langle \Omega_{\beta} \mid \beta < \kappa \rangle$ satisfies (H_{κ}) , pick $\mathcal{M} \prec H_{\kappa^+}$ with $p \in \mathcal{M}$ such that $\beta = \mathcal{M} \cap \kappa$ is in κ and $\Omega_{\beta} = A \cap \mathcal{M}$. Since $D \in \mathcal{M}$ and D is club in κ , we have $\beta \in D$. We claim that $\beta \in B$. For all $\alpha < \beta$, by $\alpha, T \in \mathcal{M}$, we have $T_{\alpha} \in \mathcal{M}$, and by $\mathcal{M} \models |T_{\alpha}| < \kappa$, we have $T_{\alpha} \subseteq \mathcal{M}$. So $T \upharpoonright \beta \subseteq \mathcal{M}$. As dom $(z) \in \mathcal{M}$ for all $z \in T \cap \mathcal{M}$, we conclude that $T \cap \mathcal{M} = T \upharpoonright \beta$. So, $\Omega_{\beta} = A \cap (T \upharpoonright \beta)$. As $H_{\kappa^+} \models A$ is a maximal antichain in T and $T \cap \mathcal{M} = T \upharpoonright \beta$, we get that $A \cap (T \upharpoonright \beta)$ is maximal in $T \upharpoonright \beta$.

Verifying that T is κ -Souslin

Claim The tree $\langle T, \subset \rangle$ is a κ -Souslin tree.

Proof.

Let $A \subseteq T$ be a maximal antichain. From the previous claim,

 $B = \{\beta < \kappa \mid A \cap (T \restriction \beta) = \Omega_{\beta} \text{ is a maximal antichain in } T \restriction \beta\}$

is a stationary subset of κ .

Thus we apply $\boxtimes^{-}(\kappa)$ to obtain a limit ordinal $\alpha < \kappa$ satisfying

 $\sup(\operatorname{nacc}(C_{\alpha})\cap B)=\alpha.$

Consider any $v \in T_{\alpha}$. By construction, $v = \mathbf{b}_{x}^{\alpha} = \bigcup_{\beta \in \text{dom}(b_{x}^{\alpha})} b_{x}^{\alpha}(\beta)$ for some $x \in T \upharpoonright C_{\alpha}$. Fix $\beta \in \text{nacc}(C_{\alpha}) \cap B$ with $\text{ht}(x) < \beta < \alpha$. So $\Omega_{\beta} = A \cap (T \upharpoonright \beta)$ is a maximal antichain in $T \upharpoonright \beta$. Thus we chose $b_{x}^{\alpha}(\beta)$ to extend some $y \in \Omega_{\beta}$. Altogether, $y \subseteq b_{x}^{\alpha}(\beta) \subseteq \mathbf{b}_{x}^{\alpha} = v$, as required. How does $\boxtimes^{-}(\kappa)$ fit with other axioms?

So we've built a κ -Souslin tree from $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$, but how does this compare with other known axioms?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

How does $\boxtimes^{-}(\kappa)$ fit with other axioms?

So we've built a κ -Souslin tree from $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$, but how does this compare with other known axioms?

Theorem

 $\diamondsuit(\kappa) + \boxtimes^{-}(\kappa)$ holds, assuming any of the following:

•
$$\kappa = leph_1$$
 and $\diamondsuit(leph_1)$ holds;

• $\kappa = \lambda^+$ for λ uncountable, and $\Box_{\lambda} + CH_{\lambda}$ holds;

- κ = λ⁺, λ is not subcompact, and V is a Jensen-type extender model of the form L[E];
- κ is a regular uncountable cardinal that is not weakly compact, and V = L.

How does $\boxtimes^{-}(\kappa)$ fit with other axioms?

So we've built a κ -Souslin tree from $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$, but how does this compare with other known axioms?

Theorem

 $\diamondsuit(\kappa) + \boxtimes^{-}(\kappa)$ holds, assuming any of the following:

•
$$\kappa = leph_1$$
 and $\diamondsuit(leph_1)$ holds;

•
$$\kappa = \lambda^+$$
 for λ uncountable, and $\Box_{\lambda} + CH_{\lambda}$ holds;

- κ = λ⁺, λ is not subcompact, and V is a Jensen-type extender model of the form L[E];
- κ is a regular uncountable cardinal that is not weakly compact, and V = L.

Thus, we get a κ -Souslin tree uniformly in all these scenarios!

In the tree we just built, what can we say about how fast the levels grow?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

In the tree we just built, what can we say about how fast the levels grow?

At each limit level $\alpha < \kappa$, we put (at most) one node into T_{α} for every $x \in T \upharpoonright \alpha$. It follows that $|T_{\alpha}| \leq \max\{|\alpha|, \aleph_0\}$ for every $\alpha < \kappa$. Thus we say the tree is slim.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In the tree we just built, what can we say about how fast the levels grow?

At each limit level $\alpha < \kappa$, we put (at most) one node into T_{α} for every $x \in T \upharpoonright \alpha$. It follows that $|T_{\alpha}| \leq \max\{|\alpha|, \aleph_0\}$ for every $\alpha < \kappa$. Thus we say the tree is slim.

What if we consider an opposite property?

Complete Souslin trees

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work?

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work? For one thing, we can't let the tree get too wide. So we better assume $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$.

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work? For one thing, we can't let the tree get too wide. So we better

assume $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$.

But if there are elements of T_{α} that are not of the form \mathbf{b}_{x}^{α} , then how do we kill the antichains using C_{α} ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work?

For one thing, we can't let the tree get too wide. So we better assume $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$.

But if there are elements of T_{α} that are not of the form \mathbf{b}_{x}^{α} , then how do we kill the antichains using C_{α} ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We need to tweak an axiom to avoid such levels.

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work?

For one thing, we can't let the tree get too wide. So we better assume $\lambda^{<\chi}<\kappa$ for all $\lambda<\kappa.$

But if there are elements of T_{α} that are not of the form \mathbf{b}_{x}^{α} , then how do we kill the antichains using C_{α} ?

We need to tweak an axiom to avoid such levels.

Recall that the previous construction used $\Diamond(\kappa) + \boxtimes^-(\kappa)$.

Which axiom should we strengthen: $\Diamond(\kappa)$ or $\boxtimes^{-}(\kappa)$?

Definition

For cardinals $\chi < \kappa$, the κ -Souslin tree $\langle T, <_T \rangle$ is χ -complete if every $<_T$ -increasing sequence of elements of T of length $< \chi$ has an upper bound in T.

To get our κ -Souslin tree to be χ -complete, we would like to tweak our construction so that at levels α with $cf(\alpha) < \chi$ we put the limits of all branches into T_{α} . Does this work?

For one thing, we can't let the tree get too wide. So we better assume $\lambda^{<\chi}<\kappa$ for all $\lambda<\kappa.$

But if there are elements of T_{α} that are not of the form \mathbf{b}_{x}^{α} , then how do we kill the antichains using C_{α} ?

We need to tweak an axiom to avoid such levels.

Recall that the previous construction used $\Diamond(\kappa) + \boxtimes^{-}(\kappa)$.

Which axiom should we strengthen: $\Diamond(\kappa)$ or $\boxtimes^{-}(\kappa)$?

Classical constructions of χ -complete Souslin trees would replace $\Diamond(\kappa)$ with $\Diamond(E_{\geq_{\chi}}^{\kappa})$. But we'll try something different....

A stronger parameter: $\square^{-}(S)$

Recall

Fix a regular uncountable cardinal κ .

The principle $\boxtimes^{-}(\kappa)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- ▶ for every cofinal subset $B \subseteq \kappa$, there exist stationarily many $\alpha < \kappa$ satisfying

 $\sup(\operatorname{nacc}(C_{\alpha})\cap B)=\alpha.$

A stronger parameter: $\square^{-}(S)$

Definition

Fix a regular uncountable cardinal κ and a stationary set $S \subseteq \kappa$. The principle $\boxtimes^{-}(S)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- ▶ for every cofinal subset $B \subseteq \kappa$, there exist stationarily many $\alpha \in S$ satisfying

 $\sup(\operatorname{nacc}(C_{\alpha})\cap B)=\alpha.$

A stronger parameter: $\boxtimes^{-}(S)$

Definition

Fix a regular uncountable cardinal κ and a stationary set $S \subseteq \kappa$. The principle $\boxtimes^{-}(S)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- ▶ for every cofinal subset $B \subseteq \kappa$, there exist stationarily many $\alpha \in S$ satisfying

$$\sup(\operatorname{\mathsf{nacc}}(\mathcal{C}_{lpha})\cap B)=lpha.$$

Theorem

For any regular uncountable cardinal κ and any infinite $\chi < \kappa$ satisfying $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$, $\Diamond(\kappa) + \boxtimes^{-}(E_{\geq\chi}^{\kappa})$ implies the existence of a χ -complete κ -Souslin tree.

There exist models satisfying $\Diamond(\kappa)$ and $\boxtimes^-(E_{\geq\chi}^{\kappa})$ in which $\Diamond(E_{\geq\chi}^{\kappa})$ fails. The preceding theorem shows that we can build a χ -complete κ -Souslin tree in such a model, despite the failure of $\Diamond(E_{\geq\chi}^{\kappa})$.

There exist models satisfying $\Diamond(\kappa)$ and $\boxtimes^-(E_{\geq\chi}^{\kappa})$ in which $\Diamond(E_{\geq\chi}^{\kappa})$ fails. The preceding theorem shows that we can build a χ -complete κ -Souslin tree in such a model, despite the failure of $\Diamond(E_{\geq\chi}^{\kappa})$. This is because the last clause of $\boxtimes^-(S)$ allows us to separate the stationary set of approximations to a maximal antichain from the stationary set of ordinals where we seal those antichains.

Coherent trees

Definition

A subtree $T \subseteq {}^{<\kappa}\kappa$ is coherent if for every $\alpha < \kappa$ and $s, t \in T \cap {}^{\alpha}\kappa$, the set $\{\beta < \alpha \mid s(\beta) \neq t(\beta)\}$ is finite.

Definition

A subtree $T \subseteq {}^{<\kappa}\kappa$ is coherent if for every $\alpha < \kappa$ and $s, t \in T \cap {}^{\alpha}\kappa$, the set $\{\beta < \alpha \mid s(\beta) \neq t(\beta)\}$ is finite.

Jensen gave a consistent construction of a coherent \aleph_1 -Souslin tree. Velickovic gave a consistent construction of a coherent \aleph_2 -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A subtree $T \subseteq {}^{<\kappa}\kappa$ is coherent if for every $\alpha < \kappa$ and $s, t \in T \cap {}^{\alpha}\kappa$, the set $\{\beta < \alpha \mid s(\beta) \neq t(\beta)\}$ is finite.

Jensen gave a consistent construction of a coherent \aleph_1 -Souslin tree. Velickovic gave a consistent construction of a coherent \aleph_2 -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What about inaccessible κ ?

Strengthening $\boxtimes^{-}(S)$ to $\boxtimes(S)$

Recall

Fix a regular uncountable cardinal κ and a stationary set $S \subseteq \kappa$. The principle $\boxtimes^{-}(S)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- For every cofinal subset B ⊆ κ, there exist stationarily many α ∈ S satisfying

$$\sup(\mathsf{nacc}(\mathcal{C}_{lpha})\cap B)=lpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strengthening $\boxtimes^{-}(S)$ to $\boxtimes(S)$

Definition

Fix a regular uncountable cardinal κ and a stationary set $S \subseteq \kappa$. The principle $\boxtimes(S)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_{α} is a club subset of α for every limit ordinal $\alpha < \kappa$;
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- For every sequence (B_i | i < κ) of cofinal subsets of κ, there exist stationarily many α ∈ S such that for all i < α</p>

$$\sup(\operatorname{\mathsf{nacc}}(\mathcal{C}_{\alpha})\cap B_i)=lpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strengthening $\boxtimes^{-}(S)$ to $\boxtimes(S)$

Definition

Fix a regular uncountable cardinal κ and a stationary set $S \subseteq \kappa$. The principle $\boxtimes(S)$ asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- C_α is a club subset of α for every limit ordinal α < κ;</p>
- $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$ for all ordinals $\alpha < \kappa$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha})$;
- For every sequence (B_i | i < κ) of cofinal subsets of κ, there exist stationarily many α ∈ S such that for all i < α</p>

 $\sup\{\beta < \alpha \mid \operatorname{succ}_{\omega}(\mathcal{C}_{\alpha} \setminus \beta) \subseteq B_i\} = \alpha,$

where

$$\operatorname{succ}_{\omega}(D) := \{ \delta \in D \mid 0 < \operatorname{otp}(D \cap \delta) < \omega \}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Construction of a coherent tree

Theorem

If κ is a regular uncountable cardinal and $\boxtimes(\kappa) + \diamondsuit(\kappa)$ holds, then there exists a coherent κ -Souslin tree.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Construction of a coherent tree

Let $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ be a witness to $\boxtimes(\kappa)$. WLOG, assume that $0 \in C_{\alpha}$ for all $\alpha < \kappa$. Let $\langle R_i \mid i < \kappa \rangle$ and $\langle \Omega_{\beta} \mid \beta < \kappa \rangle$ together witness $\diamondsuit(H_{\kappa})$. Fix a well-ordering \lhd on H_{κ} . Let $\pi : \kappa \to \kappa$ be such that $\alpha \in R_{\pi(\alpha)}$ for all $\alpha < \kappa$. By $\diamondsuit(\kappa)$, we have $2^{<\kappa} = \kappa$, thus let $\phi : \kappa \leftrightarrow {}^{<\kappa}2$ be some bijection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Put $\psi := \phi \circ \pi$.

Construction of a coherent tree

Let $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ be a witness to $\boxtimes(\kappa)$. WLOG, assume that $0 \in C_{\alpha}$ for all $\alpha < \kappa$. Let $\langle R_i \mid i < \kappa \rangle$ and $\langle \Omega_{\beta} \mid \beta < \kappa \rangle$ together witness $\diamondsuit(H_{\kappa})$. Fix a well-ordering \lhd on H_{κ} . Let $\pi : \kappa \to \kappa$ be such that $\alpha \in R_{\pi(\alpha)}$ for all $\alpha < \kappa$. By $\diamondsuit(\kappa)$, we have $2^{<\kappa} = \kappa$, thus let $\phi : \kappa \leftrightarrow {}^{<\kappa}2$ be some bijection.

Put $\psi := \phi \circ \pi$.

For two elements of η, τ of H_{κ} , we define $\eta * \tau$ to be the emptyset, unless $\eta, \tau \in {}^{<\kappa}2$ with dom $(\eta) < \text{dom}(\tau)$, in which case $\eta * \tau : \text{dom}(\tau) \to 2$ is defined by stipulating:

$$(\eta * au)(eta) := egin{cases} \eta(eta), & ext{if } eta \in \mathsf{dom}(\eta); \ au(eta), & ext{otherwise}. \end{cases}$$

We shall now recursively construct a sequence $\langle T_{\alpha} \mid \alpha < \kappa \rangle$ of levels whose union will ultimately be the desired tree T. Let $T_0 := \{\emptyset\}$. For every $\alpha < \kappa$, define

$$T_{\alpha+1} = \{ s^{\frown} \langle i \rangle \mid s \in T_{\alpha}, i < 2 \}.$$

Next, suppose that α is a nonzero limit ordinal, and that $\langle T_{\beta} \mid \beta < \alpha \rangle$ has already been defined. As before, to each node $x \in T \upharpoonright \alpha$ we shall associate some node $\mathbf{b}_{x}^{\alpha} : \alpha \to \kappa$ above x, and then let $T_{\alpha} := {\mathbf{b}_{\alpha}^{\alpha} \mid x \in T \upharpoonright \alpha}$. Unlike the previous proof we first define $\mathbf{b}_{\emptyset}^{\alpha}$, and then use $\mathbf{b}_{\emptyset}^{\alpha}$ to define \mathbf{b}_{x}^{α} for $x \neq \emptyset$. Define $\mathbf{b}_{\emptyset}^{\alpha} \in \prod_{\beta \in C_{\alpha}} T_{\beta}$ by recursion. Let $b_{\emptyset}^{\alpha}(0) := \emptyset$.

Next, suppose $\beta^- < \beta$ are successive points of C_{α} , and $b_{\emptyset}^{\alpha}(\beta^-)$ has already been defined. In order to decide $b_{\emptyset}^{\alpha}(\beta)$, we advise with the following set:

$$Q^{lpha,eta} := \{t \in \mathcal{T}_eta \mid \exists s \in \Omega_eta[(s \cup (\psi(eta) * b^lpha_\emptyset(eta^-))) \subseteq t]\}.$$

Now, consider the two possibilities:

- ▶ If $Q^{\alpha,\beta} \neq \emptyset$, let *t* denote its *⊲*-least element, and put $b^{\alpha}_{\emptyset}(\beta) := b^{\alpha}_{\emptyset}(\beta^{-}) * t$;
- Otherwise, let b^α_∅(β) be the ⊲-least element of T_β that extends b^α_∅(β[−]).

Note that $Q^{\alpha,\beta}$ depends only on $T_{\beta}, \Omega_{\beta}, \psi(\beta)$ and $b^{\alpha}_{\emptyset}(\beta^{-})$, and hence for every ordinal $\gamma < \kappa$, if $C_{\alpha} \cap (\beta + 1) = C_{\gamma} \cap (\beta + 1)$, then $b^{\alpha}_{\emptyset} \upharpoonright (\beta + 1) = b^{\gamma}_{\emptyset} \upharpoonright (\beta + 1)$. It follows that for all $\beta \in \operatorname{acc}(C_{\alpha})$ such that $b^{\alpha}_{\emptyset} \upharpoonright \beta$ has already been defined, we may let $b^{\alpha}_{\emptyset}(\beta) := \bigcup \operatorname{Im}(b^{\alpha}_{\emptyset} \upharpoonright \beta)$ and infer that $b^{\alpha}_{\emptyset}(\beta) = \mathbf{b}^{\beta}_{\emptyset} \in T_{\beta}$. This completes the definition of b^{α}_{\emptyset} and its limit $\mathbf{b}^{\alpha}_{\emptyset} = \bigcup \operatorname{Im}(b^{\alpha}_{\emptyset})$.

Next, for each $x \in T \upharpoonright \alpha$, let $\mathbf{b}_x^{\alpha} := x * \mathbf{b}_{\emptyset}^{\alpha}$. This completes the definition of the level T_{α} .

Having constructed all levels of the tree, we then let

$$T:=\bigcup_{\alpha<\kappa}T_{\alpha}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Next, for each $x \in T \upharpoonright \alpha$, let $\mathbf{b}_x^{\alpha} := x * \mathbf{b}_{\emptyset}^{\alpha}$. This completes the definition of the level T_{α} .

Having constructed all levels of the tree, we then let

$$T := \bigcup_{\alpha < \kappa} T_{\alpha}$$

Claim

For every $\alpha < \kappa$, every two nodes of T_{α} differ on a finite set.

Proof.

Suppose not, and let α be the least counterexample. Clearly, α must be a limit nonzero ordinal. Pick $x, y \in T \upharpoonright \alpha$ such that \mathbf{b}_x^{α} differs from \mathbf{b}_y^{α} on an infinite set. As $\mathbf{b}_x^{\alpha} = x * \mathbf{b}_{\emptyset}^{\alpha}$ and $\mathbf{b}_y^{\alpha} = y * \mathbf{b}_{\emptyset}^{\alpha}$, it follows that x and y differ on an infinite set, contradicting the minimality of α .

Thus, we are left with verifying that (T, \subset) is κ -Souslin.

Claim Suppose $A \subseteq T$ is a maximal antichain. Then $|A| < \kappa$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Claim

Suppose $A \subseteq T$ is a maximal antichain. Then $|A| < \kappa$. PROOF:

As in the previous theorem but this time making use of the sequence $\langle R_i \mid i < \kappa \rangle$, for every $i < \kappa$, the set

 $B_i := \{\beta \in R_i \mid A \cap (T \restriction \beta) = \Omega_\beta \text{ is a maximal antichain in } T \restriction \beta\}$

is stationary. Thus, we apply $\boxtimes(\kappa)$ to the sequence $\langle B_i | i < \kappa \rangle$, and the club $D := \{ \alpha < \kappa \mid T \upharpoonright \alpha \subseteq \phi[\alpha] \}$ to obtain an ordinal $\alpha \in D$ such that for all $i < \alpha$:

$$\sup(\operatorname{nacc}(C_{\alpha})\cap B_i)=\alpha.$$

To see that $A \subseteq T \upharpoonright \alpha$, consider any $z \in T \upharpoonright (\kappa \setminus \alpha)$. Let $y := z \upharpoonright \alpha \in T_{\alpha}$. By construction, $y = \mathbf{b}_{x}^{\alpha} = x * \mathbf{b}_{\alpha}^{\alpha}$ for some $x \in T \upharpoonright \alpha$. As $\alpha \in D$ and $x \in T \upharpoonright \alpha$, we can fix $i < \alpha$ such that $\phi(i) = x$. Fix $\beta \in \operatorname{nacc}(C_{\alpha}) \cap B_i$ with $\operatorname{ht}(x) < \beta < \alpha$. Clearly, $\psi(\beta) = \phi(\pi(\beta)) = \phi(i) = x$. Since $\beta \in B_i$, we know that $\Omega_{\beta} = A \cap (T \upharpoonright \beta)$ is a maximal antichain in $T \upharpoonright \beta$, and hence $Q^{\alpha,\beta} \neq \emptyset$. Let $t := \min(Q^{\alpha,\beta}, \triangleleft)$ and $\beta^- := \sup(C_{\alpha} \cap \beta)$. Then $b^{\alpha}_{\emptyset}(\beta) = b^{\alpha}_{\emptyset}(\beta^{-}) * t$, and there exists some $s \in \Omega_{\beta}$ such that $(s \cup (x * b^{\alpha}_{\emptyset}(\beta^{-}))) \subseteq t$. In particular, $x * b^{\alpha}_{\emptyset}(\beta)$ extends an element of Ω_{β} . Altogether, there exists some $s \in A \cap (T \upharpoonright \beta)$ such that $s \subseteq x * b^{\alpha}_{\emptyset}(\beta) \subseteq x * \mathbf{b}^{\alpha}_{\emptyset} = \mathbf{b}^{\alpha}_{x} = y \subseteq z$, and hence $z \notin A$.

・ロト・日本・モト・モト・モー うらくで

How does $\boxtimes(\kappa)$ fit with other axioms?

Now we've built a coherent κ -Souslin tree from $\Diamond(\kappa) + \boxtimes(\kappa)$. How does this compare with other known axioms?

How does $\boxtimes(\kappa)$ fit with other axioms?

Now we've built a coherent κ -Souslin tree from $\Diamond(\kappa) + \boxtimes(\kappa)$. How does this compare with other known axioms?

Theorem

 $\Diamond(\kappa) + \boxtimes(\kappa)$ holds, assuming any of the following:

- $\kappa = \aleph_1$ and $\diamondsuit(\aleph_1)$ holds;
- $\kappa = \lambda^+$ for λ singular, and $\Box_{\lambda} + CH_{\lambda}$ holds;
- $\kappa = \lambda^+$ for λ regular uncountable, and \bigotimes_{λ} holds;
- κ = λ⁺, λ is not subcompact, and V is a Jensen-type extender model of the form L[E];
- κ is a regular uncountable cardinal that is not weakly compact, and V = L;
- $\kappa = \lambda^+$ for λ regular uncountable and $V = W^{\text{Add}(\lambda,1)}$, where

$$W \models \mathsf{ZFC} + \Box_{\lambda} + \mathsf{CH}_{\lambda} + \lambda^{<\lambda} = \lambda.$$

Unified result

Thus, we get a coherent κ -Souslin tree uniformly in all these scenarios!

Thus, we get a coherent κ -Souslin tree uniformly in all these scenarios!

In fact, we can construct a free κ -Souslin tree from $\Diamond(\kappa) + \boxtimes(\kappa)$. Thus there exists a free κ -Souslin tree in all of these scenarios as well! Using the full strength of $\boxtimes(\kappa)$

The construction of the coherent and free trees does not use the full force of the axiom $\boxtimes(\kappa)$: We needed only

$$\sup(\operatorname{nacc}(C_{\alpha})\cap B_i)=\alpha,$$

which is equivalent to

$$\sup\{\beta < \alpha \mid \mathsf{succ}_1(\mathcal{C}_\alpha \setminus \beta) \subseteq B_i\} = \alpha,$$

while $\boxtimes(\kappa)$ provides

$$\sup\{\beta < \alpha \mid \mathsf{succ}_{\omega}(\mathcal{C}_{\alpha} \setminus \beta) \subseteq B_i\} = \alpha.$$

Using the full strength of $\boxtimes(\kappa)$

The construction of the coherent and free trees does not use the full force of the axiom $\boxtimes(\kappa)$: We needed only

$$\sup(\operatorname{nacc}(C_{\alpha})\cap B_i)=\alpha,$$

which is equivalent to

$$\sup\{\beta < \alpha \mid \mathsf{succ}_1(\mathcal{C}_\alpha \setminus \beta) \subseteq B_i\} = \alpha,$$

while $\boxtimes(\kappa)$ provides

$$\sup\{\beta < \alpha \mid \operatorname{succ}_{\omega}(\mathcal{C}_{\alpha} \setminus \beta) \subseteq B_i\} = \alpha.$$

Why do we need the stronger condition?

Using the full strength of $\boxtimes(\kappa)$: Ascent paths

Using $\boxtimes(\kappa)$, we can construct a κ -Souslin tree with a θ -ascent path, for every cardinal $\theta < \kappa$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Using the full strength of $\boxtimes(\kappa)$: Ascent paths

Using $\boxtimes(\kappa)$, we can construct a κ -Souslin tree with a θ -ascent path, for every cardinal $\theta < \kappa$. What is an ascent path?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using the full strength of $\boxtimes(\kappa)$: Ascent paths

Using $\boxtimes(\kappa)$, we can construct a κ -Souslin tree with a θ -ascent path, for every cardinal $\theta < \kappa$. What is an ascent path? Instead of defining it, let's look at its consequences.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ascent paths make a tree non-specializable

An ascent path makes a tree hard to specialize.

Recall: Baumgartner, Malitz & Reinhardt (1970) proved that every \aleph_1 -Aronszajn tree can be made special in some cofinality-preserving extension. The next example is of a λ^+ -Souslin tree that cannot be specialized without reducing it to the BMR scenario.

Theorem

Assume $\Box_{\lambda} + CH_{\lambda}$ for a given singular cardinal λ of countable cofinality.

Then there exists a λ^+ -Souslin tree $\langle T, <_T \rangle$ satisfying the following. If W is a ZFC extension of the universe in which $\langle T, <_T \rangle$ is a special $|\lambda|^+$ -tree, then $W \models |\lambda| = \aleph_0$.

Free trees with ascent paths

Theorem

For any regular uncountable cardinal κ and any infinite cardinal $\theta < \kappa$, $\Diamond(\kappa) + \boxtimes(\kappa)$ implies that there exists a free κ -Souslin tree with a θ -ascent path.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reduced-power trees

Ascent paths provide a branch through the reduced-power tree, while freeness can prevent such branches from existing. With careful control over both, we obtain:

Theorem

Assume V = L.

Then there exist trees T_0 , T_1 , T_2 , T_3 , and selective ultrafilters U_0 over ω and U_1 over ω_1 , such that:

	Т	T^ω/\mathcal{U}_0	$T^{\omega_1}/\mathcal{U}_1$
T_0	ℵ ₃ -Souslin	ℵ ₃ -Aronszajn	ℵ ₃ -Aronszajn
T_1	ℵ ₃ -Souslin	ℵ ₃ -Kurepa	<i>ℵ</i> 3-Kurepa
T_2	ℵ ₃ -Souslin	ℵ ₃ -Aronszajn	<i>ℵ</i> 3-Kurepa
<i>T</i> ₃	\aleph_3 -Souslin	¬ℵ ₃ -Aronszajn	ℵ ₃ -Aronszajn

This is new: Previous results addressed θ -power trees with respect to a single power θ , but here we control different powers simultaneously and independently.

The axioms we have defined so far, $\boxtimes^{-}(S)$ and $\boxtimes(S)$, are special cases of a parametrized proxy principle.

The axioms we have defined so far, $\boxtimes^{-}(S)$ and $\boxtimes(S)$, are special cases of a parametrized proxy principle.

Definition (Proxy principle)

The principle $\mathsf{P}^-(\kappa, \mu, \mathcal{R}, \theta, \mathcal{S}, \nu, \sigma, \mathcal{E})$ asserts the existence of a sequence $\langle \mathcal{C}_\alpha \mid \alpha < \kappa \rangle$ such that:

- ▶ for every limit $\alpha < \kappa$, C_{α} is a collection of club subsets of α ;
- for every ordinal α < κ, 0 < |C_α| < μ, and C E D for all C, D ∈ C_α;
- for every ordinal α < κ, every C ∈ C_α, and every ᾱ ∈ acc(C), there exists D ∈ C_ᾱ such that D R C;
- for every sequence (A_i | i < θ) of cofinal subsets of κ, and every S ∈ S, there exist stationarily many α ∈ S for which:
 - $|\mathcal{C}_{\alpha}| < \nu$; and
 - for every $C \in C_{\alpha}$ and $i < \min\{\alpha, \theta\}$:

 $\sup\{\beta \in C \mid \operatorname{succ}_{\sigma}(C \setminus \beta) \subseteq A_i\} = \alpha.$

Definition

 $\mathsf{P}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ asserts that both $\mathsf{P}^{-}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ and $\diamondsuit(\kappa)$ hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\begin{array}{l} \mbox{Definition} \\ {\sf P}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E}) \mbox{ asserts that both } {\sf P}^-(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E}) \\ \mbox{ and } \diamondsuit(\kappa) \mbox{ hold.} \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why so many parameters?

Definition

 $\mathsf{P}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ asserts that both $\mathsf{P}^{-}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ and $\diamondsuit(\kappa)$ hold.

Why so many parameters?

 To calibrate various properties of Souslin trees, by identifying the weakest vector of parameters necessary to construct a tree satisfying any desired property;

Definition

 $\mathsf{P}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ asserts that both $\mathsf{P}^{-}(\kappa,\mu,\mathcal{R},\theta,\mathcal{S},\nu,\sigma,\mathcal{E})$ and $\diamondsuit(\kappa)$ hold.

Why so many parameters?

 To calibrate various properties of Souslin trees, by identifying the weakest vector of parameters necessary to construct a tree satisfying any desired property;

► To capture all of the axioms used in classical ◊-based constructions of Souslin trees.

Recall:

We constructed a slim κ -Souslin tree from $\boxtimes^{-}(\kappa) + \diamondsuit(\kappa)$, and a χ -complete κ -Souslin tree from $\boxtimes^{-}(E_{\geq\chi}^{\kappa}) + \diamondsuit(\kappa)$. We can restate \boxtimes^{-} in terms of the proxy principle as follows:

$$\boxtimes^{-}(S) \iff \mathsf{P}^{-}(\kappa,2,\sqsubseteq,1,\{S\},2,1,\mathcal{E}_{\kappa}),$$

so that we get a slim κ -Souslin tree from

$$\mathsf{P}(\kappa, 2, \sqsubseteq, 1, \{\kappa\}, 2, 1, \mathcal{E}_{\kappa}),$$

and a χ -complete κ -Souslin tree (assuming $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$) from

$$\mathsf{P}(\kappa, 2, \sqsubseteq, 1, \{E_{\geq \chi}^{\kappa}\}, 2, 1, \mathcal{E}_{\kappa}).$$

A D N A 目 N A E N A E N A B N A C N

Recovering the classical axioms

For any regular uncountable cardinal κ and any stationary $S \subseteq \kappa$:

For any infinite cardinal λ and any stationary $S \subseteq \lambda^+$:

$$\begin{split} & \Box_{\lambda} \iff \mathsf{P}^{-}(\lambda^{+},2,\sqsubseteq,1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \Box_{\lambda} + \mathsf{CH}_{\lambda} \iff \mathsf{P}(\lambda^{+},2,\sqsubseteq,1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \boxtimes_{\lambda} \iff \mathsf{P}(\lambda^{+},2,\sqsubseteq,1,\{\mathcal{E}_{\mathsf{cf}(\lambda)}^{\lambda^{+}}\},2,\lambda^{+},\mathcal{E}_{\lambda}) \\ & \Box_{\lambda,\geq\chi} \iff \mathsf{P}^{-}(\lambda^{+},2,\sqsubseteq_{\chi},1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \langle\lambda\rangle_{S}^{-} \iff \mathsf{P}(\lambda^{+},2,\lambda\sqsubseteq,1,\{S\},2,1,\mathcal{E}_{\lambda}) \end{split}$$

Recovering the classical axioms

For any regular uncountable cardinal κ and any stationary $S \subseteq \kappa$:

$$\begin{split} & \clubsuit_w(S) \iff \mathsf{P}^-(\kappa,2,{}_\kappa\sqsubseteq,1,\{S\},2,\kappa,\mathcal{E}_\kappa) \\ & \diamondsuit(S) \iff \mathsf{P}(\kappa,2,{}_\kappa\sqsubseteq,1,\{S\},2,\kappa,\mathcal{E}_\kappa) \end{split}$$

For any infinite cardinal λ and any stationary $S \subseteq \lambda^+$:

$$\begin{split} & \Box_{\lambda} \iff \mathsf{P}^{-}(\lambda^{+},2,\sqsubseteq,1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \Box_{\lambda} + \mathsf{CH}_{\lambda} \iff \mathsf{P}(\lambda^{+},2,\sqsubseteq,1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \boxtimes_{\lambda} \iff \mathsf{P}(\lambda^{+},2,\sqsubseteq,1,\{\mathcal{E}_{\mathsf{cf}(\lambda)}^{\lambda^{+}}\},2,\lambda^{+},\mathcal{E}_{\lambda}) \\ & \Box_{\lambda,\geq\chi} \iff \mathsf{P}^{-}(\lambda^{+},2,\sqsubseteq_{\chi},1,\{\lambda^{+}\},2,0,\mathcal{E}_{\lambda}) \\ & \langle\lambda\rangle_{S}^{-} \iff \mathsf{P}(\lambda^{+},2,{}_{\lambda}\sqsubseteq,1,\{S\},2,1,\mathcal{E}_{\lambda}) \end{split}$$

Thus any time we carry out a construction from the proxy principle, we can tell immediately which of the classical axioms are sufficient for the construction.

More examples

Theorem

Assuming $P(\kappa, \kappa, \chi \sqsubseteq, \kappa, \{E_{\geq \chi}^{\kappa}\}, 2, 1, \mathcal{E}_{\kappa})$ and $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$, there exists a χ -complete, free κ -Souslin tree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

More examples

Theorem

Assuming $P(\kappa, \kappa, \chi \sqsubseteq, \kappa, \{E_{\geq \chi}^{\kappa}\}, 2, 1, \mathcal{E}_{\kappa})$ and $\lambda^{<\chi} < \kappa$ for all $\lambda < \kappa$, there exists a χ -complete, free κ -Souslin tree.

Theorem

Assuming GCH + $P(\lambda^+, \lambda^+, \chi \sqsubseteq^*, 1, \{E_{\lambda}^{\lambda^+}\}, \lambda^+, 1, =^*)$, there exists a λ -complete specializable λ^+ -Souslin tree.

Still more

By further tweaking the parameters and varying the construction slightly, we can construct a Souslin tree from weaker axioms than those mentioned earlier.

Theorem

A form of the proxy principle P(...) holds enabling the construction of a λ^+ -Souslin tree for uncountable λ , assuming any of the following:

- λ^{<λ} = λ + ◊(E^{λ⁺}_λ);
 V = W^{Add(λ,1)}, where W ⊨ ZFC + CH_λ + λ^{<λ} = λ;
 V = W^{Prikry(λ)}, where W ⊨ ZFC + CH_λ + λ is measurable;
 λ^{<λ} = λ + CH_λ + NS ↾ E^λ_θ is saturated where λ = θ⁺ for
 - regular θ ;
- $\lambda^{<\lambda} = \lambda + CH_{\lambda} + \exists$ a non-reflecting stationary set of $E_{<\lambda}^{\lambda^+}$.

Still more

By further tweaking the parameters and varying the construction slightly, we can construct a Souslin tree from weaker axioms than those mentioned earlier.

Theorem

A form of the proxy principle P(...) holds enabling the construction of a λ^+ -Souslin tree for uncountable λ , assuming any of the following:

►
$$\lambda^{<\lambda} = \lambda + \diamondsuit (E_{\lambda}^{\lambda^{+}});$$

► $V = W^{\text{Add}(\lambda,1)}$, where $W \models \text{ZFC} + \text{CH}_{\lambda} + \lambda^{<\lambda} = \lambda;$

- $V = W^{\text{Prikry}(\lambda)}$, where $W \models \text{ZFC} + \text{CH}_{\lambda} + \lambda$ is measurable;
- ► $\lambda^{<\lambda} = \lambda + CH_{\lambda} + NS \upharpoonright E_{\theta}^{\lambda}$ is saturated where $\lambda = \theta^{+}$ for regular θ ;
- $\lambda^{<\lambda} = \lambda + CH_{\lambda} + \exists$ a non-reflecting stationary set of $E_{<\lambda}^{\lambda^+}$.
- 2^{<λ} = λ + □^{*}_λ + CH_λ + ∃ a non-reflecting stationary subset of E^{λ+}_{≠cf(λ)}.

Corollary

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a free λ^+ -Souslin tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a free λ^+ -Souslin tree.

Corollary

If $\lambda^{<\lambda} = \lambda$ and $\langle \lambda \rangle^{-}_{E^{\lambda^{+}}_{\lambda}}$ holds for a regular uncountable cardinal λ , then there exists a free λ^{+} -Souslin tree.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Corollary

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a free λ^+ -Souslin tree.

Corollary

If $\lambda^{<\lambda} = \lambda$ and $\langle \lambda \rangle_{E_{\lambda}^{\lambda^+}}^-$ holds for a regular uncountable cardinal λ , then there exists a free λ^+ -Souslin tree.

Corollary

If $\boxminus_{\lambda, \geq \chi}$ and CH_{λ} for cardinals $\chi < \lambda$ where λ is a singular strong limit cardinal, then there exists a free λ^+ -Souslin tree.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

If $\lambda^{<\lambda} = \lambda$, CH_{λ} , and $\lambda^*(\lambda, E_{\lambda}^{\lambda^+})$ holds for a regular uncountable cardinal λ , then there exists a free λ^+ -Souslin tree.

Corollary

If $\lambda^{<\lambda} = \lambda$ and $\langle \lambda \rangle_{E_{\lambda}^{\lambda^{+}}}^{-}$ holds for a regular uncountable cardinal λ , then there exists a free λ^{+} -Souslin tree.

Corollary

If $\boxminus_{\lambda,\geq\chi}$ and CH_{λ} for cardinals $\chi < \lambda$ where λ is a singular strong limit cardinal, then there exists a free λ^+ -Souslin tree.

The last theorem uses the ascent path to ensure that the construction goes through despite the possible failure of \Box^*_{λ} in this case.

Theorem

Assuming the consistency of a supercompact cardinal, there is a model of ZFC that satisfies:

- 1. Martin's Maximum holds, and hence:
 - 1.1 \square_{λ}^{*} fails for every singular cardinal λ of countable cofinality;

- 1.2 $\square_{\lambda,\aleph_1}$ fails for every regular uncountable cardinal λ ;
- 1.3 There does not exist any \aleph_1 -Souslin or \aleph_2 -Souslin tree.
- P(λ⁺, 2, ⊑_{ℵ2}, λ⁺, {E^{λ+}_{cf(λ)}}, 2, ω, E_λ) holds for every singular cardinal λ;
- P(λ⁺, 2, λ⊑, λ⁺, {E^{λ+}_λ}, 2, ω, E_λ) holds for every regular uncountable cardinal λ.

Theorem

Assuming the consistency of a supercompact cardinal, there is a model of ZFC that satisfies:

- 1. Martin's Maximum holds, and hence:
 - 1.1 \square_{λ}^{*} fails for every singular cardinal λ of countable cofinality;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1.2 $\square_{\lambda,\aleph_1}$ fails for every regular uncountable cardinal λ ;
- 1.3 There does not exist any \aleph_1 -Souslin or \aleph_2 -Souslin tree.
- P(λ⁺, 2, ⊑_{ℵ2}, λ⁺, {E^{λ+}_{cf(λ)}}, 2, ω, E_λ) holds for every singular cardinal λ;
- P(λ⁺, 2, λ⊑, λ⁺, {E^{λ+}_λ}, 2, ω, E_λ) holds for every regular uncountable cardinal λ.
- 4. There are no inaccessible cardinals;

Theorem

Assuming the consistency of a supercompact cardinal, there is a model of ZFC that satisfies:

- 1. Martin's Maximum holds, and hence:
 - 1.1 \square_{λ}^{*} fails for every singular cardinal λ of countable cofinality;
 - 1.2 $\square_{\lambda,\aleph_1}$ fails for every regular uncountable cardinal λ ;
 - 1.3 There does not exist any \aleph_1 -Souslin or \aleph_2 -Souslin tree.
- P(λ⁺, 2, ⊑_{ℵ2}, λ⁺, {E^{λ+}_{cf(λ)}}, 2, ω, E_λ) holds for every singular cardinal λ;
- P(λ⁺, 2, λ[⊥], λ⁺, {E^{λ+}_λ}, 2, ω, ε_λ) holds for every regular uncountable cardinal λ.
- 4. There are no inaccessible cardinals;

From (2), (3) and (4), it follows that there exists a free κ -Souslin tree for every regular cardinal $\kappa > \aleph_2$.

Theorem

Assuming the consistency of a supercompact cardinal, there is a model of ZFC that satisfies:

- 1. Martin's Maximum holds, and hence:
 - 1.1 \square_{λ}^{*} fails for every singular cardinal λ of countable cofinality;
 - 1.2 $\square_{\lambda,\aleph_1}$ fails for every regular uncountable cardinal λ ;
 - 1.3 There does not exist any \aleph_1 -Souslin or \aleph_2 -Souslin tree.
- P(λ⁺, 2, ⊑_{ℵ2}, λ⁺, {E^{λ+}_{cf(λ)}}, 2, ω, E_λ) holds for every singular cardinal λ;
- P(λ⁺, 2, λ[⊥], λ⁺, {E^{λ+}_λ}, 2, ω, ε_λ) holds for every regular uncountable cardinal λ.
- 4. There are no inaccessible cardinals;

From (2), (3) and (4), it follows that there exists a free κ -Souslin tree for every regular cardinal $\kappa > \aleph_2$. For $\lambda > cf(\lambda) = \omega$, we seal the antichains at points of $E_{\omega}^{\lambda^+}$, even though MM implies that every stationary subset of $E_{\omega}^{\lambda^+}$ reflects!

The end?

We've reached the end of today's presentation. But the story doesn't end here. Would you like to join our tree-building adventure?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bibliography

Ari Meir Brodsky and Assaf Rinot. Reduced powers of Souslin trees. arXiv preprint arXiv:1507.05651, 2015.

Ari M. Brodsky and Assaf Rinot. A microscopic approach to Souslin-tree constructions. Part I. arXiv preprint arXiv:1601.01821, 2015.

 Ari M. Brodsky and Assaf Rinot.
 A microscopic approach to Souslin-tree constructions. Part II. In preparation, 2016.