Strong theories, weight, and the independence property

Hans Adler, Leeds

March 2008

Strong theories, weight, and the IP

Theorem S

Let T be simple, \overline{a} finite, and $(\overline{b}_i)_{i < \kappa}$ an independent sequence of cofinality cf $\kappa > |T|$. Then for some $\alpha < \kappa$:

 $\bar{a} \perp (\bar{b}_i)_{\alpha < i < \kappa}$.

Theorem D

Let T be dependent, \overline{a} finite, and $(\overline{b}_i)_{i < \kappa}$ an indiscernible sequence of cofinality cf $\kappa > |T|$. Then for some $\alpha < \kappa$:

 $(\overline{b}_i)_{\alpha < i < \kappa}$ is indiscernible over \overline{a} .

If T is supersimple,

then Theorem S even holds for $\kappa = \omega$.

If T is superdependent,

then Theorem D even holds for $\kappa = \omega$.

What is wrong on this slide?

Strong theories, weight, and the IP

Contents:

- 1. Strong theories
- 2. Strongly simple theories
- 3. Strongly dependent theories
- 4. Strongly stable theories
- 5. Shelah's conjecture on NIP fields
- 6. inp-minimality
- 7. Tree property of the second kind

Strong theories

(1/7)

Definition

<u>Inp-pattern</u> ('independent partitions'):

 $arphi^{lpha}(ar{x};ar{y}^{lpha})$ and k^{lpha} , where $lpha<\kappa$,

for which there is an array \overline{b}_i^{α} s.t.:

- Rows $\{\varphi^{\alpha}(\bar{x}; \bar{b}_{i}^{\alpha}) \mid i < \omega\}$ are k^{α} -inconsistent.
- Paths $\{\varphi^{\alpha}(\bar{x}; \bar{b}^{\alpha}_{\eta(\alpha)}) \mid \alpha < \kappa\}$, are consistent.
- (A row is given by $\alpha < \kappa$, a path by $\eta \in \omega^{\kappa}$.)

Definition (Shelah 1978)

 $\kappa_{inp} = smallest \kappa$

s.t. no inp-pattern of depth κ exists.

Definition (Shelah 1980) Tree property of the second kind: $\kappa_{inp} = \infty$.

Definition

<u>Strong:</u> $\kappa_{inp} = \omega$.

Strongly simple theories

Theorem SS

Equivalent for simple T:

1. *T* is strong. 2. $\forall \bar{a}$ finite $\forall (\bar{b}_i)_{i < \omega}$ independent/*C* $\exists n < \omega$:

 $\overline{a} \bigsqcup_{C} (\overline{b}_{i})_{n < i < \omega}.$ 3. $\forall \overline{a} \text{ finite } \forall (\overline{b}_{i})_{i < \omega} \text{ independent}/C$ $\exists n < \omega:$

 $\overline{a} igsquarpsilon_C \overline{b}_i$ for i > n.

Definition

Strongly simple: strong + simple. I.e. simple and finite weight.

- Supersimple theories.
- Simple theories with no dense forking chains.

Strongly dependent theories (3/7)

Theorem SD (Shelah) Equivalent for dependent *T*: 1. *T* is strong. 2. $\forall \bar{a}$ finite $\forall (\bar{b}_i)_{i < \omega}$ indiscernible/*C* $\exists n < \omega$: $(\bar{b}_i)_{n < i < \omega}$ indiscernible/*C* \bar{a} . 3. $\forall \bar{a}$ finite $\forall (\bar{b}_i)_{i < \omega}$ indiscernible/*C* $\exists n < \omega$: $(\bar{b}_i)_{n < i < \omega}$ has constant type/*C* \bar{a} .

Definition (Shelah) <u>Strongly dependent:</u> strong + dependent.

- Superstable theories.
- O-minimal theories.

Strongly stable theories

Corollary

For stable theories, all the conditions of Theorems SS and SD are equivalent.

Definition (Shelah)

Strongly stable: strong + stable.

Remark

Strongly stable = strong + simple + NIP = strongly simple + strongly dependent.

- Superstable theories.
- Stable theories with no dense forking chains.

Shelah's conjecture on NIP fields (5/7)

Theorem (Shelah, Sh783) Every superstable or o-minimal theory is strongly⁺ dependent.

Theorem (Shelah/Hrushovski, Sh783+Sh863) The theory of a p-adic field is strongly dependent but not strongly⁺ dependent.

Conjecture (Shelah, Sh863) Every strongly⁺ dependent field is

- algebraically closed or
- real closed.

Conjecture (Shelah, Sh863) Every strongly dependent field is

- algebraically closed or
- real closed or
- a valuation field (similar to the *p*-adic fields).

inp-minimality

(6/7)

Definition

<u>inp-minimal:</u> no inp-pattern of depth 2 for a single variable.

I.e. no k-inconsistent formulas $\varphi(x, \overline{b}_0), \varphi(x, \overline{b}_1), \varphi(x, \overline{b}_2), \ldots$ and k'-inconsistent formulas $\psi(x, \overline{c}_0), \psi(x, \overline{c}_1), \psi(x, \overline{c}_2), \ldots$ such that each $\varphi(x, \overline{b}_i) \land \psi(x, \overline{c}_j)$ is consistent.

Definition (Shelah, Onshuus-Usvyatsov) <u>dp-minimal:</u> inp-minimal and dependent.

- Strongly minimal theories.
- o-minimal theories.
- Simple theories s.t. every nonalgebraic 1type has weight 1.

Tree property of the second kind (7/7)

Definition (Shelah 1980) <u>TP₂:</u> $\kappa_{inp} = \infty$.

Theorem (Shelah 1978) Tree property = SOP_2 or TP_2 .

Remark

Simple or dependent \Rightarrow NTP₂.

Definition (Casanovas 1999) $NT(\kappa, \lambda) =$ supremum of cardinalities of antichains of partial types with $\leq \kappa$ formulas over a set of cardinality $\leq \lambda$.

Remark

 $\mathsf{TP}_2 \Rightarrow \mathsf{NT}(\kappa, \lambda) = \lambda^{\kappa}.$