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Abstract

Suppose M is a transitive class size model of ADR + “Θ is regular”. M
is a minimal model of ADR + “Θ is measurable” if (i) R, Ord ⊆ M (ii) there
is µ ∈ M such that M � “µ is a normal R-complete measure on Θ” and (iii)
for any transitive class size N ( M such that R ⊆ N , N � “there is no R-
complete measure on Θ”. Continuing Trang’s work in [8], we compute HOD
of a minimal model of ADR + “Θ is measurable”.

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Mouse, inner model theory, descriptive set theory, hod mouse.
‡First author’s work is partially based upon work supported by the National Science Foundation

under Grant No DMS-1352034 and DMS-1201348.

1



The computation of HOD of models of determinacy has been one of the central
themes in descriptive inner model theory. Steel’s seminal [5] jumpstarted the project
and a later work of Steel and Woodin (for instance see [3] or [4]) established con-
nections with the Mouse Set Conjecture, core model induction and the inner model
problem.

The analysis of HOD presented in the above papers, however, only computes
V HOD

Θ . Woodin computed the full HOD of L(R) under ADL(R) (the proof can be
found in [6]). Trang continued this work in [8]. He presented the exact inner model
theoretic structure of HOD of models of determinacy that have the form L(℘(R))
and are contained inside the minimal model of ADR + “Θ is regular”. We extend
Trang’s work to minimal models of ADR + “Θ is measurable”. This notion, however,
needs a definition.

Definition 0.1 Assume AD+. We say “Θ is measurable” if there is an R-complete
normal measure µ on Θ. We then let Θms be the theory ADR + “Θ is measurable”.

Because we need to assume that the computation of V HODL(℘(R))

Θ can be carried out,
our current techniques can only work in some minimal setting, in a setting where
the Mouse Set Conjecture (MSC, see Chapter 3.1 of [4]) and The Generation Of
Pointclasses (see Conjecture 3.17 of [4]) are true. The first says that ordinal definable
reals appear in mice and the second says that sufficiently closed pointclasses are
generated by hod pairs. The models where our computation works are the minimal
models of Θms.

Definition 0.2 M is a minimal model of Θms if M � Θms, R∪Ord ⊆M and for
any N (M such that R ∪Ord ⊆ N , N � ¬Θms.

We now have the following simple representation of minimal models of Θms.

Lemma 0.3 Suppose that V is a minimal model of Θms. Let µ be a normal R-
complete measure on Θ. Then V = L(℘(R))[µ].

Proof. We have that L(℘(R))[µ] � Θms. Because L(℘(R))[µ] ⊆ V , we have that
V = L(℘(R))[µ]. �

It is not immediately clear that the existence of a minimal model of Θms follows
from the existence of a model of Θms. This is because there could be (-descending
sequence of models (Mi : i < ω) such that for all i < ω, ΘMi = ΘMi+1 and Mi � Θms.
We will in fact show that this cannot happen (see Theorem 2.1). However, towards
showing the aforementioned fact, we will need to analyze the weakly minimal models
of Θms.
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Definition 0.4 We say M is a weakly minimal model of Θms if

1. R ∪Ord ⊆M and M � Θms,

2. for some µ ∈ M such that M � “µ is a normal R-complete measure on Θ”,
M = L(℘(R))[µ], and

3. for any transitive N such that ℘(R)N ( ℘(R)M and R∪Ord ⊆ N , N � ¬Θms.

It is important to note that it follows from the main results of [3] (see Section 6.4
and Section 6.1 of [3]) that if M is a weakly minimal model of Θms then both MSC
and The Generation of Pointclasses hold in L(℘(R)M). We will exploit this in the
next section. We mention that while it is not clear that there are minimal models
of Θms, it is not hard to show, modulo the existing literature, that weakly minimal
models do exist.

Lemma 0.5 Suppose M is a transitive model of Θms such that R, Ord ⊆M . Then
there is a weakly minimal model of Θms.

Proof. Let Γ ⊆ ℘(R)M be Wadge least initial segment of ℘(R)M such that for some
filter µ on w(Γ), L(Γ)[µ] � Θms. It follows from the proof of Theorem 13.1 of [2]
that divergent models of AD+ contain Γ, implying that if N is any transitive model
of Θms such that R, Ord ⊆ N then Γ ⊆ N . �

Acknowledgments. The authors would like to thank Nam Trang for commu-
nicating them the problem considered in this paper. Also, the authors would like to
thank the referee for valuable comments.

1 The main theorem

Suppose V is a weakly minimal model of Θms. As was mentioned above, both MSC
and The Generation of Pointclasses hold in V . We can then freely use the machinery
of [3]. Let M = L(℘(R)) and working in M , let F be the set of hod pairs (P ,Σ)
such that Σ has branch condensation and is fullness preserving.

Following [3], for (P ,Σ), (Q,Λ) ∈ F , we let

(P ,Σ) � (Q,Λ)

if for some α ≤ λQ, (Q(α),ΛQ(α)) is a tail of (P ,Σ), i.e., Q(α) ∈ I(P ,Σ) and
ΛQ(α) = ΣQ(α). It follows from comparison theory of hod pairs (see Chapter 2 of [3])
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that � is directed. We then let M∞ be the direct limit of the system F under the
maps πΣ

P,Q : P → Q(α) where α ≤ λQ is such that Q(α) is a Σ-iterate of P .
It is shown in [3] (see Theorem 4.24) that in M , M∞ = V HOD

Θ . The following is
essentially the generic interpretability result of [3] (see Theorem 3.10 of [3]). Given
a hod premouse P and X generic over P , we let ΣP[X] be the interpretation of ΣP

onto P [X] according to the procedure described in the proof of Theorem 3.10 of [3].

Lemma 1.1 In M (and hence in V ), M∞ is (Θ,Θ)-iterable via a strategy Σ such

that given any ~T according to Σ,

Σ(~T ) = b↔M∞[~T ] � ΣM∞[~T ](~T ) = b.

We let Σ be the strategy of M∞ described in Lemma 1.1. Next, we define a
model extending M∞. Given a Σ-premouse N DM∞ we say N is good if

1. N is sound, and

2. whenever

π : N̄ → N

is elementary and N̄ is countable, then N̄ is ω1-iterable above π−1(Θ) as a
Σπ-premouse.

The next two lemmas are basic lemmas about good mice.

Lemma 1.2 Suppose N0,N1 are good such that for some η ∈ N0∩N1, η is a cutpoint
of both N0 and N1, N0|η = N1|η and ρω(N0), ρω(N1) ≤ η. Then either N0 �N1 or
N1 �N0.

Proof. Suppose that neither N0 � N1 nor N1 � N0 holds. Let then π : H →
Lξ(P(R))[µ] be elementary such that ξγΘ, Ni ∈ rng(π), Σ ∈ rng(π), η ∈ rng(π)
and |H| = ω.

We let N̄i = π−1(Ni) for i = 0, 1. Because Σ has hull condensation, it follows
that Σ � H = Σπ. It follows from elementarity that for i = 0, 1, ρω(N̄i) = π−1(η).
But now because N̄i are sound Σπ-mice, we have that N̄0 E N̄1 or N̄1 E N̄0. �

Lemma 1.3 Suppose N is good such that ρω(N ) ≤ Θ. Then ρω(N ) = Θ.
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Proof. Towards a contradiction assume ρ(N ) < Θ. Let π : H → Lξ(P(R))[µ] be
such that H ∩Θ ∈ Θ, crit(π) > ρ(N ) and N ∈ rng(π). Let P = π−1(N ). It follows
from the proof of Lemma 1.2 that M � “P is OD”. It then follows that P EM∞.
This is a contradiction. �

We then let M∗ = ∪{N : M∞ E N , N is good and ρω(N ) = Θ}. Notice that
we have that M∗ ⊆ HOD. Let η = o(M∗).

Let now µ ∈ V be a normal R-complete measure on Θ. It follows from Lemma 0.3
that V = L(℘(R))[µ]. Working in HODµ, let πµ be the ultrapower embedding via
µ∩HODµ. Let λµ = (Θ++)πµ(M∗). Notice that the ordinal λµ may depend on µ. Let
then

Mµ = πµ(M∗)|λµ
and let Eµ be (Θ, η)-extender derived from πµ �M∗. More precisely,

(a,A) ∈ Eµ ↔ a ∈ (o(M∗))<ω, A ∈ [Θ]|a| ∩M∗, and a ∈ πµ(A)

The following is our main theorem.

Theorem 1.4 (Main Theorem) Assume V is a minimal model of Θms. Suppose
µ is a normal R-complete measure on Θ. Then HOD = J (Mµ, Eµ).

We will present the proof as a sequence of lemmas. In the subsections that follows,
we assume that V is a minimal model of Θms. However, we remark that

Remark 1.5 all the results that follow except the results of Subsection 1.6 can be
carried out under the assumption that V is just a weakly minimal model of Θms.
We ask the reader to keep this remark in mind while reading the subsequent sections.

Before we go into the proof of the main theorem, we list some of the complica-
tions involved with proving it. First we will show that Eµ is amenable to Mµ (see
Lemma 1.7). It follows from its definition that it coheres Mµ. It then follows that
(Mµ, Eµ) is a hod premouse.

The next challenge is to show that no level of J (Mµ, Eµ) projects to or below

Θ (see Lemma 1.9). A consequence of this is that V HODM

Θ = V
J (Mµ,Eµ)

Θ . This then
allows us to show that ℘(R) can be symmetrically added to J (Mµ, Eµ) (which is
done as part of proving Lemma 1.9). It then follows that the model J (Mµ, Eµ) is
independent of µ. The final piece of the argument is that there is a unique nor-
mal R-complete measure µ on Θ minimizing λµ. It then immediately follows that
J (Mµ, Eµ) ⊆ HOD. Combining the aforementioned results it is then not hard to
see that V is a symmetric extension of J (Mµ, Eµ), which then easily implies that
in fact HOD ⊆ J (Mµ, Eµ).
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1.1 Amenability

We start by showing that

Lemma 1.6 M∗ = πµ(M∞)|η, M∗ =Mµ|(Θ+)Mµ and whenever M∗ E N EMµ

is such that ρω(N ) = η, N is good.

Proof. We start by proving the first equality. We have that M∗ ⊆ HOD and
therefore, M∗ ∈ HODµ. It is then enough to show that whenever M∞ E N EM∗

is such that ρω(N ) = Θ, then N ∈ Ult(HODµ, µ ∩ HODµ). Since N is essentially a
subset of Θ and µ ∩ HODµ is a normal Θ-complete ultrafilter in HODµ, we indeed
have that N ∈ Ult(HODµ, µ ∩ HODµ).

For the second equality, it is enough to show that whenever M∞ E N E Mµ

is such that ρω(N ) = Θ then N is good. Let then f : Θ → M∞ be such that
πµ(f)(Θ) = N . It then follows that for a µ-measure one set of κ, there is an
elementary embedding πκ : f(κ)→ N . It then also follows that whenever π : N̄ → N
is an elementary embedding such that N̄ is countable, there is a µ-measure one set of
κ such that there is an embedding σ : N̄ → f(κ) with the property that π = πκ ◦ σ.
It then follows that N̄ is Σπ-good.

The proof of the third equality is just like the proof of the second. �

Next, we show that µ is amenable to Mµ.

Lemma 1.7 µ is amenable to Mµ, that is µ ∩N ∈Mµ whenever N /M∗.

Proof. This is a standard argument due to Kunen. Fix such an N projecting to Θ.
We have that πµ � N ∈ πµ(M). The lemma now follows. �

1.2 A strategy for countable submodels of J (Mµ, Eµ)

Suppose ξ is such that Eµ is a total extender in Jξ(Mµ, Eµ). Suppose π : Q →
Jξ(Mµ, Eµ) is elementary and Q is countable. In this section, we show that Q has a
π-realizable iteration strategy. Given any such Q, we let EQ be the preimage of Eµ.

We also let Q− = Q|((δQ)+)Q. Recall from [3] that if ~T is a stack on some model M

and R is a node in ~T then ~T≥R is the portion of ~T after stage R.

Fix then aQ as above. Given a stack ~T onQ, it can easily be partitioned into seg-
ments by considering when the image of EQ is used. Thus, we say (M0

α, Eα,M1
α, ~Tα :

α < η) are the essential components of ~T if

1. M0
0 = Q,
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2. E0, M1
0 are defined if and only if the first extender used in ~T is EQ in which

case M1
0 = Ult(M0

0, E
Q).

3. ~T0 is the largest initial segment of ~T that is based on (M1
1)−.

4. If α + 1 < η then M0
α+1 is the last model of ~Tα. Then Eα+1 = EM

0
α+1 and

M1
α = Ult(M0

α+1, Eα+1). Again, ~Tα+1 is the largest portion of ~T≥M1
α+1

that is

based on M1
α+1.

5. If α < η is limit thenM0
α is the direct limit of (M0

β : β < α) under the iteration
embeddings. The rest of the objects are defined as in the successor case.

Suppose now that ~T is a stack onQ with essential components (M0
α, Eα,M1

α, ~Tα :
α < η). Suppose that we also have embeddings (π0

α, π
1
α : α < η) such that

1. π0
0 = π.

2. For α < η and i ∈ 2, πiα :Mi
α → Jξ[M, Eµ].

3. For α < β < η and i, j ∈ 2, πiα = πjβ ◦ π
~T
Mi

α,M
j
β

and π1
α = π1

α ◦ π
~T
M0

α,M1
α
.

4. For α < η, ~Tα is according to π1
α-pullback of Σ.

We then say ~T is π-realizable if there is ~π =def (π0
α, π

1
α : α < η) witnessing the above

clauses.
Suppose then ~T = (M0

α, Eα,M1
α, ~Tα : α ≤ η) is such that (M0

α, Eα,M1
α,
~Tα :

α < η) is π-realizable as witnessed by (π0
α, π

1
α : α < η). We would like to define

embeddings (π0
η, π

1
η) such that

1. For i ∈ 2, πiη :M0
η → Jξ[M, Eµ].

2. For α < η and i, j ∈ 2, πiα = πjη ◦ π
~T
Mi

α,M
j
η

and π1
η = π1

η ◦ π
~T
M0

η ,M1
η
.

We then will have that ~T , without its last stack, is π-realizable as witness by (π0
α, π

1
α :

α ≤ η).
Suppose first η = α + 1. Let (S,Λ) ∈ F be such that

sup(π1
α+1[δM

1
α+1 ]) = δM∞(S,Λ).

The above equality simply says that the direct limit of all Λ-iterates of S reaches
the ordinal mentioned on the left side. SinceM1

α+1 is countable, we can also require
that
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π1
α+1[M1

α] ⊆ rng(πΛ
S,∞).

Let then k =def (πΛ
S,∞)−1 ◦ π1

α+1 : M1
α → S. We then have that ~Tα is according to

k-pullback of Λ. It follows then that letting R be the last model of k~Tα there is an
embedding l such that

(1) l :M0
η → R and πk

~Tα ◦ k = l ◦ π ~Tα .

We then set π0
η = πΛR

R,∞ ◦ l. Notice now that

(2) πΛ
S,∞ = πΛR

R,∞ ◦ πk
~Tα .

(1), (2) and our choice of (S,Λ) imply that

(3) π1
α = π0

η ◦ π
~T
M1

α,M0
η
.

(3) then implies that π0
η is as desired.

To define π1
η we use countable completeness of µ. First let ζ = o((M0

η)
−). Thus, ζ

is the successor of δM
0
η inM0

η. For each a ∈ ζ<ω, let Aa = ∩{π0
η(A) : (a,A) ∈ EM0

η}.
Fix now a fiber f for the set {(π0

η(a), Aa) : a ∈ ζ<ω}. We can now define

π1
η([a, g]

EM
0
η
) = π0

η(g)(f(a)).

It is a standard argument to show that π1
η is as desired. It is now easy to show that

Lemma 1.8 There is an (ω1, ω1) iteration strategy Λ for Q such that whenever ~T
is a stack according to Λ then ~T is π-realizable.

1.3 J (Mµ, Eµ) is a hod premouse

In this section we show that no level of J (Mµ, Eµ) projects across or to Θ.

Lemma 1.9 N = J (Mµ, Eµ) is a hod premouse such that for every α, ρω(N|α) >
Θ.

Proof. We start with the following claim. Later we will show that in fact for every
α, ρω(Jα(Mµ, Eµ)) 6= Θ.

Claim 1. For every α, ρω(Jα(Mµ, Eµ)) ≥ Θ
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Proof. Suppose not and fix the least α such that ρω(Jα(Mµ, E)) < Θ. Now fix
a β such that β < λMµ and θβ ≤ ρω(Jα(Mµ, E)) < θβ+1. Fix a hod pair (Q∗,Λ∗)
such that M∞(Q∗,Λ∗) =Mµ(β + 2) and an elementary hull σ : H → Lξ(P(R))[µ]
such that:

1. ξ = α+17,

2. |H| = ℵ0

3. (Q∗,Λ∗) ∈ rng(σ),

4. Jα(Mµ, E) ∈ rng(σ).

Now let Q̄ = σ−1(Jα(Mµ, E))) and let γ = σ−1(β). Then by elementarity we

have that ρω(Q̄) < θQ̄γ+1. Let

Q = CQ̄ω (p, Q̄(γ + 1))

where p is the standard parameter of Q̄. Notice that Q is δQγ+1-sound. Let l : Q → Q̄
be the core embedding. Let Λ be a σ ◦ l-realizable strategy of Q (see Lemma 1.8).

It follows from the branch condensation of Λ∗ that

(1) ΛQ(γ+1) = Λ∗Q(γ+1).

Consider the pointclass generated by (Q,Λ):

Γ(Q,Λ) = {A : ∃(~U ,R) ∈ B(Q,Λ)(A <W Code(ΛR, ~U))}.

Since Q is δQγ+1-sound

(2) Q is ODΛQ(γ+1)
.

This is because Q is the unique δQγ+1-sound ΛQ(γ+1)-hod mouse generating the point-
class Γ(Q,Λ)1.

Notice now that

1Suppose (R,Φ) is another ΛQ(γ+1)-hod pair such that Γ(Q,Λ) = Γ(R,Φ) and R is δQγ+1-sound.
We can compare (R,Φ) with (Q,Λ) to a common pair (S,Ψ) and obtain embeddings i : R → S
and j : Q → S such that i � δQγ+1 = j � δQγ+1 = id. Since both R and Q are δQγ+1-sound, it follows
that both i and j are the core embeddings. It then follows that i = j implying that R = Q. We
then get that Ψ = Φi and Λ = Φj , implying that Ψ = Φ.
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(3) Q̄(γ + 2) is ΛQ(γ+1)-full.

This is simply because Q̄(γ + 2) is a Λ∗-iterate of Q∗ and (as Q(γ + 1) = Q̄(γ + 1))

ΛQ(γ+1) = ΛQ̄(γ+1) = Λ∗Q(γ+1).

It now follows from (2) and (3) that we must have Q ∈ Q̄(γ+ 2). But ρω(Q) < δQ̄γ+1,
contradiction! �

The following claim is easier and finishes the proof of the lemma.

Claim 2. For every α, ρω(Jα(Mµ, E))) > Θ
Proof. Suppose not. Let α be the least such that ρ(Jα(Mµ, E))) = Θ. Then

let A ⊆ Θ be definable over Jα(Mµ, E) such that A /∈ Jα(Mµ, E). Notice that for
every κ < Θ, A ∩ κ ∈Mµ.

Let S be the set of κ < Θ such that θκ = κ. Given κ ∈ S we let Mκ �Mµ be
the least such that A ∩ θκ ∈Mκ.

Let j :Mµ → Ult(Mµ, µ∩Mµ) be the ultrapower embedding. Let j((Mκ : κ ∈
S)) = (Nκ : κ ∈ j(S)). But then A = j(A) ∩ Θ ∈ NΘ. Notice that NΘ is good (see
Lemma 1.6) implying that NΘ �Mµ. It follows that A ∈Mµ, contradiction! �

�

1.4 ℘(R) is symmetrically generic over J (Mµ, Eµ)

We start by recalling Vopenka algebra. We work in M = L(℘(R)). Let ϕ be a
formula and s ∈ Θ<ω. Given t ∈ Θ<ω, define

Asφ,t = {a : dom(~a) = dom(s), a(i) ⊆ s(i)ω, L(℘(R)) � φ[a, t]}.

We write

(φ, t) ≡s (ψ, v) if and only if Asφ,t = Asψ,v.

We then let [φ, t]s be the ≡s-equivalence class of (φ, t).
Next define

Q = {(s, [ϕ, t]) : s ∈ Θ<ω, ϕ is a formula , t ∈ Θ<ω}

The ordering on Q is defined as follows:

(v, [φ, s]) ≤ (u, [ψ, t]) if and only if u C v,Auψ,t ⊆ Avϕ,s and Avϕ,s � dom(u) ⊆ Auψ,t
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where Avϕ,s � dom(u) = {a � dom(u) : a ∈ Avϕ,s}.

Let

P = {(s, a) : s ∈ Θ<ω, dom(a) = dom(s),∧∀i ≤ n, a(i) ⊆ s(i)ω}.

We set (s, a) ≤P (t, b) if and only if t E s and b E a. Notice that if (f, h) is P-generic
then f : ω → Θ and h : ω → (Θω)V are surjections such that for each i ∈ ω,
f(i) ∈ (h(i))ω.

The following lemma is standard and is due to Vopenka.

Lemma 1.10 (Vopenka’s lemma) Suppose (f, h) is P-generic. Let

G = {(f � n, [ϕ, v]) : n < ω, (f � n, [ϕ, v]) ∈ Q ∧ h � n ∈ Af�nφ,v }.

Then G is Q/Mµ-generic. Therefore, it is J (Mµ, Eµ)-generic over Q.

Proof. We first show that for ξ < Θ, we can bound the ordinal parameters used
to define ODM subsets of ℘(ξ).

Claim 1. In M , there is a function F : Θ<ω → Θ such that whenever t ∈ Θ<ω

and a are such that dom(a) = dom(t), a(i) ⊆ t(i) and a is ODM then a is OD in
L(ΓF (t)) where Γβ = {A ⊆ R : w(A) < β}.

Proof. For A ⊆ R2, we say (R, A) codes an OD structure if (R, A) is a well-founded,
extensional model of some fragment of ZFC and its transitive collapse is OD. No-
tice that by a standard Skolem hull argument, in M , if A ⊆ R2 and (R, A) codes an
ordinal definable structure then for some β < Θ, (R, A) codes an ordinal definable
structure in L(Γβ). Fix now α < Θ. Then we must have that

sup{β : ∃A ⊆ R2(A ∈ Γα ∧ L(Γβ) � “(R, A) codes an OD structure”)} < Θ.

This is because otherwise we will have a function G : Γα → Θ which is unbounded.
As Θ is regular, this is impossible.

Let then

F (t) = sup{β + ω : ∃A ⊆ R2(A ∈ Γsup(rng(t))+ω ∧ L(Γβ) � “(R, A) codes an OD
structure”)}.
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Let then D ∈ Mµ be a dense subset of Q. We want to see that G ∩D 6= ∅. Let
E be the set of (s, a) such that dom(s) = dom(a), s ∈ Θ<ω, for every i < dom(s),
a(i) ∈ s(i)ω and for some [φ, v] such that (s, [φ, v]) ∈ D, a ∈ Asφ,v.

We claim that E is dense in P. Fix then (s, a) ∈ P.

Claim 2.

∪{Atφ,v � dom(s) : s E t, (t, [φ, v]) ∈ D} = {b : dom(b) = dom(s) and for all
i < dom(s), b(i) ∈ s(i)ω}.

Proof. Notice that D 6∈ M , which makes the claim non-trivial. Consider the set
A = {Atφ,v � dom(s) : (t, [φ, v]) ∈ D}. Each member of A is ODM . We want to see
that A itself is OD in M .

To see this let N EMµ be such that ρω(N ) = Θ and D ∈ N . Fix ζγΘ and let
π : H → Lζ(℘(R))[µ] be such that

1. N , F,D ∈ rng(π),

2. crit(π) = κ = θκ.

Let (N̄ , F̄ , D̄) = π−1(N , F,D). We have that F̄ = F � θκ and D̄ = {(t, ([φ, v])L(℘(R))H ) :
(t, [φ, v]) ∈ D}. Let Ā = π−1(A). Then N E M∞ = V HODM

Θ . We then have that
D̄ ∈ ODM . Thus Ā is ODM .

Notice next that Ā = A. Indeed, fix B ∈ A. We have that B is ODM . It
follows that B is ODL(ΓF (s)) and hence, B is ODL(ΓF (s)). Let then (φ, v) be such
that v ∈ (ΘL(ΓF (s)))<ω and B is definable over L(ΓF (s)) via (φ, v). Since D̄ is dense
in H, we must have (t, [ψ, u]) ≤Q (s, [φ, v]) such that (t, [ψ, u]) ∈ D̄. But then
B = Atψ,u ∈ Ā.

It now follows that A ∈ ODM implying the claim. �

It follows from Claim 2 that there is (t, [φ, v]) ∈ D such that a ∈ Atφ,v � dom(s).
Let then b ∈ Atφ,v � dom(s) be such that b � dom(a) = a. Then (t, b) ∈ E and
(t, b) ≤P (s, a).

Since we now have that E is dense, we can fix n < ω such that (f � n, h � n) ∈ E.
Let [φ, v] be such that h � n ∈ Af�nφ,v . We then have that (f � n, [φ, v]) ∈ G ∩D. We
leave it to the reader to verify that G is a filter. �

The following is the main lemma of this section.
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Lemma 1.11 V is a symmetric extension of J (Mµ, Eµ). In fact, V = J (Mµ, Eµ)(Θω).

Proof. Let (f, h) be P-generic. LetG be as in Lemma 1.10. Then Θω ∈ J (Mµ, Eµ)[G].
It is a consequence of AD+ that every set of reals A is (ODt)

M for some t ∈ Θω.
Therefore, we have that

℘(R) ⊆ HODM(Θω) ⊆ J (Mµ, Eµ)(Θω).

The reader can find more on the above equality by consulting Section 2 of [1]. It
then follows that J (Mµ, Eµ)(℘(R)) = J (Mµ, Eµ)(Θω).

Because every set A ∈ ℘(Θ) ∩ J (Mµ, Eµ)(Θω) is added to J (Mµ, Eµ) by a
small forcing (in fact by the Vopenka algebra at some θα < Θ), we have that Eµ
has a canonical extension E+

µ to J (Mµ, Eµ)(Θω) (see Theorem 2.4 of [1]). Let
ν = {A : (Θ, A) ∈ E+

µ }. We then have that

J (Mµ, Eµ)(Θω) � “ν is a normal R-complete measure on Θ”.

It then follows that V = J (Mµ, Eµ)(Θω)2. �

1.5 Computation of HOD

We can now easily conclude that the model J (Mµ, Eµ) is independent of µ. The
following corollary is a simple consequence of Lemma 1.11 and the fact that small
forcing doesn’t create new measures.

Corollary 1.12 Suppose ν is a normal R-complete measure on Θ. Then Eν ∈
J (Mµ, Eµ) ∈ J (Mµ, Eµ).

Corollary 1.13 Suppose µ and ν are two normal R-complete measures on Θ. Then
J (Mµ, Eµ) = J (Mµ, Eν).

Proof. We have that Eν ∈ J (Mµ, Eµ) and Eµ ∈ J (Mν , Eν), implying the conclu-
sion. �

Borrowing Lemma 1.14 from the next subsection, there is a unique normal R-
complete measure µ over Θ minimizing λµ. It then follows from Corollary 1.13 that
J (Mµ, Eµ) ⊆ HOD. It follows from Lemma 1.11 that HOD ⊆ J (Mµ, Eµ). Putting
these two results together, we can now show that

HOD = J (Mµ, Eµ).

2In fact, ν = µ but we do not need this.
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1.6 The uniqueness of minimal measures

In this section, we show that there is a unique measure minimizing λµ.

Lemma 1.14 Suppose µ and ν are two normal R-complete measures over Θ such
that λµ = λν. Then µ = ν.

We spend most of this subsection proving Lemma 1.14. Suppose that µ and ν are
as in the hypothesis of the theorem. Notice that it is enough to show that Eµ = Eν .
This is because given Eµ = Eν , Lemma 1.11 will imply that µ = ν.

Notice first that Mµ = Mν . Let then M =def Mµ and N =def J (M, Eµ, Eν).
Because λµ = λν , we have that N is a bicaphulus.

Let now ξ > λµ be such that N|ξ � ZFC − Powesret + “there exists a largest
cardinal” and let π : Q → N|ξ be a countable hull of N|ξ. Using the construction
introduced in Subsection 1.2, we can build an iteration strategy Λ for Q which is
π-realizable. Let (E,F ) = π−1(Eµ, Eν). The idea now is simple. If we succeed
comparing (Q,Λ) with itself then we will get a contradiction as it will show that
E = F .

There are several issues with the above idea. The problem is that we do not
a priori know that Λ is fullness preserving. It need not be fullness preserving, Γ-
fullness preserving would suffice. However, it is not clear how to define Γ. A similar
issue arises in [3] where one needs to compare two hod pairs whose strategies are not
fullness preserving. There the issue is taken care of as follows.

Suppose (P ,Φ) is a hod pair such that λP is a limit ordinal. First recall from [3]
that

I(P ,Φ) = {(~T ,R) : ~T is a stack on P according to Φ such that π
~T exists and R is

the last model of ~T }
B(P ,Φ) = {(~T ,S) : ∃(~T ,R) ∈ I(P ,Φ)(S /hod R)}.

Also recall that S /hod R means that S is a hod mouse initial segment of R, i.e.,
there is α < λR such that S = R(α). Following Section 3.2 of [3], we let

Γ(P ,Φ) = {A ⊆ R : ∃(~T ,R) ∈ I(P ,Φ)(A ≤W Code(Φ))}.

In the above formula, ≤W denotes Borel reducibility and Code(Φ) is the set of
reals coding Φ. It is shown in [3] (see Theorem 3.27 of [3]) that under some general
conditions, Φ is Γ(P ,Φ) fullness preserving. The conditions needed for this fact are
as follows.

1. Φ has hull condensation.
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2. For all (~T ,R) ∈ B(P ,Φ) there is a hod pair (S,Ψ) an an elementary embedding
σ : R → S such that ΦR,~T = (σ pullback of Ψ) and Ψ has branch condensation
and is fullness preserving.

Investigating the proof of Theorem 3.27 of [3], it is not hard to notice that the hull
condensation of Φ is needed to infer that

(1) whenever (~T ,R) ∈ I(P ,Φ), Γ(P ,Φ) = Γ(R,ΦR,~T ).

Clearly (1) is an easy consequence, modulo copy constructions, of hull condensa-
tion of Φ.

We now get back to our case and continue with the pair (Q,Λ). The first few
definitions generalize immediately. Thus we let

I(Q,Λ) = {(~T ,R) : ~T is a stack on Q according to Λ such that π
~T exists and R is

the last model of ~T }
B(Q,Λ) = {(~T ,S) : ∃(~T ,R) ∈ I(Q,Λ)(S /hod R)}

Γ(Q,Λ) = {A ⊆ R : ∃(~T ,R) ∈ I(Q,Λ)(A ≤W Code(Λ))}.

Condition 2 above is also easily seen to be satisfied. This is because we have
defined Λ to be a π-realizable iteration strategy. Given then a (~T ,R) ∈ B(Q,Λ),

letting R+ be the last model of ~T , we have an embedding σ : R+ → N|ξ such that
ΛR,~T is the σ-pullback of ΣM(α) where α is such that σ(R) = M(α). We can then
find a hod pair (S,Φ) such that M∞(S,Φ) =M(α) and an embedding k : R → S
such that ΛR,~T = (k-pullback of Φ).

The only issue is that Λ may not have hull condensation. Here is how to go
around this problem. Suppose (~T ,R) ∈ I(Q,Λ). Let then

Γ~T = Γ(R,ΛR,~T ).

Notice that it follows that if (~T0,R0) ∈ I(Q,Λ) and (~T1,R1) ∈ I(R0,ΛR0,~T0) then

Γ~T_0 ~T1 ≤W Γ~T0

Let then (~T ,R) ∈ I(Q,Λ) be such that Γ~T is ≤W -minimal. Thus,

(2) whenever (~U ,S) ∈ I(R,ΛR,~T ), Γ~T = Γ~T_ ~U

(2) now plays the role of (1). We can now repeat the proof of Theorem 3.27 and show
that ΛR,~T is Γ~T -fullness preserving. We can then compare (R,ΛR,~T ) with itself, a

fact that implies π
~T (E) = π

~T (F ). Thus, E = F .
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2 The existence of minimal models and some re-

marks

We left open the question whether there are minimal models of Θms. Here we show
that they indeed exist. As was seen in Lemma 0.5, there are weakly minimal models
(assuming the existence of models of Θms).

Theorem 2.1 Suppose V is a weakly minimal model of Θms. Then there is a min-
imal model of Θms.

Proof. First recall Remark 1.5. Let µ be a normal R-complete measure over Θ.
We then have that V = J (Mµ, Eµ)(Θω). Suppose W ( V is another weakly min-
imal model of Θms such that W ⊆ V . It follows that ℘(R)W = ℘(R)V . Work-
ing in W , let ν be a normal R-complete measure over Θ. We then have that
W = J (MW

ν , E
W
ν )(Θω).

Notice now that MW
ν E Mµ. Suppose first that MW

ν = Mµ. It now follows
from Lemma 1.11 that EW

ν ∈ J (Mµ, Eµ) and that V � “ν is a normal R-complete
measure over Θ”. It then follows from Lemma 1.13 that J (Mµ, Eµ) = J (MW

ν , E
W
ν )

implying that V = W .
It follows that we must have that MW

ν /Mµ. The above discussion then shows
that if W ⊆ V is a weakly minimal model of Θms minimizing the height of all
possible MW

ν then W itself is a minimal model of Θms. �

We finish by asking the following question. The question is whether one can
compute the HOD of the minimal model of ADR + “Θ is a strong cardinal”. First
assume AD+. We say that Θ is a strong cardinal if for every λ ≥ Θ there is a set
E = {(a,A) : a ∈ λ<ω ∧ A ∈ [κ]|a|} such that

1. for every a ∈ λ<ω, Ea is an R-complete ultrafilter over κ|a|,

2. for a ⊆ b ∈ λ<ω, letting πb,a be the projection map3, for any A ∈ κ|b|, A ∈
Eb ↔ πb,a[A] ∈ Ea, and

3. for any ((ai, Ai) : i ∈ ω) ⊆ E there is f : ∪i<ωai → κ such that for every i,
f [ai] ∈ Ai, and

4. for some a ∈ [λ]<ω, there is a function f ∈ HODE,℘(R) such that f : Θ|a| →
LΘ(℘(R)) and [a, f ]E = V

HODE,℘(R)
λ .

3Recall that πb,a(t) = (ti0 , ti1 , ..., t|a|−1) where letting b = (b0, b1, ..., b|b|−1), (i0, ..., i|a|−1) are
chosen in such a way that a = (bi0 , bi1 , ..., b|a|−1).
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We then let “Θstrong” stand for the theory ADR + “Θ is a strong cardinal” and say
that M is a minimal model of Θstrong if M is a transitive model of ZF such that
Ord∪R ⊆M , M � Θstrong and for every transitive N (M such that Ord∪R ⊆ N ,
N � ¬Θstrong. We conjecture that minimal models of Θstrong exist.

Conjecture 2.2 Assume AD+ and that there is a largest Suslin cardinal which is a
member of the Solovay sequence. Then there is a minimal model of Θstrong.

The hypothesis of the conjecture is known as LSA. The reader can find more about
it by consulting [2]. There it is shown that the hypothesis is consistent relative to
a Woodin cardinal which itself is a limit of Woodin cardinals (see Theorem 13.1 of
[2]).

Question 2.3 Suppose M is a minimal model of Θstrong. What is the fine struc-
tural form of HODM?

One may also consider models of ADR in which Θ is a strong cardinal and the
model itself has a distinguished extender sequence above Θ. Such models will perhaps
have the formM = J ~E(℘(R)) where ~E is a good extender sequence. We may allow
that some of the extenders in M have critical point Θ. If in addition we require
thatM is minimal then it should be possible to study the fine structural properties
of HODM. However, one has to be a bit more careful. While the authors haven’t
done much towards completing the project mentioned above, at the moment it is
hard to perceive a proof from large cardinals that there is an M as above in which
Θ is a strong cardinal and M � “there is a Woodin cardinal which is a limit of
Woodin cardinals”. It seems that one would need to wait until the theory of hod
mice evolves into that region. Nevertheless, it seems that studying models of LSA
will lead towards confirmation of the following conjecture.

Conjecture 2.4 Assume LSA. Then there is a model of ADR of the form M =
J ~E(℘(R)) in which Θ is a strong cardinal and M � “there is a Woodin cardinal”.

Another question that authors find interesting is weather there are connections
between Θstrong and super compactness of ω1. In [7], Nam Trang has shown that
Θms is equiconsistent with ADR + “Θ is regular”+“ω1 is Θ supercompact”. It can
then be asked weather Θstrong is equiconsistent with any theory stipulating that ω1

has high degree of supercompactness.

Question 2.5 Assume Θstrong. Is there a model of ADR + “Θ is regular” +“ω1 is
Θ+-supercompact”?
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We suspect that the theory ADR +“Θ is regular” +“ω1 is Θ+-supercompact” has
a high consistency strength. A natural attempt to produce a model of ADR + “Θ is
regular” +“ω1 is Θ+-supercompact” is as follows. Start with a model of AD+ and
suppose α is such that θα < Θ. Let λ = (θ+

α )HOD and let Γ = {A ⊆ R : w(A) < θα}.
Let µ be the ω1-supercompactness measure on λ. By a result of Woodin, it is unique.
Consider then the model L(λω,Γ, µ). The only problem is that ℘(R) ∩ L(λω,Γ, µ)
maybe bigger than Γ. In fact, it is an unpublished theorem of the second author
(but see [2]) that in the minimal model of LSA, this intersection is bigger than Γ.

Theorem 2.6 Assume AD+ and that for some α, θα < Θ. Let λ = (θ+
α )HOD and

Γ = {A ⊆ R : w(A) < θα}. Then if L(λω,Γ) ∩ ℘(R) = Γ then there is B ⊆ R such
that L(B,R) � LSA.

However, Woodin, in unpublished work, showed that the theory ADR + “ω1 is
supercomact” is consistent relative to the theory ZFC + “ there is a proper class of
Woodin cardinals that are limit of Woodin cardinals”. Based on intuitions coming
from the theory of hod mice in the region of LSA we conjecture the following.

Conjecture 2.7 The following theories are equiconsistent.

1. ZF + ADR + “Θ is regular”+“ω1 is supercompact”.

2. ZFC + “there is a Woodin cardinal which is a limit of Woodin cardinals”
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