Strong theories, weight, and the independence property

Hans Adler, Leeds

March 2008
Strong theories, weight, and the IP

Theorem S
Let T be simple, \bar{a} finite, and $(\bar{b}_i)_{i<\kappa}$ an independent sequence of cofinality $\text{cf} \kappa > |T|$. Then for some $\alpha < \kappa$:
\[\bar{a} \downarrow (\bar{b}_i)_{\alpha < i < \kappa}. \]

Theorem D
Let T be dependent, \bar{a} finite, and $(\bar{b}_i)_{i<\kappa}$ an indiscernible sequence of cofinality $\text{cf} \kappa > |T|$. Then for some $\alpha < \kappa$:
\[(\bar{b}_i)_{\alpha < i < \kappa} \text{ is indiscernible over } \bar{a}. \]

If T is supersimple, then Theorem S even holds for $\kappa = \omega$.

If T is superdependent, then Theorem D even holds for $\kappa = \omega$.

What is wrong on this slide?
Strong theories, weight, and the IP

Contents:

1. Strong theories
2. Strongly simple theories
3. Strongly dependent theories
4. Strongly stable theories
5. Shelah’s conjecture on NIP fields
6. inp-minimality
7. Tree property of the second kind
Strong theories (1/7)

Definition

Inp-pattern (‘independent partitions’):

\[\varphi^\alpha(\bar{x}; \bar{y}^\alpha) \text{ and } k^\alpha, \] where \(\alpha < \kappa \),

for which there is an array \(\bar{b}_i^\alpha \) s.t.:

- Rows \(\{ \varphi^\alpha(\bar{x}; \bar{b}_i^\alpha) \mid i < \omega \} \) are \(k^\alpha \)-inconsistent.
- Paths \(\{ \varphi^\alpha(\bar{x}; \bar{b}_i^\alpha) \mid \alpha < \kappa \} \), are consistent.

(A row is given by \(\alpha < \kappa \), a path by \(\eta \in \omega^\kappa \).)

Definition (Shelah 1978)

\(\kappa_{\text{inp}} = \text{smallest } \kappa \)

s.t. no inp-pattern of depth \(\kappa \) exists.

Definition (Shelah 1980)

Tree property of the second kind: \(\kappa_{\text{inp}} = \infty \).

Definition

Strong: \(\kappa_{\text{inp}} = \omega \).
Strongly simple theories

Theorem SS
Equivalent for simple T:
1. T is strong.
2. $\forall \bar{a}$ finite $\forall (\vec{b}_i)_{i<\omega}$ independent$/C$
 $\exists n < \omega$:
 $$\bar{a} \downarrow_C (\vec{b}_i)_{n<i<\omega}.$$
3. $\forall \bar{a}$ finite $\forall (\vec{b}_i)_{i<\omega}$ independent$/C$
 $\exists n < \omega$:
 $$\bar{a} \downarrow_C \vec{b}_i \text{ for } i > n.$$

Definition
Strongly simple: strong + simple.
I.e. simple and finite weight.

Examples
• Supersimple theories.
• Simple theories with no dense forking chains.
Strongly dependent theories

Theorem SD (Shelah)
Equivalent for dependent T:
1. T is strong.
2. $\forall \vec{a}$ finite $\forall (\vec{b}_i)_{i<\omega}$ indiscernible$/C$
 $\exists n < \omega$:
 $$(\vec{b}_i)_{n<i<\omega} \text{ indiscernible}/C\vec{a}.$$
3. $\forall \vec{a}$ finite $\forall (\vec{b}_i)_{i<\omega}$ indiscernible$/C$
 $\exists n < \omega$:
 $$(\vec{b}_i)_{n<i<\omega} \text{ has constant type}/C\vec{a}.$$

Definition (Shelah)
Strongly dependent: strong $+$ dependent.

Examples
- Superstable theories.
- O-minimal theories.
Strongly stable theories

Corollary
For stable theories, all the conditions of Theorems SS and SD are equivalent.

Definition (Shelah)
Strongly stable: strong + stable.

Remark
Strongly stable = strong + simple + NIP
= strongly simple + strongly dependent.

Examples
• Superstable theories.
• Stable theories with no dense forking chains.
Shelah’s conjecture on NIP fields (5/7)

Theorem (Shelah, Sh783)
Every superstable or o-minimal theory is strongly\(^+\) dependent.

Theorem (Shelah/Hrushovski, Sh783+Sh863)
The theory of a \(p\)-adic field is strongly dependent but not strongly\(^+\) dependent.

Conjecture (Shelah, Sh863)
Every strongly\(^+\) dependent field is
- algebraically closed or
- real closed.

Conjecture (Shelah, Sh863)
Every strongly dependent field is
- algebraically closed or
- real closed or
- a valuation field
 (similar to the \(p\)-adic fields).
inp-minimality

Definition

inp-minimal:
no inp-pattern of depth 2 for a single variable.

I.e. no k-inconsistent formulas
\[\varphi(x, \bar{b}_0), \varphi(x, \bar{b}_1), \varphi(x, \bar{b}_2), \ldots \]
and k'-inconsistent formulas
\[\psi(x, \bar{c}_0), \psi(x, \bar{c}_1), \psi(x, \bar{c}_2), \ldots \]
such that each $\varphi(x, \bar{b}_i) \land \psi(x, \bar{c}_j)$ is consistent.

Definition (Shelah, Onshuus-Usvyatsov)

dp-minimal: inp-minimal and dependent.

Examples

- strongly minimal theories.
- o-minimal theories.
- Simple theories s.t. every nonalgebraic 1-type has weight 1.
Tree property of the second kind (7/7)

Definition (Shelah 1980)
\[\text{TP}_2: \kappa_{\text{inp}} = \infty. \]

Theorem (Shelah 1978)
The tree property = SOP$_2$ or TP$_2$.

Remark
Simple or dependent \(\Rightarrow \) NTP$_2$.

Definition (Casanovas 1999)
\[\text{NT}(\kappa, \lambda) = \sup \text{cardinalities of antichains of partial types with } \leq \kappa \text{ formulas over a set of cardinality } \leq \lambda. \]

Remark
\[\text{TP}_2 \Rightarrow \text{NT}(\kappa, \lambda) = \lambda^\kappa. \]