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Abstract

We provide a characterization of projective-like hierarchies in L(R) in the context of
AD by combinatorial properties of their associated Wadge ordinal. In the second chapter
we concentrate on the type III case of the analysis. In the last chapter, we provide a
characterization of type IV projective-like hierarchies by their associated Wadge ordinal.

1 Introduction

1.1 Outline

The paper is roughly organized as follows. We first review basic definitions of the abstract
theory of pointclasses. In the second section we study the type III pointclasses and the clo-
sure properties of the Steel pointclass generated by a projective algebra Λ in the case where
cof(o(Λ)) > ω. In particular we show that Steel’s conjecture is false. This leads to isolat-
ing a combinatorial property of the Wadge ordinal of the projective algebra generating the
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Steel pointclass. This combinatorial property ensures closure of the Steel pointclass under dis-
junctions. Therefore it is still possible to have κ regular, where κ is the Wadge ordinal for a
projective algebra Λ generating the next Steel pointclass and yet the Steel pointclass is not
closed under disjunction. In the third section, we look at the type IV projective-like hierarchies,
that is the pointclass which starts the new hierarchy is closed under quantifiers.

1.2 Review of the abstract theory of pointclasses

We will work in the theory ZF+DC+AD. In some places we may use ADL(R) so one could think
of the work as taking place under ZF+DC+AD+.

Although we use R for the set of reals in the paper, it is standard to identify the set of reals
R with the Baire space ωω (this can be done by using continued fractions to show that the set of
irrational numbers is homeomorphic with ωω for example). So whenever we use R, we actually
really mean ωω. The advantage of this shift is that ωω is now homeomorphic with (ωω)2. Reals
simply become ω sequences in ω, instead of Dedekind cuts, which are very complicated objects
in themselves.

Any sequence (xi : i ≤ n) with xi ∈ R for every i ≤ n can be coded into a single real via a
recursive bijection

(x1, ..., xn) 7→ 〈x1, ..., xn〉

We will also let x 7→ ((x)0, ..., (x)n) denote the decoding map. We’ll often drop the parenthesis
and just write xi instead of (x)i. It is also true that countably many reals can be coded into a
single reals and the coding real will be denoted by 〈xn〉.

A tree T on a set X is a set of finite sequences (x1, ..., xj) from X closed under initial
segments, that is,

whenever (x1, ..., xj) ∈ T, (x1, ..., xi) ∈ T, for any i ≤ j

Letting s = (x1, ..., xj), it is standard to denote the length of s by lh(s). For s, t ∈ T , we say
that t extends s, denoted by s� t if lh(s) ≤ lh(t) and t � lh(s) = s. A branch through the tree
T is an infinite sequence f = (x0, x1, ...) such that for every n, f � n ∈ T . If the tree T has a
branch then it is said to be illfounded, otherwise it is wellfounded. The set of all branches of
a tree T is called the body of T and is denoted by [T ]. All trees in the paper will be in the
descriptive set theoretic sense outlined in this paragraph, that is they will have height ω.

We introduce basic notions of the theory of pointclasses which we need throughout. A
pointclass Γ is a collection of sets of reals closed under continuous inverse images, that is:

if f : R→ R is continuous and A ⊆ R is ∈ Γ then B = f−1[A] ∈ Γ

For example Σ0
1 and Σ2

1 are two examples of pointclasses. Subscripts denote the numbers of
quantifiers involved in the syntactic formula defining the set belonging to the pointclass and
superscripts denotes the type of objects which fall on the scope of the quantification.

Wadge reduction is a central concept in descriptive set theory. Wadge reduction provides a
measure of the complexity of sets of reals. For two sets A,B ⊆ R, we say A is Wadge reducible

2



to B and write A ≤W B if and only if there is a continuous function f : R → R such that
B = f−1[A], i.e computing membership in A should be no more complicated than computing
membership in B. In other words, A ≤W B if and only if there is a continuous function
f : R→ R such that for all x,

x ∈ A↔ f(x) ∈ B.

So a pointclass Γ ⊆ P(R) is a collection of sets of reals closed under Wadge reduction. One basic
consequence of AD is Wadge’s Lemma with says that any two sets of reals can be compared
simply by the continuous substitution and taking complements. In particular

A ≤w B ↔ A = f−1[B].

It is a very useful fact in descriptive set theory that the relation ≤W is wellfounded, and this is
due to Martin and Monk. Given a pointclass Γ, we have the dual pointclass

Γ̌ = {A : Ac ∈ Γ}.

If Γ is a pointclass, we say U ⊆ R2 is a universal set for Γ if and only if for every B ∈ Γ,
there is a y ∈ R such that Uy = B = {x : (y, x) ∈ U}.

A pointclass is non-selfdual if and only if it is not closed under complements and a pointclass
is called selfdual if it is closed under complements. Under AD, Wadge’s lemma implies that
every nonselfdual pointclass has a universal set. Selfdual pointclasses do not have universal sets
by a diagonal argument. It is standard to denote selfdual pointclasses by ∆ and we’ll write

∆ = Γ ∩ Γ̌

The closure of Γ under existential quantification is given by

∃RΓ = {A : ∃B ∈ Γ∀x(A(x)↔ ∃yB(x, y)}

Notice that this is the same as taking continuous images by continuous functions f : R → R.
For instance, considering Π0

1 the pointclass of closed sets then one has ∃RΠ0
1 = Σ1

1, namely a
continuous image of a closed set is an analytic set. One can also define ∀RΓ, which is just ∃RΓ̌.
The projective hierarchy is defined in analogous fashion: Σ1

n+1 = ∃Π1
n and Π1

n = ¬Σ1
n. Another

way to generate to the projective hierarchy is to look at J(R), the Jensen constructible universe
containing all the reals and ordinals. We have that Σ1(J1(R)) = Σ1

1 and so Π1(J1(R)) = Π1
1.

Similarly, Σ2(J1(R)) = Σ1
2, Σ3(J1(R)) = Σ1

3 and Πn(J1(R)) = Π1
n, etc... So the projective

hierarchy is entirely contained in J2(R). At the higher up levels, the pointclass of the inductive

sets is given by Σ1(JκR(R)), where κR is the least R-admissible ordinal. Also Σ
L(R)
1 = Σ2

1 =
Σ1(Jδ21(R)), where δ2

1 is the least stable cardinal of L(R). The least stable ordinal 1 in L(R) is
the least ordinal δ for which we have

Lδ(R) �R∪{R} L(R)

1see [7] for a proof of this fact
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Definition 1.1 (Levy pointclass) A Levy pointclass Γ is a nonselfdual pointclass which is
closed under either ∃R or ∀R or possibly under both.

Definition 1.2 Γ has the reduction property if for all A,B ∈ Γ there are A′, B′ ∈ Γ such
that A′ ⊆ A,B′ ⊆ B,A′ ∩ B′ = ∅, A′ ∪ B′ = A ∪ B. Γ has the separation property if for
every A,B ∈ Γ such that A∩B = ∅ there exists a set C ∈∆ such that A ⊆ C and C ∩B = ∅.

One of the central properties a pointclass can have is the prewellordering property: Γ
has the prewellordering property if every Γ set admits a Γ norm, where a norm on a set of reals
A is a map φ such that φ : A→ ORD. The norm is regular if it is into an ordinal κ.

Definition 1.3 A norm φ is called a Γ norm if the following norm relations are in Γ: ≤∗φ, <∗φ
with:

x ≤∗φ y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ φ(x) ≤ φ(y)))

x <∗φ y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ φ(x) < φ(y)))

Notice that the prewellordering property is a way of splitting our Γ set A into ∆ pieces. Θ
is the supremum of the length of the prewellorderings of R, that is:

Θ = sup{α : ∃f : R� α}.

Under AC,Θ is c+ but under determinacy Θ can exhibit large cardinal properties. From the
point of view of L(R) and assuming determinacy, Θ is already large but it turn out by a result
of Woodin that Θ is a Woodin cardinal in the HOD of L(R).

Recall that under ZF, we have the following:

1. if Γ is closed under ∨, pwo(Γ) −→ Red(Γ)

2. Red(Γ) −→ Sep(Γ̌)

3. if Γ has a universal set then Red(Γ) −→ ¬Sep(Γ).

4. (Steel, Van Wesep) Under ZF+AD, if Sep(Γ̌) and for any A,B ∈ ∆, A ∩ B ∈ Γ then
Red(Γ).

It is a classical fact of descriptive set theory that under ZF+AD for any Levy pointclass
Γ, either pwo(Γ) or pwo(Γ̌). Under ZF only, if Γ is a pointclass with pwo(Γ) then every
set in ∃RΓ admits a ∀R∃RΓ norm. What gets us going through the Wadge hierarchy is the
first periodicity theorem:

Theorem 1 (Moschovakis) Suppose that ∆-determinacy holds and that Γ is a nonselfdual
pointclass with pwo(Γ) then every set in ∀RΓ admits a ∃R∀RΓ norm.
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Definition 1.4 (The scale property) A semiscale is a sequence of norms 〈φn〉 on a set A
such that whenever we have a sequence {xn} ⊆ A converging to some x and for every n, φn(xi)
is eventually constant then x ∈ A. If in addition we have the lower semi-continuity property,
φn(x) ≤ limφn(xi) then the sequence of norms 〈φn〉 is a scale. A scale 〈φn〉 is a Γ-scale if for
every n, φn is a Γ-norm. The pointclass Γ has the scale property if every Γ set has a Γ-scale.

A scale 〈φn〉 on a set A is good if whenever {xn} ⊆ A and for all n ∈ ω, ϕn(xm) is eventually
constant, then x = limxm exists and x ∈ A.

A scale 〈φn〉 on a set A is very-good if 〈φn〉 is good and whenever x, y ∈ A and ϕn(x) ≤ ϕn(y)
then ϕk(x) ≤ ϕk(y) for all k < n.

A scale 〈φn〉 on a set A is excellent if it is very good and whenever x, y ∈ A and ϕn(x) =
ϕn(y), then x � n = y � n.

Definition 1.5 (Inductive-like pointclass) A pointclass Γ is inductive like, if it is closed
under ∃R,∀R and Γ has the scale property.

The following theorem is the second periodicity theorem. It shows that under suitable de-
terminacy assumption we can propagate the scale property.

Theorem 2 (Moschovakis) Assume projective determinacy. Then every Π1
2n+1 and every

Σ1
2n have the scale property.

Recall that a set A ⊆ R is κ-Suslin if there is a tree T on ω × κ such that:

A = p[T ] = {x : ∃f ∈ κω∀n(x � n, f � n) ∈ T}.

A cardinal κ is a Suslin cardinal if there is a set A ⊆ R which is κ-Suslin but not γ-Suslin
for any γ < κ. The first few Suslin cardinals are ℵ0,ℵ1,ℵω and ℵω+1. To draw an analogy
with Θ, the supremum of all prewellorderings of the reals, ℵ1 = δ1

1 is the supremum of all ∆1
1

prewellordering of R. Similarly δ1
3 = ℵω+1

2 is the supremum of all ∆1
3 prewellorderings of R

and
δ2
1 = sup{ξ : ξ is the length of a ∆2

1 prewellordering of R}.

Basically the problem of the continuum is viewed from the point of view of the Wadge hierar-
chy. Scales provide sets of reals both with a Suslin representation and a notion of definability
associated to that representation.

First, we introduce the pointclass Σ1
1(A), for some A ⊆ R. We will need this notion below.

Definition 1.6 Let A ⊆ R. Σ1
1(A) is the pointclass of all sets B such that:

B(x)↔ C(x) ∨ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉)),

where C and D are Σ1
1 sets.

2this is actually a theorem
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Notice that Σ1
1(A) is a pointclass which contains A, is closed under ∃R,∨,∧. Let C = ∅,

then we have
A(x)↔ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉)),

where D(z)↔ ∀i, j(((z)1)i = (z)1)j∧x = ((z)1)0). D is a Σ1
1 set and this shows that A ∈ Σ1

1(A).
Also notice that Σ1

1(A) is indeed a pointclass since taking the preimage of a set in Σ1
1(A) yields

another set with complexity Σ1
1(A). Next we show closure of Σ1

1(A) under ∨. Let B,B′ ∈ Σ1
1(A)

be written as
B(x)↔ C(x) ∨ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉))

and
B′(x)↔ C ′(x) ∨ ∃z(∀n(z)n ∈ A ∧D′(〈x, z〉))

where C,C ′, D,D′ ∈ Σ1
1. Then we have

[C(x) ∨ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉))] ∨ [C ′(x) ∨ ∃z(∀n(z)n ∈ A ∧D′(〈x, z〉))]↔
F (x) ∨ ∃w(∀n(w)n ∈ A ∧ (G(〈x, y〉) ∨G(〈x, z〉)))

where F = C ∪ C ′ is a Σ1
1 set since Σ1

1 is closed under arbitrary unions and G = D′ ∪D is
a Σ1

1 set since Σ1
1 is closed under recursive substitutions. We next show that Σ1

1(A) is closed
under ∃R. Let B ∈ Σ1

1(A) be given by

B(〈x, z〉)↔ C(〈x, z〉) ∨ ∃y(∀n(y)n ∈ A ∧D(〈〈x, z〉, y〉))

and let U(x)↔ ∃zB(〈x, z〉) with C,D ∈ Σ1
1. We show that U ∈ Σ1

1(A). But notice that

∃z[C(〈x, z〉) ∨ ∃y(∀n(y)n ∈ A ∧D(〈〈x, z〉, y〉))]

is logically equivalent to

∃zC(〈x, z〉) ∨ ∃y(∀n(y)n ∈ A ∧ ∃zD(〈〈x, z〉, y〉)),

using that Σ1
1 is closed under existential quantification. Finally Σ1

1(A) is closed under ∧. To
see this again let B,B′ ∈ Σ1

1(A) be written as

B(x)↔ C(x) ∨ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉))

and
B′(x)↔ C ′(x) ∨ ∃z(∀n(z)n ∈ A ∧D′(〈x, z〉))

where C,C ′, D,D′ ∈ Σ1
1. We want to see that B(x) ∧B′(x) ∈ Σ1

1(A). Then we consider

[C(x) ∨ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉))] ∧ [C ′(x) ∨ ∃z(∀n(z)n ∈ A ∧D′(〈x, z〉))].

To compute this just notice that when the whole expression is unfolded, the Σ1
1 set C ′ can be

pushed in the second disjunct defining the set B past the quantification over y so that we have

C ′(x) ∧ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉))↔ ∃y(∀n(y)n ∈ A ∧D(〈x, y〉) ∧ C ′)
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and D(〈x, y〉)∧C ′ is now a Σ1
1 set. Similarly for C and ∃z(∀n(z)n ∈ A∧D′(〈x, z〉)). Also when

the expression is unfolded one writes

∃y(∀n(y)n ∈ A ∧D(〈x, y〉)) ∧ ∃z(∀n(z)n ∈ A ∧D′(〈x, z〉))

as

∃w(∀n(w)n ∈ A ∧ ∃ε0, ε1(D(〈x, ε0〉) ∧D′(〈x, ε1〉)) ∧ ∀j((ε0)j = (w)2j ∧ (ε1)j = (w)2j+1).

So w is now a single real witnessing the above conjunction in a “zig-zag” way. Notice that

∃ε0, ε1(D(〈x, ε0〉) ∧D′(〈x, ε1〉))

is still a Σ1
1 set and ∀j((ε0)j = (w)2j ∧ (ε1)j = (w)2j+1) is ∆1

1

We will use these closure properties of Σ1
1(A) below in the analysis of the type IV case.

The pointclass Σ1
1(A) also has a universal set which comes from the universal set for Σ1

1 sets
in a natural way. Let U ⊆ R2 be universal for Σ1

1 sets of reals. Then define

V (ε, x)↔ U(ε0, x) ∨ ∃y(∀n(y)n ∈ A ∧ U(ε1, 〈x, y〉)).

Then V ∈ Σ1
1(A) and is universal for Σ1

1(A) sets of reals by letting

C(x)↔ Uε0(x)

and
D(〈x, y〉)↔ Uε1(〈x, y〉)

be the two Σ1
1 sets coded by ε0 and ε1.

We now define the notion of a projective hierarchy in the general context. This is will allow
us to define the Steel pointclasses which we need for the next section.

Definition 1.7 A projective algebra is a pointclass Λ which is closed under ∃R,∨,∧,¬.

A nice additional closure property of Λ is, by Steel-Van Wesep, if A ∈ Λ and if ∃B which
is not ordinal definable from A then Λ is closed under sharps, i.e for any A ∈ Λ, A# ∈ Λ. This
would hold under θ0 < Θ for example, where

θ0 = the least ordinal which is not an OD surjective image of R.

Recall that assuming AD, Wadge’s lemma says that for any two sets of reals A,B, either
A ≤W B or B ≤W R \ A. For any set A ⊆ R there is then a notion of Wadge degree. We say
that A ⊆ R is selfdual if the pointclass ΓA = {B : B ≤W A} is selfdual. The Wadge degree of A
is the equivalence class [A]W of sets Wadge equivalent to A if A is self-dual, that is A ≤W R\A
and the pair ([A]W , [R \ A]W ) if A is nonself-dual. Martin and Monk showed that the Wadge
degrees are wellfounded under AD. The Wadge degree of a set A is denoted by o(A).
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Definition 1.8 o(Γ) = sup{o(A) : A ∈ Γ}, where o(A) is the Wadge degree of A.

Levy pointclasses are classified into 4 different projective-like hierarchies. Suppose Γ is
nonselfdual and closed under either ∃R or ∀R or possibly both. First let α be the supremum of
the limit ordinals β such that

1. ∆β = {A : o(A) < β} is closed under both ∃R and ∀R and

2. ∆β ⊆ Γ.

We then have the following types of projective-like hierarchies:

• Type I: If cof(α) = ω there is a projective algebra Λ (i.e closed under ∃R,∨∧¬) of Wadge
degree α whose sets are ω-joins of sets of smaller Wadge degree. Letting Γ0 =

⋃
ω Λ then

Γ0 is a nonselfdual pointclass at the base of a new projective like hierarchy, Λ ⊆ Γ0,Γ0

is closed under ∃R and pwo(Γ0). Γ0 is not closed under countable intersections since Γ0

is nonselfdual.

• Type II/III: If cof(α) > ω then there is a pointclass Γ0 closed under ∀R with pwo(Γ0)
of Wadge degree α. Γ0 is not closed under ∃R in this case. Γ0 is generated from a
projective algebra Λ: Γ0 is the pointclass of Σ1

1-bounded cof(α) length unions of Λ sets.
If Γ0 is closed under countable unions and disjunction then Γ0 is said to start a type III
projective-like hierarchy.

• Type IV: If cof(α) > ω and Γ0 is as above and closed under ∃R and ∀R, then pwo(Γ0) but
this can’t be propagated by periodicity as in types I,II and III. So define Π1 = Γ0∧ Γ̌0.
Π1 is said to be at the base of a type IV projective-like hierarchy. Π1 is closed under
countable intersections, ∀R but not under ∨ therefore not under ∃R.

We refer the reader to [3] for more facts on the general theory of pointclasses. In the next
section, we will look more closely at the type II and III cases. The goal of the work below will
be to characterize the above types of hierarchies of pointclasses with their associated Wadge
ordinal.

2 Closure properties of the Steel Pointclass

2.1 Generating the Steel pointclass

We fix a Levy pointclass Γ. We let Λ be the pointclass associated to Γ and obtained by taking
unions of all sets in ∆, where ∆ = Γ ∩ Γ̌, and ∆ is closed under ∃R, complements and finite
intersections. Then we have that Λ ⊆ Γ and Λ is the largest projective algebra contained in
Γ since it is closed under ∃R, complements and finite unions and intersections. It can also be
shown that Λ is at the base of a projective hierarchy containing Γ. Let

α = sup{o(A) : A ∈ Λ}
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and suppose ω < cof(α) (the case ω = cof(α) is the case of a type I hierarchy). By general
theory of the Wadge degrees, we have a nonselfdual pointclass Γ0 such that o(Γ0) = α. One of
Γ0 and Γ̌0 has the separation property, so let Γ̌0 be the side with the separation property. It
turns out that Γ0 is closed under ∀R:

Theorem 3 ([6]) Assume ZF+AD. Let Γ0 be as above and assume that Γ̌0 has the separation
property. Then Γ̌0 is closed under ∃R.

Proof.
The proof uses a variant of an argument by Addison which was used to show the separation

property for the pointclass Σ1
3. Suppose that there is a set A ∈ ∃RΓ̌0 \ Γ̌0. Then by Wadge’s

lemma, Γ0 ⊆ ∃RΓ̌0. Let P,Q ∈ Γ0 such that P ∩Q = ∅. Since P,Q ∈ ∃RΓ̌0, then let A,B ∈ Γ̌0

be such that P (x)↔ ∃yA(x, y) and Q(x)↔ ∃yB(x, y). Define

A′(x, y, z)↔ A(x, y)

and
B′(x, y, z)↔ B(x, z).

Then A′ ∩ B′ = ∅ and A′, B′ ∈ Γ̌0. By the separation property of Γ̌0, let D ∈ ∆ such that
A′ ⊆ D and B′ ∩D = ∅. But now letting

E(x)↔ ∃y∀zD(x, y, z),

we have E ∈ ∆ since ∆ is closed under ∃R and complements and P ⊆ E, E ∩ Q = ∅. So Γ0

has the separation property. Contradiction!
�

We call Γ0 as above the Steel pointclass. Notice that there are no reasons why Γ0 should
be closed under ∨ at this point.

Steel has shown that Γ0 is obtained by taking cof(α) length Σ1
1 bounded unions of sets

in the projective algebra Λ. We now show how to generated Γ0 from Λ this way. So let
ω < cof(α) = β, where α = o(Λ) and let Γ be the Steel pointclass. So we have Sep(Γ̌) and
there is a set A ∈ Γ \ Γ̌ such that o(A) = α. By the above theorem Γ is closed under ∀R. We
show that Λ is closed under unions of length strictly less than β. We will need this fact to
generate the Steel pointclass from Λ.

Lemma 2.1 Assume that Λ ( P(R), then β is the least ordinal such that for a sequence of
sets {Aγ}γ<β, with each Aγ ∈ Λ we have that

⋃
γ<β Aγ /∈ Λ

Proof.
Let � be a prewellordering of length β in Λ. Let δ be the least ordinal such that there is a

δ sequence of sets in Λ such that
⋃
γ<δ Aγ /∈ Λ. Then we show that δ = β. Notice that δ is a

regular cardinal since if not then letting f : ξ → δ be a cofinal map for ξ < δ we could obtain⋃
γ<ξ Aγ /∈ Λ and then δ is not least. Suppose β < δ. Assume δ < α. We can also assume that

9



there is an α0 < α such that for each γ < δ, we have |Aγ|W ≤ α0, since δ is regular. Fix then
a nonselfdual pointclass Γ′ ⊆ Λ such that Γ′ is closed under ∃R,∧,∨, Aγ ∈ Γ′ for every γ < δ
and such that there is a prewellordering of length δ in Γ′. Let ϕ : R→ δ be a Γ′ norm and for
each δ sequence of Γ′ sets {Aξ}ξ<γ let by the coding lemma R(w, ε) be a Γ′ relation such that

1. ϕ(w) = ϕ(z)→ (R(w, ε)↔ R(z, ε))

2. R(w, ε) → ε ∈ C where C is the set of codes of the Γ′ sets in the sequence {Aγ}γ<δ. C
can be defined using a universal Γ′ set as follows: let U ∈ Γ′ be a universal set. Then for
every γ < δ we let ε ∈ R such that Uε = Aϕ(ε). Then C ∈ Γ′.

3. ∀w∃ε(R(w, ε) ∧ Uε = Aϕ(w))

Then we have
x ∈

⋃
γ<δ

Aγ ↔ ∃w∃ε(R(w, ε) ∧ x ∈ Uε).

So the union is in Γ′. Contradiction!
Next, assume α < δ. Let Γ′ ⊆ Λ be a pointclass as above. Consider a sequence of Γ′ sets

{Aγ}γ<δ and define the natural prewellordering ≤ defined by

x ≤ y ↔ ∃γ1, γ2 such that (γ1 < γ2 ∧ x ∈ Aγ1 \ A<γ1 ∧ y ∈ Aγ2 \ A<γ2)

Notice that there is an α0 < α such that for every γ < α, we have | ≤γ |W ≤ α0, where ≤γ has
length γ. So for each γ, we have ≤γ∈ Λ. But now ≤=

⋃
γ<α ≤γ is a prewellordering of length

α in Λ, since Λ is closed under unions of length α by minimality of δ. Contradiction!
If δ < β then since β ≤ α then we still have δ < α and we would get a contradiction using

the coding lemma as above. So we must have δ ≥ β. In case δ = α, then α is also regular and
so α = β. So δ = β.

�

Continuing, we have from the above lemma Λ (
⋃
β Λ. We cannot have that⋃

β Λ = Γ̌. To see this, let A,B ∈ Γ̌. Then let {Aγ}γ<β be a sequence of sets in Λ such that
A =

⋃
γ<β Aγ and let {Bγ}γ<β be a sequence of sets in Λ such that B =

⋃
γ<β Bγ. We first

show that Γ̌ has the reduction property. Define the set A′ by

x ∈ A′ ↔ ∃γ1(x ∈ Aγ1 ∧ x /∈
⋃
γ<γ1

Bγ)

and define the set B′ by

x ∈ B′ ↔ ∃γ1(x ∈ Bγ1 ∧ x /∈
⋃
γ≤γ1

Aγ)

Then notice both A′ and B′ are in Γ̌. Also A′ ⊆ A and B′ ⊆ B and A′∩B′ = ∅. So Red(Γ̌). But
recall that we also have by assumption Sep(Γ̌). We quickly justify that the reduction property
and the separation property can’t both hold for Γ̌. Let A,B ∈ Γ̌. Then by Red(Γ̌), let A′ and
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B′ be disjoint sets such that A′ ⊆ A and B′ ⊆ B and A′∪B′ = A∪B. Let U ∈ Γ̌ be a universal
set which codes the pair of sets A′, B′ by

A′(x, y)↔ U((x)0, y)

and
B′(x, y)↔ U((x)1, y).

Now let C be a set in ∆ which separates A′ from B′, i.e A′ ⊆ C and C ∩ B′ = ∅. Now let D
be an arbitrary ∆ set. Then there exists a z ∈ R such that

D(y)↔ U(z)0(y)↔ ¬U(z)1(y).

Then we have that
D(y)↔ Ax(y)↔ ¬Bx(y).

But then this implies that
D(y)↔ A′x(y)↔ ¬B′x(y).

So D(y)↔ Cx(y), because C ∈∆ separates A′ from B′. So every ∆ set is coded as a section of
a single ∆ set. But selfdual pointclasses can’t have universal sets: if U ∈∆ is universal for ∆
sets then U ∈ Γ and U ∈ Γ̌. Define then, A(x)↔ ¬U(x, x). Since ∆ is closed under recursive
substitutions, then we have A ∈ Γ. So there exists a z ∈ R such that A = Uz, but now we have

A(z)↔ U(z, z)↔ ¬A(z),

contradiction!
Therefore, by Wadge’s lemma we must have that Γ ⊆

⋃
β Λ. Since Λ is a projective

hierarchy then ∃RΓ ⊆
⋃
β Λ.

We say that a union A =
⋃
α<δ Aα is Σ1

1-bounded if

for any Σ1
1 set S ⊆ A, there exists a γ < δ such that S ⊆ Aγ.

Let Γ1 be the pointclass of Σ1
1-bounded β length unions of Λ sets. Using the above set up, it is

then shown in [10] and [6] that Γ = Γ1. So the Steel pointclass corresponding to the projective
algebra Λ can be characterized as all sets which are Σ1

1-bounded β length unions of sets in Λ.
We proceed to show that the Steel pointclass has the prewellordering property (see [10]). This
will motivate a different characterization of the Steel pointclass which we will adopt in the rest
of the section.

Theorem 4 (Steel, [10]) Let Λ be a projective algebra with α = o(Λ) and assume that ω <
cof(α). let Γ be the Steel pointclass corresponding to Λ. Then pwo(Γ).

Proof.
Let β = cof(α) and let A ⊆ R be a complete Γ set of reals.Let A =

⋃
γ<β Aγ be an increasing

Σ1
1 bounded β length union of sets such that for each γ < β,Aγ ∈ Λ. Let ϕ be the natural

11



norm in A such that for x ∈ A, ϕ(x) = least ξ such that x ∈ Aξ. The norm <∗ϕ associated to
ϕ can be written as

⋃
γ<β Bγ where

Bγ(x, y)↔ x ∈ Aγ ∧ y /∈ Aγ.

Then for each γ < β, Bγ ∈ Λ. It remains to show that <∗ϕ∈ Γ. We proceed to show that <∗ϕ is

Σ1
1 bounded. So let S ⊆ R× R be a Σ1

1 and S ⊆<∗ϕ. Notice that if S(x, y) holds then x ∈ A.

Since by assumption
⋃
γ<β Aγ is a Σ1

1 bounded union, there is a γ0 < β such that whenever
S(x, y) holds x ∈ Aγ0 .If ϕ(x) < ϕ(y), then there is a γ < γ0 such that x ∈ Aγ ad y /∈ Aγ and
Bγ(x, y) holds. So <∗ϕ∈ Γ. A similar computation shows that ≤∗ϕ∈ Γ. So pwo(Γ).

�

Gathering all the facts above we characterize the Steel pointclass as follows:

Definition 2.2 (Steel pointclass) If ∆ is selfdual, closed under real quantifiers, o(∆) has
uncountable cofinality, ∆ is not closed under well-ordered unions, then the Steel pointclass is
the pointclass Γ such that ∆ = Γ ∩ Γ̌, Γ is closed under ∀R and pwo(Γ).

Since the Steel pointclass is nonselfdual and closed under ∀R then it is closed under ∧.
A natural question which arises then is whether the Steel pointclass is closed under ∨. The
following theorem below shows that what prevents closure of the Steel pointclass under ∨ is
the singularity of o(∆).

To introduce the following theorem, recall that if Γ is a nonselfdual pointclass closed under
∀R and ∨, and if ϕ : A → κ is a regular Γ-norm on a Γ-complete set A, then for every
B ∈ Γ̌ such that B ⊆ A, there is a η < κ such that sup{ϕ(x) : x ∈ B} = η 3. In this case
we say that ϕ is Γ̌-bounded. Similarly say that a norm is κ-Suslin bounded if for every set
B ⊆ A which is κ-Suslin, sup{φ(x) : x ∈ B} < γ for φ : A→ γ.

Theorem 5 (Steel, [10]) Suppose Sep(Γ̌) and suppose ∆ = Γ∩Γ̌ is closed under ∃R. Assume
A ∈ ∆ and that there is a norm ϕ : A � λ which is Σ1

1-bounded, where λ = cof(o(∆)). Then
there is a B ∈ Γ̌ such that A ∩B /∈ Γ̌.

A variation of the proof of the above theorem, shows the following limitation to the closure
of the Steel pointclass under ∨.

Theorem 6 (Steel, [10]) Suppose Sep(Γ̌) and suppose ∃R∆ ⊆∆ and o(∆) is singular. Then
Γ̌ is not closed under intersections with ∆ sets.

Proof.
Let α = cof(o(∆)) < o(∆) and let {κγ : γ < α} be a cofinal sequence in o(∆). Let U be a

universal Γ̌ set. Let A ∈∆ and let ϕ : A→ α be a ∆ norm of length α. By the coding lemma
there is a relation P such that

P (x, ε)↔ ∀x∃ε(x ∈ A→ U(ε)0 = U c
(ε)1
∧ |U(ε)0|W ≥ κϕ(x))

3see [9], 4C.11 for a proof of this fact
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Notice that P ∈∆. Now define the relation R as follows:

R(x, ε)↔ x ∈ A ∧ (ε)0 /∈ U(ε)1

Then R ∈ Γ. But since the set {|Rx|W : x ∈ A} is cofinal in o(∆), then R /∈ ∆ and so R /∈ Γ̌.
Also R can be written as:

R(x, ε)↔ x ∈ A ∧ (ε)0 ∈ U(ε)0

and so R is the intersection of a set in ∆ and a set in Γ̌ which is not in Γ̌.
�

2.2 Steel’s conjecture and closure properties of the Steel pointclass

A natural conjecture then, and this what Steel conjectures in [10], is whether the regularity of
o(∆) would imply closure of Γ̌ under intersections. However, this conjecture turns out to be
false, we will show this later. We precisely state the conjecture:

Conjecture 1 (Steel, [10]) If Γ is the Steel pointclass such that o(∆) is regular and ∃R∆ ⊆
∆ then Γ is closed under ∨.

Notice that the conjecture can be rephrased by asking that if Sep(Γ̌), ∃R∆ ⊆ ∆ and o(∆)
is a regular cardinal, then

⋂
2 Γ̌ ⊆ Γ̌, and this is actually how the conjecture was originally

stated.
As in [10], let

C=̇{o(∆) : ∃R∆ ⊆∆ ∧∆ is a selfdual pointclass}

Notice that there are cofinally many in Θ such ordinals κ ∈ C, since these are the places where
we are at the base of a projective-like hierarchy of type II, III or IV. If κ ∈ C and cof(κ) > ω
then, as noted above, Steel shows in [10] that there is a Steel pointclass Γ such that o(∆) = κ.

The following is a weaker positive solution to the Steel’s conjecture. Essentially it says that
the Steel pointclass is closed under unions with κ-Suslin sets for κ < cof(o(∆)). In particular, if
o(∆) is a regular limit of Suslin cardinals then the Steel pointclass is closed under disjunction.
The proof uses the Martin-Monk method which exploits the fact that a certain strategy flips
membership to construct two disjoint sets which are comeager.

Theorem 7 (Steel, [10]) Let Γ be nonselfdual, closed under ∀R and such that pwo(Γ).Suppose
that ∃R∆ ⊆∆. Then Γ is closed under union with κ-Suslin sets for κ < cof(o(∆)).

This is turn gives the following boundedness principle:

Theorem 8 (Steel, see [3]) Let γ < Θ be a limit ordinal. Then there is a set A ⊆ R and a
norm ϕ : A→ γ which is onto and κ-Suslin bounded for all κ < cof(γ).
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Therefore Steel’s conjecture is true in the least initial segment of the Wadge hierarchy
containing the inductive sets, IND, since by a result of Kechris, every A ⊆ R ∈ HYP is
κ-Suslin for κ < κR and scales can be localized to smaller pointclass within HYP. This implies
the following corollary:

Corollary 9 If Γ is the Steel pointclass and IND ⊆ Γ, then for A ∈ IND, B ∈ Γ, we have
that A ∪B ∈ Γ.

We move to generalize the above boundedness principle to all sets in ∆ associated to the
Steel pointclass Γ and show the equivalence of this generalization with the Steel pointclass
being closed under disjunctions. We then show the following theorem, which reduces Steel’s
conjecture to the question of whether ∆ sets are bounded in the norm. We say that ∆ sets are
bounded in the norm if there is a ∆-bounded norm, that is a norm ϕ : P → κ for some ordinal
κ and a set P ⊆ R such that for every ∆ set S ⊆ P , sup{ϕ(x) : x ∈ S} < κ.

Theorem 10 Let Γ be the Steel pointclass and let ∆ = Γ ∩ Γ̌ be such that ∃R∆ ⊆ ∆. Then
the following are equivalent:

1.
⋃

2 Γ ⊆ Γ,

2.
⋃
ω Γ ⊆ Γ,

3. Γ is closed under union with ∆ sets,

4. ∆ sets are bounded in the norm.

Proof.
Let Γ be a nonselfdual pointclass such that ∃R∆ ⊆ ∆, pwo(Γ) and Γ is closed under ∀R.

(1) −→ (2) holds because we have ¬Sep(Γ), this is theorem 2.2 in [10]. (2) −→ (1) is immediate.
That clause (2) implies clause (3) is also immediate. We next show that (3) implies (2). So let
A,B ∈ Γ. We show that A∪B ∈ Γ. Since Red(Γ) holds, we may assume that A∩B = ∅. Let
A =

⋃
β<αAβ and B =

⋃
β<αBβ where α is the ordinal such that

⋃
α ∆ * ∆. Define

Γ∗ = {
⋃

α<o(∆)

Aα : ∀α(Aα ∈∆) ∧
⋃

α<o(∆)

Aα is ∆ bounded}

Claim 1 Γ∗ = Γ

Proof.
We have Γ∗ ⊆ Γ since every set on Γ∗ is a Σ1

1-bounded union of set ∆ sets. We next show
that Γ ⊆ Γ∗. So let A ∈ Γ \ Γ̌. Let A =

⋃
β<αAβ with Aβ ∈ ∆ for every β < α and α is

least such that
⋃
α ∆ * ∆. We may assume that the union is increasing. Let ϕ : A→ α be a
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Σ1
1-bounded Γ-norm on A. Let {κβ : β < α} be cofinal in o(∆). Let U be a universal Γ set.

Define the Solovay game as follows:

I x

II 〈w, y, z〉

The payoff condition is then defined by:

Player II wins iff x ∈ A→ (Uy = U c
z = Aϕ(w) ∧ |Uy|W ≥ κϕ(x)).

Since ϕ is Σ1
1-bounded then Player II has a wining strategy τ for this game. Then let

R(x,w, y)↔ x ∈ A ∧ w = τ(x)0 ∧ Uτ(x)1 = Aϕ(w) ∧ y /∈ Uτ(x)2 .

Then we have that {|Rx|W : x ∈ A} is unbounded in o(∆) and so {|Aβ|W : β < α} is unbounded
in o(∆).

Next for β < α, let

Cβ = {(x, y) : y ∈ Aβ+1 \ Aβ ∧ x codes a continuous function fx s.t f−1x (Aβ) ⊆ A}.

Then for every β < α, Cβ is defined as (∆ ∧ ∀R(∆ ∨ Γ)) and so because we are assuming that
Γ is closed under unions with ∆ sets, we have for every β < α, Cβ ∈ Γ. Let C =

⋃
β<αCβ.

Then another Solovay game argument as above shows that C ∈ ∃RΓ. Actually one can show
that C ∈ Γ. Notice that because ∃R∆ = ∆ and because Γ =

⋃
α ∆, then ∃RΓ ⊆

⋃
α ∆. So let

Dβ ∈∆ for every β < α such that C =
⋃
β<αDβ. We may assume that the union is increasing.

Define the sets Bβ by

Bβ(z)↔ ∃(x, y) ∈ Dβ∃γ ≤ β(y ∈ Aγ+1 \ Aγ ∧ fx(z) ∈ Aγ).

Then Bβ ∈ ∆. Notice that A =
⋃
β<αBβ and

⋃
β<αBβ is ∆-bounded since every ∆ set is

coded as a set f−1x (Aβ) for some β < α.
�

Now recall that A =
⋃
β<αAβ and B =

⋃
β<αBβ. These unions are ∆-bounded and

increasing with each Aβ and Bβ in ∆. We show that
⋃
β<α(Aβ ∪ Bβ) is ∆ bounded. Then let

C ⊆
⋃
β<α(Aβ ∪ Bβ) with C ∈ ∆. Then C ∩ A ∈ Γ as Γ is closed under intersections. Also

C ∩A = C ∩Bc and C ∩Bc ∈ Γ̌, since by assumptions Γ̌ is closed under intersections with ∆
sets. So C ∩ A ∈∆ and ∃γ1 < α such that C ∩ A ⊆ Aγ1 . Similarly, there exists a γ2 < α such
that C ∩B ⊆ Bγ2 . Let γ = max(γ1, γ2). Then C ⊆ Aγ ∪Bγ. So A ∪B ∈ Γ and

⋃
2 Γ ⊆ Γ.

Finally it just remains to show that ∆ sets are bounded in the norm if and only if Γ is
closed under unions with ∆ sets. Recall that o(∆) = κ is regular. We’ll make use of this in
the proof. Suppose first that ∆ sets are bounded in the norm. We need to see that Γ is closed
under unions with ∆ sets. So let A ∈ Γ such that A =

⋃
β<κAβ with Aβ ∈ ∆ for every β < κ

and let B ∈ ∆ such that B =
⋃
β<αBβ for some α < κ with Bβ ∈ ∆ for every β < α. It

suffices to show that A∪B is ∆-bounded. We may assume that the unions are increasing and
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continuous, that is at all limit ordinal γ < κ we have Aγ =
⋃
β<γ Aβ. So let C ⊆ A ∪ B such

that C ∈∆. We also have that

A ∪B =
⋃
β<κ

Aβ ∪
⋃
β<α

Bβ =
⋃
β<α

(Aβ ∪Bβ) ∪
⋃

α<ξ<κ

Aξ.

But notice that we must have
⋃
β<α(Aβ∪Bβ) ∈∆ since κ is a regular cardinal, α < κ and since

cof(κ) = κ is least such that
⋃

cof(κ) ∆ * ∆. So let D =
⋃
β<α(Aβ ∪ Bβ). Then C ∪ D ∈ ∆.

So we have C ∪ D ⊆
⋃
α<ξ<κAξ =def A

′ = A, since the union is continuous. Let ϕ : A′ → κ
be the natural norm defined by ϕ(x) = the least ξ < κ such that x ∈ Aξ. Since ∆ sets are
bounded in the norm and since κ is regular, there exists a ξ1 < κ be such that C ∪D ⊆ Aξ1 .
So the union A ∪ B is ∆ bounded. Next we must show that a union is ∆-bounded union of
∆ sets if and only if it is a Γ-complete set. This will ensure that A ∪ B is in Γ \ Γ̌. So let
A =

⋃
α<κAα be a ∆-bounded union of ∆ sets. We need to see that A is Γ \ Γ̌. We start first

by showing that our assumption implies that if A ∈ Γ \ Γ̌ then A is a ∆ bounded union of ∆
sets. By pwo(Γ), let ϕ : A → κ be a Γ norm. Since ∆ sets are bounded in the norm then for
any ∆ subset of Aα ⊆ A, there exists an β < κ such that elements of Aα are sent before β. In
addition every initial segment of the norm ϕ is a ∆ set. So A is a union of ∆ sets which are ∆
bounded. Now we justify why any ∆-bounded union of ∆ sets is in Γ \ Γ̌. So let A =

⋃
α<κAα

be a ∆ bounded union of ∆ sets. We may assume that the union is increasing and continuous.
Consider the following game:

I x

II 〈w, y, z〉

The pay off condition is determined by player II wins the run of the game if and only if

x ∈ A→ ∃α(Uw = U c
y = Aα ∧ x ∈ Uw ∧ z ∈ Uw)

Then player II has a winning strategy τ . Next notice that

x ∈
⋃

Aα ↔ x ∈ Uτ(x)0 ∧ Uτ(x)0 = U c
τ(x)1
∧ τ(x)2 ∈ Uτ(x)0 .

Then
⋃
α<κAα is in Γ \∆. Thus

⋃
α<κAα ∈ Γ \ Γ̌.

Finally notice that if Γ is closed under unions with ∆ sets, then Γ is closed under finite
unions by the above and thus Moschovakis argument (see 4.C.11 in [9]) applies and this implies
that ∆ sets are bounded in the norm. This finishes the proof.

�

2.3 Failure of Steel’s conjecture

In the first author’s phd, see [1], it was claimed that Steel’s conjecture is true. However the
“proof” given shows something different. We next show that Steel’s conjecture is actually
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false. Specifically, we show that there are regular cardinals κ such that κ = o(∆) where ∆ is
associated to a Steel pointclass Γ, and yet Γ is not closed under disjunctions.

First, recall briefly that Steel’s conjecture is the statement that if Γ is a pointclass with
the prewellordering property, closed under ∀R and such that for ∆ = Γ ∩ Γ̌,∃R∆ ⊆ ∆ and
κ = o(∆) is regular, then Γ is closed under disjunctions.

As usual we let Γ be a Steel pointclass, that is Γ is defined as all Σ1
1 bounded length o(∆)-

unions of ∆ sets where ∆ = Γ∩Γ̌, ∃R∆ ⊆∆, Γ has the prewellordering property and ∀RΓ ⊆ Γ.
Example 2.6 below shows that if ω1 < cof(∆)), say cof(o(∆)) = ω2, then the Steel pointclass at
o(∆) is not closed under unions with Π1

2 sets. This suggests that even if λ < cof(o(∆)), Steel’s
conjecture could fail and this is what we will show below. In other words, what is needed of κ,
where κ = o(∆) as above, to obtain closure of the Steel pointclass under disjunctions has to be
stronger than mere regularity. Presumably those κ’s have to satisfy a property stronger than
regularity but weaker than bΠ1

2-indescribability (see the type IV case below).

Definition 2.3 Let Λ be a pointclass. The spectrum of Λ, spec(Λ), is the set of α ∈ On
such that there is a strictly increasing sequence E =

⋃
β<αEα with E ∈ Λ and with the union

Σ1
1-bounded (i.e., every Σ1

1 S ⊆ E is a subset of some Eβ).

Remark 2.4 In the definition of spec(Λ), there is no requirement on the complexity of the Eβ
sets, only on the union E. Note that α ∈ spec(Λ) requires cof(α) > ω.

Recall a projective algebra is a selfdual pointclass ∆ which is closed under ∃R,∨ (and so also
∀R,∧). For ∆ a projective algebra we have that

o(δ)
.
= sup{|A|W : A ∈∆}
= sup{| � | : ≺ is a ∆ prewellordering }

For ∆ a projective algebra and κ = o(∆), if cof(κ) > ω then there is a non-selfdual
pointclass Γκ of Wadge degree κ, with pwo(Γκ) and ∀RΓκ = Γκ. We call this pointclass the
Steel pointclass at κ.

Lemma 2.5 Let κ = o(∆), where ∆ is a projective algebra with cof(κ) > ω, and let Γκ be the
corresponding Steel pointclass. If cof(κ) ∈ spec(Λ), then Γ̌κ is not closed under intersection
with Λ sets.

Proof. Let E =
⋃
β<cof(κ)Eβ be a Σ1

1-bounded union with E ∈ Λ. Let A be Γκ complete,

and write A =
⋃
α<cof(κ)Aα, an increasing union with each Aα ∈ ∆κ. Let U ⊆ R × R be a

universal Γ̌κ set. Fix a map ρ : cof(κ)→ κ increasing and cofinal. Consider the game where I
plays x, II plays y, and II wins iff

(x ∈ E)⇒ [∃γ > |x| (Uy = Aγ)]

where |x|, for x ∈ E, denotes the least β such that x ∈ Eβ. By Σ1
1-boundedness of the E union,

II has a winning strategy τ for this game. We then have

z ∈ A↔ ∃x [(x ∈ E) ∧ z ∈ Uτ(x)].
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Since Γ̌κ is closed under ∃R, and A /∈ Γ̌κ, we must have that the expression inside the square
brackets is not in Γ̌κ. This expression is the intersection of a Γ̌κ set with E, a Λ set. �

Example 2.6 Let κ = o(∆) where ∆ is a projective algebra and cof(κ) = ω2. Let Γκ be the
Steel pointclass. Then Γ̌κ is not closed under intersections with Π1

2.

Proof. Let Λ = Π1
2. Then ω2 ∈ spec(Π1

2). For example, we can let E be the set of x such
that Tx is wellfounded, where T ⊆ ω × ω1 is the Kunen tree. Then E =

⋃
β<ω2

Eβ, where

Eβ = {x ∈ E : [γ 7→ |Tx| � γ]W 1
1

= β}.

This is a Σ1
1-bounded union, and E ∈ Π1

2 (here W 1
1 is the normal measure on ω1). �

Remark 2.7 Every Π1
2 set is an ω1 intersection of ∆1

1 sets, and the class Γ̌κ of the example
is closed under intersections with ∆1

1 sets (in fact with Σ1
2 sets) by Steel’s theorem. This shows

that having B =
⋂
β<λBβ with λ < cof(κ), and Γ̌κ closed under intersections with a pointclass

containing all the Bβ is not sufficient to guarantee that Γ̌κ is closed under intersections with
B. In contrast, the corresponding statement for unions is true by an easy argument.

Before proceeding any further, we first recall the polarized partition property and the state-
ment of the uniform coding lemma.

Definition 2.8 Let f : δ2
1 → δ2

1 be an everywhere discontinuous function, i.e f(α) > sup{f(β) :
β < α}. We say that F : δ2

1 → δ2
1 is a block function if for every α < δ2

1, for every
γ ∈ [supα′<α f(α′), f(α)) we have F (γ) ∈ [supα′<α f(α′), f(α)). We then say C ⊆ δ2

1 is a
block c.u.b set if for every α < δ2

1 we have C ∩ f(α) is a c.u.b set in f(α). We then say δ2
1 has

the strong polarized partition relation property if for every partition P of the block functions on
δ2
1 into two pieces, there is an homogeneous block c.u.b set H ⊆ δ2

1 such that for every α < δ2
1

and for every block function F : δ2
1 → H, we have an i ∈ {0, 1} such that P(F ) = i.

Theorem 11 (Uniform Coding Lemma for wellfounded relations) Let U be universal
for the class Σ1(Q) where Q is a binary predicate symbol. Let Γ be a any pointclass such that
∆1(Q) ⊆ Γ and ∃RΓ ⊆ Γ. Let � be a Γ wellfounded relation of length o(∆). Then for every
relation R ⊆ R2 such that R = dom(�), there exists ε ∈ R which codes, via U , a Σ1(�α) choice
set Cα ⊆ R2 for Rα ⊆�α ×R uniformly in α < o(∆).

We next attempt generalize example 2.6 to a counterexample to Steel’s conjecture, assuming
AD + V = L(R). We will construct an inaccessible κ ∈ (δ2

1,Θ) such that κ = o(∆κ) for a
projective algebra ∆κ, but such that Γ̌κ ∧ Π2

1 * Γ̌κ. To do this we will need to assume the
existence of a normal measure µ on δ2

1 with a certain property. In the next section we attempt
to remove this extra assumption.

We first give a general result about normal measures on δ2
1. Let C ⊆ Θ be the c.u.b. subset

of κ such that κ = o(∆) for some projective algebra ∆ = ∆κ. C is c.u.b. in both Θ and δ2
1.
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Theorem 12 (AD + V = L(R)) Let µ be a normal measure on δ2
1. If κ

.
= jµ(δ2

1) ∈ C ′, then
κ is a counterexample to Steel’s conjecture. In fact, in this case Γ̌κ ∧Π2

1 * Γ̌κ.

Proof. Let µ be a normal measure µ on δ2
1.

Since δ2
1 has the strong partition property, there is a c.u.b. D ⊆ C∩δ2

1 such that jµ(D) ⊆ C
To see this, consider the partition of pairs of functions (f, g) with f(α) < g(α) < f(α + 1) for
all α < δ2

1, with f, g of the correct type, according to whether ([f ]µ, [g]µ) ∩ C 6= ∅. Using the
semi-normality of µ (every c.u.b. set gets measure one), a simple sliding argument shows that
on the homogeneous side the stated property holds. We use here the fact that jµ(δ2

1) is a limit
point of C. If D0 is homogeneous for the partition and D = (D0)

′, then D is as desired.
Fix a function f : δ2

1 → δ2
1 which is strictly increasing, everywhere discontinuous, and such

that for all α we have that f(α) is an regular limit Suslin cardinal which is a limit point of
D. From Steel’s theorem, the corresponding Steel pointclass Γf(α) is closed under ∧,∨. Let
κ = [f ]µ. So, κ is a limit point of C, and so κ = o(∆κ), with ∆κ a projective algebra. κ is also
regular, which follows from the polarized finite exponent partition property for functions into
the blocks [supβ<αf(β), f(α)) [in fact, the polarized strong partition property holds].

We may further assume that Γf(α) is type-4, that is, Γf(α) is closed under real quantifiers.
By picking f appropriately, we nay also assume that uniformly in α < δ2

1 there is a f(α) length
sequence (Cα

γ )γ<f(α) of sets in ∆f(α) which union to a set Cα which is ∃RΓf(α) = Γf(α)-complete.

[There are several ways to see this. For example, we can fix a Σ2
1-complete set A and write

A =
⋃
α<δ21

Aα with each Aα ∈ ∆2
1. Take f(α) > supβ<α f(β) to be such that f(α) is regular,

for all β < f(α) we have |Aβ|W < f(α), and f(α) is the Wadge degree of a type-4 pointclass.
The sequence Cα

β = Aβ, for β < f(α), will union to a set Cα which is necessarily Γf(α)-complete,
and this union will define a Γf(α) prewellordering on Cα. We are using that Γf(α) is type-4 to
get that Γf(α) is the class of f(α) unions of ∆f(α) sets.]

We show the Steel conjecture fails at κ, in fact Γ̌κ ∧ Π2
1 * Γ̌κ. It suffices to show that

κ ∈ spec(Π2
1). We will define E =

⋃
β<κEβ a Σ1

1-bounded union with E ∈ Π2
1.

E will be the set of codes x for functions fx : δ2
1 → δ2

1 with

fx(α) ∈ [supβ<αf(β), f(α)).

Eβ with be the x in E with [fx]µ = β.
If y ∈ Cα we say y is an α-code, and let |y|α denote the least γ < f(α) such that y ∈ Cα

γ .

Let U(x,≤) be the universal syntactic Σ1
1(≤) set, as in the uniform coding lemma. Let ≤

also denote a prewellordering of length δ2
1 such that all initial segments ≤α=≤� α are in ∆f(α)

(there is no loss of generality in assuming this). We say x is α-good if:

1. There is a y ∈ U(x,≤α) which is an α-code.

2. If y, z ∈ U(x,≤α), then y, z are α-codes and |y|α = |z|α.

We say x is a code if x is an α-code for all α < δ2
1. From the uniform coding lemma, for

every g : δ2
1 → δ2

1 with g(α) < f(α) for all α < δ2
1, there is a code x with fx = g. Also, the set
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E of codes is Π2
1 since it a δ2

1 intersection of ∆2
1 sets (to say x is α-good is Γf(α)). Finally, the

union E =
⋃
β<κEβ, where

Eβ = {x ∈ E : [fx]µ = β}

is easily Σ1
1-bounded. For let S ⊆ E be Σ1

1. Fix α < δ2
1. Then the set B ⊆ Cα defined by

y ∈ B ↔ ∃x [(x ∈ S) ∧ (y ∈ U(x,≤α))]

is in ∆f(α). Since the (Cα
γ )γ<f(α) are ∆f(α)-bounded (this is because Γf(α) was Type-4),

{fx(α) : x ∈ S} is bounded below f(α). �

Remark 2.9 We can give an easier proof of a version of Theorem 12, which has a slightly
bigger pointclass than Π2

1. Namely, let E be the set of x which are good at α for all α < δ2
1.

By good at α we mean that Ux(≤� α,<� α) is a non-empty subset of P (complete Σ2
1 set) and

the reals in this set have the same norm (using a Σ2
1 norm on P ). This gives a Σ1

1 bounded
union of length jµ(κ) whose union is E. However, we can only say that E is a δ2

1 intersection
of sets each of which is in Σ2

1 ∧Π2
1. This shows E ∈ ∀R(Σ2

1 ∧Π2
1). This is enough, though, to

conclude that either jµ(δ2
1) /∈ C ′ or else we have a counteraxample to Steel’s conjecture.

Theorem 12 provides a counterexample to Steel’s conjecture provided there is a normal
measure µ on δ2

1 such that jµ(δ2
1) is closed under the canonical c.u.b. set C (defining the

projective algebras). Since the jµ(δ2
1) are cofinal in Θ by Woodin’s results on δ2

1 being strong
in HOD, this seems reasonable, but we do not have a proof. So we state the following question.

Question 1 Is there a normal measure µ on δ2
1 such that jµ(δ2

1) is a limit point of C?

2.4 Extending the argument

In this section we extend the argument to avoid having to answer Question 1. The argument, at
the moment however, seems to leads to a contradiction. We will use some facts from Woodin’s
proof that δ2

1 is strong to Θ in L(R). In particular, we will use the existence of strongly normal
measures on δ2

1. We refer to [7] for a presentation of these results.
We fix a κ ∈ (δ2

1,Θ) such that κ ∈ C ′ and Γκ is type-4, that is, Γκ is closed under real
quantifiers (so also ∧, ∨). We fix an OD prewellordering � of length κ. We let F : δ2

1 →
HOD∩Vδ21 be the �-like sequence from Woodin’s proof (see [7]). Let µ = µX denote the normal

measure on δ2
1 defined in Woodin’s proof corresponding to the OD set X = (�, κ, δ2

1). We use
the following two properties of µ in the following argument:

1. µ respects the reflection filter corresponding to X. That is, if ϕ(x,X) is an Σ1(x,X)
statement with x ∈ R, then there is a µ measure one set of α < δ2

1 such that ϕ(x, F (α))
holds (these formulas are interpreted in L(R)).

2. µ is strongly normal (see the remark below).
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Let S0 ⊆ δ2
1 be the measure one set of α for which F (α) is a triple (�α, κα, δα) such that

�α is a prewellordering of R of length κα. For α ∈ S0 we let �α denote F (α). Let κα =|�α|,
for α ∈ S0.

Remark 2.10 The only consequence of strong normality we need is that [α 7→ κα]µ = κ.

Lemma 2.11 For µ almost all α, κα is in C and is the Wadge ordinal of a type-4 pointclass
Γα.

Proof. Let ϕ(≤) be the statement

∃α [Lα(R) � ZFN + AD + V = L(R) + ∃β (|�|= β ∧ there is a non-selfdual

pointclass of Wadge degree β which is of type-4)].

This is a Σ1(�) statement about � which holds in L(R) since |�|= κ and Γκ is of type-4.
Thus, there is a µ measure one set of α for which there is an Lγ(R) with |�α|< γ and for which
Lγ(R) � there is a type-4 pointclass of Wadge degree |�α|= κα. This is absolute to L(R), so
the pointclass Γα of Wadge degree κα (with pwo(Γα)) is of type-4 for almost all α. �

Lemma 2.12 There is µ measure one set S ⊆ δ2
1 such that uniformly for α ∈ S there is Γα-

complete set Aα and sets Aαβ ∈∆α = ∆(Γα) with Aα =
⋃
β<κα

Aαβ . Moreover, the prewellorder-
ing on Aα defined by this union is a Γα-prewellordering.

Proof. Fix a real x such that there is an OD(x) set A which is Γκ-complete and there is an
OD(x) sequence of sets {Aα}α<κ such that Aα ∈∆κ and A =

⋃
β<κAβ.

The following is a Σ1(x,X) statement that is true in L(R):

1. ∃γ (Lγ(R) � ZFN + AD + V = L(R) and �∈ Lγ(R)).

2. ∃~s ∃n(~s ∈ γ<ω, n ∈ ω, and ψn(~s, x) defines in Lγ(R) a Γκ-complete set A and a sequence
{Aβ}β<κ of sets in ∆κ with A =

⋃
β<κAβ and the prewellordering defined by this union

is a Γκ-prewellordering.)

Let φ(x,X) denote the preceding statement.
By the properties of µ there is a µ measure one set S such that ∀α ∈ S (φ(x, F (α)). That

gives that for all α ∈ S there are OD(x) sets Aα, {Aαβ}β<κα such that the conclusion of the
theorem holds. It is now clear that we can pick such Aα, {Aαβ}β<κα uniformly in α by, for each
α, picking the least ηα ∈ ON such that Aα, {Aαβ}β<κα are (x, ηα)-definable. �

Fix now a µ measure one set S ⊆ δ2
1 as in lemma 2.12. Fix also a ∆2

1-prewellordering ≤
on a Σ2

1 complete set P . Let U(x,≤, <) be the universal syntactic Σ1(≤, <) binary formula.
For any α < δ2

1, and any x ∈ R, U(x,≤� α,<� α) defines a relation which we also denote
U(x,≤� α,<� α). We use U and the uniform coding lemma to code functions f : S → δ2

1 with
f(α) < κα.

We let E ⊆ R be the set of x such that for all α ∈ S we have:
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1. U(x,≤� α,<� α) ⊆ Aα and U(x,≤� α,<� α) 6= ∅.

2. If y, z ∈ U(x,≤� α,<� α) then |y|α = |z|α, where |y|α denotes the rank of y ∈ Aα in the
prewellordering corresponding to the union Aα =

⋃
β<κα

Aαβ .

For x ∈ E have the corresponding function fx : S → δ2
1 defined by fx(α) = |y|α for y ∈

U(x,≤� α,<� α). By (1) and (2) this is well-defined and fx(α) < κα for all α ∈ S.
For x ∈ E let ρ(x) = [fx]µ. So, ρ(x) < [α 7→ κα]µ = κ by strong normality. Also, by the

uniform coding lemma the map x ∈ E 7→ ρ(x) is onto κ. For β < κ let Eβ = {x ∈ E : ρ(x) ≤ β}.
Thus, E =

⋃
β<κEβ.

Lemma 2.13 E ∈ Π2
1.

Proof. We have that x ∈ E iff ∀α ∈ S (x ∈ Bα), where Bα is the set of x that satisfy
conditions (1) and (2) above at α. For any fixed α, since Aα and the Aαβ are ∆2

1 (in fact in Γα),

and since ≤� α,<� α ∈∆2
1, we see that Bα ∈∆2

1. Since a δ2
1 intersection of ∆2

1 sets is Π2
1, we

have that E ∈ Π2
1. �

Lemma 2.14 The union E =
⋃
β<κEβ is Σ1

1-bounded.

Proof. Let D ⊆ E be Σ1
1. Fix α ∈ S. It suffices to show that sup{fx(α) : x ∈ D} < κα.

We may assume without loss of generality that for all α ∈ S that ≤� α ∈ ∆α. This is because
there is a c.u.b. set of α for which ∀β < α (| ≤� β|W < α), and thus ≤� α is an α union of sets
of Wadge degree < α. For such α, ≤� α will be projective over the pointclass of Wadge degree
α, and hence lie in ∆α (∆α is closed under quantifiers and properly contains the pointclass of
Wadge degree α as f(α) > α). The set T defined by

y ∈ T ↔ ∃x [x ∈ D ∧ y ∈ U(x,≤� α,<� α)]

is therefore also in ∆α. Also, T ⊆ Aα since D ⊆ E. Since the prewellordering corresponding
to the union Aα =

⋃
β<f(α)A

α
β is a Γα-prewellordering, and since Γα is closed under ∧,∨ (as

Γα is of type-4), the usual boundedness argument shows that sup{|y|α : y ∈ T} < κα. Thus,
sup{fx(α) : x ∈ D} < κα. �

From lemmas 2.13, 2.14 we have that κ ∈ spec(Π2
1). From lemma 2.5 it follows that

Γ̌κ ∧Π2
1 * Γ̌κ. This, however, contradicts the fact that Γκ is type-4, which implies that Γ̌κ is

closed under ∧,∨.

2.5 Positive results on closure properties of the Steel pointclass

Below we show several cases in which we have closure properties of the Steel pointclass.

Theorem 13 Assume ZF+DC+AD. Let κ be a cardinal such that o(∆κ) = κ where ∆κ =
Γκ ∩ Γ̌κ and ∆κ is closed under ∃R, ∧ and ∨. Assume Sep(Γ̌κ). Let λ < cof(κ) be a cardinal
such that o(∆λ) = λ and ∆λ is closed under ∃R, ∧ and ∨, where ∆λ = Γλ ∩ Γ̌λ. Assume
Sep(Γ̌λ). Suppose that Γ̌κ ∩∆λ ⊆ Γ̌κ. Then
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1. Γ̌κ ∩ Γλ ⊆ Γ̌κ and more generally if Σ is the pointclass of λ length unions of ∆λ sets,
then Γ̌κ ∩Σ ⊆ Γ̌κ.

2. Γλ is not closed under real quantifiers and Γ̌κ ∩ Γ̌λ ⊆ Γ̌κ.

3. Suppose cof(λ) = ω and let Λ be the pointclass of all countable intersections of ∆λ sets,
i.e Λ =

⋂
ω ∆λ then Γ̌κ ∩Λ ⊆ Γ̌κ.

4. Suppose cof(λ) = ω1 and let Λ be the pointclass of all length ω1 intersections ∆λ sets,
i.e Λ =

⋂
α<ω1

∆λ then Γ̌κ ∩ Λ ⊆ Γ̌κ. In general if λ < κ is any cardinal cardinal, then

Γ̌κ ∩Λ ⊆ Γ̌κ where Λ is the pointclass of all intersections of ∆λ sets of length cof(λ).

Proof.
We begin by showing Γ̌κ∩Γλ ⊆ Γ̌κ. Let then A ∈ Γλ and B ∈ Γ̌κ. Let A =

⋃
α<λAα where

for every α < λ, Aα ∈∆λ.
Let σ be a winning strategy for player I in the Wadge game GA∩B,B, that is:

x /∈ B → σ(x) ∈ A ∩B
x ∈ B → σ(x) /∈ A ∩B

As in Steel [10], we define a sequence of winning strategies 〈σn : n ∈ ω〉 for I in the game
GA∩B,B. Suppose σk is defined for all k < n. We also let τ be the copying strategy for II. For
any x ∈ R we let

τn =

{
σn if x(n) = 0
τ if x(n) = 1

.... τ3 τ2 τ1 τ0

.... x3(0) x2(0) x1(0) x0(0)

.... .... x2(1) x1(1) x0(1)

.... .... .... x1(2) x0(2)

.... .... .... .... x0(3)

.... .... .... .... ....

.... x3 x2 x1 x0

Table 1: Diagram of Martin-Monk games

At stage n we have a pair of ∆κ inseparable sets C and D such that D ∈ Γ̌κ. That is we
have C ⊆ Bc and D ⊆ B with D ∈ Γ̌κ and B as above. Let Eα = {x : σ(x) ∈ Aα}. Then we
have Eα ∈ ∆λ. Now by assumption we have that D ∩ Eα = Dα ∈ Γ̌κ. We show the following
claim:
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Claim 2 For some α < λ, C ∩ Eα is ∆κ-inseparable from D ∩ Eα.

Proof.
Notice that since λ < cof(κ) and by the Coding lemma applied to Γ̌κ, for some α < λ,

Cα = C∩Eα must be ∆κ-inseparable from D (otherwise C and D would not be ∆κ inseparable,
since C =

⋃
α<λCα. This then implies that Cα is ∆κ inseparable from Dα = D ∩ Eα since if

not then let F ∈ ∆κ separate Cα from Dα, that is we have Cα ⊆ F and F ∩ Dα = ∅. This
would then imply that F ∩ Eα separates Cα from D.

�

Next, consider the game in which player I plays x and player II plays y and player I wins iff

x /∈ B → y ∈ Cα
x ∈ B → y ∈ Dα

Notice that player II cannot have a winning strategy τ in this game since if τ is a winning
strategy then we have

y ∈ Cα → τ(y) ∈ B

and
y ∈ Dα → τ(y) /∈ B.

But this then implies that Cα ⊆ τ−1(B) and τ−1(B) ∩ Dα = ∅. But τ−1(B), Dα ∈ Γ̌κ so by
Sep(Γ̌κ), there is a ∆κ set which separates Cα from Dα, contradiction!

So fix a winning strategy ρ for player I in the separation game and let σn = σ ◦ ρ. Notice
then that

x /∈ B → ρ(x) ∈ Cα ⊆ Eα,

so we have that σ ◦ ρ(x) ⊆ Aα ⊆ A. Also

x ∈ B → ρ(x) ∈ Dα ⊆ Eα

so we have that
σ ◦ ρ(x) ∈ Aα ⊆ A.

Therefore the strategies σn always give a play which is in A. We also need to see that σn flips
membership in B for every n ∈ ω. Notice that

x /∈ B → ρ(x) ∈ Cα ⊆ Bc

so σ ◦ ρ(x) ∈ B. Also x ∈ B → ρ(x) ∈ Dα and σ ◦ ρ(x) ∈ A. Therefore σ ◦ ρ(x) /∈ B. So we
have

x /∈ B → σ ◦ ρ(x) ∈ A ∩B

and
x ∈ B → σ ◦ ρ(x) ∈ A ∩Bc.
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This now allows us to derive a contradiction as in Martin-Monk proof that ≤W is a prewellorder.
Namely, let I = {x ∈ R : ∀∞nx(n) = 0} and let M = {x ∈ I : x0 ∈ B}. M has the Baire
property so there is a cone Ns determined by some s ∈ ω<ω on which M is meager or comeager.
Let i /∈ dom(s) and let

T (x)(k) =

{
x(k) if i 6= k
1− x(k) if i = k

T is a homeomorphism and we have T”Ns = Ns. Recall that xk is the real obtained after
filling the diagram of Martin-Monk game. Then if x ∈ I then T (x)k = xk for i < k and
T (x)k ∈ B if and only if xk /∈ B if k ≤ i. So we have

T”(M ∩ I ∩Ns) = M c ∩ I ∩Ns.

But since I was comeager, this is a contradiction. This finishes the proof in the case where
Γ̌κ ∩ Γλ ⊆ Γ̌κ.

We now proceed to show the second item in the theorem. So let A =
⋂
α<λAα with Aα ∈∆λ,

so that A ∈ Γ̌λ. That is A is a Σ1
1 bounded intersection of sets in ∆λ, that is the collection

{Acα}α<λ is a Σ1
1 bounded union of sets in ∆λ. Let B ∈ Γ̌κ. Next let ϕ be a prewellordering on

a set F ⊆ R of length λ such that

1. All initial segments of ϕ are in ∆λ.

2. F ∈ Γλ,that is F is a Σ1
1 bounded union of ∆λ sets.

This is always possible since if Γλ is a Steel pointclass closed under ∀R we can define ϕ ∈ Γλ.
We will denote F by Fϕ. Fϕ is of course in Γλ. We will also let {Fα}α<λ be a λ sequence of
∆λ sets such that Fϕ =

⋃
α<λ Fα is a Σ1

1-bounded union of ∆λ sets. For every α < λ, we then
consider the game where player I plays a real x and player II plays a real y and player II wins
the run of the game iff

x /∈ A→ ∃α∃β(y ∈ Fα ∧ ϕ(y) = β ∧ x /∈ Aϕ(y)).

Then II has a winning strategy ρ for this game by Σ1
1-boundedness 4. Let σ be as in the previous

case. We want to define a sequence of strategies 〈σn : n ∈ ω〉. At stage n we have σn and a
pair of ∆κ-inseparable sets Cn and Dn, where Cn ⊆ Bc and Dn ⊆ B. For α < λ, let

Eα = {x : ρ ◦ σ(x) /∈ Fα ∨ (|ρ ◦ σ(x)| = α ∧ σ(x) ∈ Aα)}.

Notice that we have Fα ∈ ∆κ. We also let as above Cα = C ∩ Eα and Dα = D ∩ Eα. Then
again by the coding lemma (and since λ < cof(κ)). we must have that for some α < λ, Cα
must be ∆κ-inseparable from D since if not D and C would not be ∆κ-inseparable. We must
then have that Cα must be ∆κ-inseparable from Dα. Notice also that

Dα = D ∩ {x : ρ ◦ σ(x) /∈ Fα} ∪ (D ∩ {x : |ρ ◦ σ(x)| = α ∧ σ(x) ∈ Aα}).
4recall that Ac is a Σ1

1 bounded union of ∆λ sets
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Then since the set {x : |ρ ◦ σ(x)| = α ∧ σ(x) ∈ Aα} and the set Fα are both in ∆λ and since
D ∈ Γ̌κ then Dα must be in Γ̌κ. Now as above we consider the separation game in which player
I plays a real x and player II plays a real y and player I wins iff

x /∈ B → y ∈ Cα
x ∈ B → y ∈ Dα

Player II cannot have a winning strategy τ in this game since then if τ is winning for II
then we have

y ∈ Cα → τ(y) ∈ B

and
y ∈ Dα → τ(y) /∈ B.

This would then imply that Cα ⊆ τ−1(B) and τ−1(B) ∩ Dα = ∅. But since both τ−1(B) and
Dα are in Γ̌κ, then by Sep(Γ̌κ), there is a ∆κ set which separates Cα from Dα, contradiction!

So we fix a winning strategy ε for player I and we let σn = σ ◦ ε. Notice that ε is winning
for I for every α < λ. Suppose first that ρ ◦ σ ◦ ε(x) ∈ Fα. Then we have

x /∈ B → ε(x) ∈ Cα ⊆ Eα

and so we have σ ◦ ε(x) ∈ Aα for every α < λ. Also since

x ∈ B → ε(x) ∈ Dα ⊆ Eα

so we have σ ◦ ε(x) ∈ Aα for every α < λ. In both cases, if ρ ◦ σ ◦ ε(x) /∈ Fα, for every α < λ,
then σ ◦ ε(x) ∈ A, since ρ is winning for player II in the above game involving Fα.

Now as above this gives a contradiction by the Martin-Monk argument.
We now move to show the third item of the theorem, that is if cof(λ) = ω and let Λ be the

pointclass of all countable intersections of ∆λ sets, i.e Λ =
⋂
ω ∆λ, then Γ̌κ ∩Λ ⊆ Γ̌κ. Notice

that Γ̌λ ⊆
⋂
ω ∆λ. We let A ∈

⋂
ω ∆λ and B ∈ Γ̌κ. We need to see that A ∩ B ∈ Γ̌κ. Let

A =
⋂
n<ω An, where for every n < ω, An ∈ ∆λ. As above suppose not. Then this means that

player I wins the following Wadge game:

x /∈ B → σ(x) ∈ A ∩B
x ∈ B → σ(x) /∈ A ∩B

σ is a winning strategy for player I in the Wadge game GA∩B,B. We wish to define strategies
σn as above such that we can fill the diagram of Martin-Monk games and derive a contradiction
using the usual Martin-Monk argument. We then define the strategies σn inductively. Suppose
σn has been defined at stage n. We show how to define σn+1 at stage n+ 1. Define the set Xi

as follows:
Xi = {x : σ(x) ∈ A ∧ ∃i(σ ◦ σn ◦ ... ◦ σi(x) /∈ Ai)}.
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Notice that Xi ∈∆κ. Then there is an i such that Bc∩Xi is ∆κ inseparable from B∩Ai, since
Bc ∩Xi is ∆κ inseparable from B. In addition we have

⋂
i<ω B ∩Ai = B ∩A. This means that

we can run the separation game argument: player I wins the following game

x /∈ B → y ∈ Bc ∩Xi

x ∈ B → y ∈ B ∩ Ai

The Martin-Monk contradiction can be carried out as above now.
�

Finally we show the fourth item of the theorem. Notice that our assumption automatically
implies that κ /∈ spec(Λ). Let A ∈ Λ be such that A =

⋂
α<ω1

Aα where Aα ∈ ∆λ for every

α < ω1. Let B ∈ Γ̌κ. Suppose again that A∩B /∈ Γ̌κ. Therefore we can fix a winning strategy σ
for player I in the Wadge game GB,A∩B. Again our goal will be to define a sequence of winning
strategies 〈σn : n <∞〉 for which we can carry out the Martin-Monk contradiction. Recall that
the Wadge game GB,A∩B is given by:

x /∈ B → σ(x) ∈ A ∩B
x ∈ B → σ(x) /∈ A ∩B

Notice that σ flips membership in B if σ(x) ∈ A. For every α < ω1 there are strategies for
player I, σ0

α, σ
1
α, σ

2
α, ... such that the following Martin-Monk diagram of games is filled up, that

is for any z ∈ 2ω the strategies σnα are picked. Notice that we cannot pick the strategies σnα in
function of α since this would give an ω1 sequence of distinct reals, which is impossible under
AD.

.... τ τ τ τ

.... σ3
α σ2

α σ1
α σ0

α

.... x3(0) x2(0) x1(0) x0(0)

.... .... x2(1) x1(1) x0(1)

.... .... .... x1(2) x0(2)

.... .... .... .... x0(3)

.... .... .... .... ....

.... x3 x2 x1 x0

Table 2: Diagram of Martin-Monk games in the cof(ω1) case

The diagram is such that for z ∈ 2ω, the digits of z determine which strategy is picked: either
the copying strategy τ or σnα for a given n. The strategies σnα have the following properties. For
every n,

1. If xn+1 /∈ B, then σj,nα (xn+1) =def σ
j
α ◦ ... ◦ σnα(xn+1) ∈ A, ∀j ≤ n,
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2. If xn+1 ∈ B then σj,nα (xn+1) ∈ Aα, ∀j ≤ n and

3. If xn+1 /∈ B then σnα(xn+1) ∈ B and if xn+1 ∈ B and σnα(xn+1) ∈ A then we have
σnα(xn+1) /∈ B.

We will refer below to these three properties as (∗). We now show the following claim:

Claim 3 For every n < ω, the strategies σnα exist, for any α < ω1.

Proof.
Let α < ω1 be arbitrary. We define the strategies σnα inductively and start with the case

n = 0. First notice that if x /∈ B then σ(x) ∈ B ∩ A ⊆ B ∩ Aα and B ∩ Aα ∈ Γ̌κ. Now B
and Bc cannot be separated by a ∆κ set, therefore Bc cannot be separated by a ∆κ set from
B ∩ {x : σ(x) ∈ Aα}, which is in Γ̌κ. Hence, there is a strategy ρ for player I in the separation
game such that if x /∈ B then ρ(x) /∈ B and if x ∈ B then ρ(x) ∈ B ∩ σ−1”Aα. Then let
σ0
α = σ ◦ ρ. σ0

α has the above three properties (∗) and flips membership in B.
We now show the general successor case. Assume that σ0

α, ..., σ
n−1
α are defined. We show

how to define σnα. As in Steel [10], this is done in 2n steps, depending on whether z ∈ 2ω chooses
τ or σnα at its digits. Let

Xn+1 = {xn+1 : σ(xn+1) ∈ A ∧ ∃i ≤ n(xi /∈ A)}.

Notice that B ∩Xn+1 = ∅. Then Bc \Xn+1 and B are ∆κ inseparable. This then implies that
Bc \Xn+1 and

B ∩ {xn+1 : ∀i ≤ nσiα ◦ σi+1
α ◦ ... ◦ σn−1α ◦ σ(xn+1) ∈ Aα}

are ∆κ inseparable. Then by the separation game we have a wining strategy ρ for player I such
that if xn+1 /∈ B then ρ(xn+1) ∈ Bc \Xn+1 and if x ∈ B then we have

ρ(xn+1) ∈ B ∩ {xn+1 : σiα ◦ ... ◦ σn−1α ◦ σ(xn+1) ∈ Aα for all i ≤ n}.

Then let σnα = σ ◦ ρ.
�

We must next show how the strategies σnα are explicitly defined for and n < ω and any
α < ω1. By the Coding lemma and uniformization we have a function f : x → σnx on the set
WO such that for x ∈WO, the strategies {σnx} are as in {σnα} for α = |x|. We will use the theory
of generic codes of Kechris and Woodin. Fix then a generic coding function f ′ : ωω1 → R. Recall
that αω equipped with the product of the discrete topology carries all notions of category and
by AD we have have additivity of category (i.e an arbitrary union of meager sets is meager).
The function f ′ : αω → R is such that

1. ∀α < ω1,∀~α ∈ αω, f ′(α_~α) ∈WO and

2. ∀∗~α ∈ αω|f ′(α_~α)| = x, where |x| = α.
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We now define a branch b ∈ ωω1 which will be used to witness that we have strategies, via
the functions f and f ′ above, for player I and which we denote by σ̃0, σ̃1, ..., σ̃n, ..., from which
we obtain the usual Martin-Monk contradiction.

We will define b = limnbn, and bn ∈ ω<ω1 . We do this by induction so suppose then that
bn−1 is defined. We show how to define bn. In addition, we define a sequence of ordinals θn
as we define the bn for all n. The ordinals θn serve as witnesses for ordinal moves given by
strategies employed in Becker-Kechris games, see [2] where such games first appeared. We also
let b0 ⊆ b1 ⊆ ... ⊆ bn ⊆ ... and b =

⋃
n bn. First extend bn−1 to b′n such that there is a sequence

tn ⊆ sn, where sn ∈ 2<ω and tn is the nth-sequence in an enumeration of sequence in 2<ω, such
that

1. ∀∗
W 1

1
α < ω1∀∗b′n~α ∈ α

ω, σ0
f(α_~α) � n, ..., σ

n
f(α_~α) � n are fixed, and

2. σif(α_~α) � n means we use z ∈ 2ω to decide whether we use τ or σif(α_~α) to fill the
Martin-Monk diagram

This fixes the values of σ̃0 � n, ..., σ̃n � n. Next fix a relation

R(x, y)↔ x ∈WO ∧ y ∈ A|x|.

Let ~ψn be a scale on R. We now define θn(z) for all z ∈ Ntn . By additivity of category, we will
obtain a sequence tn ⊆ sn such that

∀∗snzbn(z) = bn ∧ θn(z) = θn.

So fix z ∈ Nsn and define θn(z) as follows. Consider the game Gz
α,~α as in Becker and Kechris:

player I plays a real x1 ∈ 2ω and a sequence of ordinals below α, ~αn ∈ αω and player II answers
by playing:

1. a real x2 ∈ 2ω,

2. a sequence of ordinals ~βn ∈ αω,

3. finitely many reals y0, ..., yn,

4. finitely many sequences of ordinals ~ξ0, ..., ~ξn < sup{~ψn},

5. finitely many reals w0, ..., wn,

6. finitely many sequences of ordinals ~γ0, ..., ~γn each ordinals of which is below ω1 and

7. finitely many sequences of integers ~η0, ..., ~ηn.

We have the following diagram for the game Gz
α,~α:

In addition player II must play so that yi � n = σif(α_~α)(z) � n. Letting TWO be the tree on
ω × ω1 projecting to WO, the payoff is defined as follows: player II wins provided
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x1(0) x1(1) x1(2) x1(3) ... ... x1 ∈ 2ω

Player I
α0 α1 α2 α3 ... ... ~α ∈ αω
x2(0) x2(1) x2(2) x2(3) ... ... x2 ∈ 2ω

β0 β1 β2 β3 ... ... ~β ∈ αω
y0(0) y0(1) y0(2) y0(3) ... ... y0 ∈ R

... ... ... ... ... ... ...
yn(0) yn(1) yn(2) yn(3) ... ... yn ∈ R
ξ00 ξ01 ξ02 ξ03 ... ... ~ξ0 < sup{ψ0}
... ... ... ... ... ... ...

ξn0 ξn1 ξn2 ξn3 ... ... ~ξn < sup{ψn}
Player II w0(0) w0(1) w0(2) w0(3) ... ... w0 ∈ R

... ... ... ... ... ... ...
wn(0) wn(1) wn(2) wn(3) ... ... wn ∈ R
γ00 γ01 γ02 γ03 ... ... ~γ0 ∈ ωω1
... ... ... ... ... ... ...
γn0 γn1 γn2 γn3 ... ... ~γn ∈ ωω1
η00 η01 η02 η03 ... ... ~η0 ∈ ω<ω

Only fin. many moves here

{
... ... ... ... ... ... ...

ηn0 ηn1 ηn2 ηn3 ... ... ~ηn ∈ ω<ω

Table 3: The closed game Gz
α,~α

(x1 � n, α_~α � n) ∈ Two → ((x2 � n, α_~β � n) ∈ Two ∧ (x1 � n, x2 � n,w1 � n, ..., wn � n, η0 �
n, ..., ηn � n, γ0, ..., γn) ∈ S),

where S is a tree on ω6 witnessing that

(x1 � n, |w1|, ..., |wn|) ∈ Two � |x2| and (x2, yi, ξ
i) ∈ T~ψ,

where T~ψ is the tree from the scale ~ψ. The relation (x1 � n, |w1|, ..., |wn|) ∈ Two � |x2| is Σ1
1 in

the codes for w1, ..., wn, x1, x2. This is closed game for II for if the run of the game is infinite
then II wins. For each z ∈ Nsn and for each α < ω1 and each ~α ∈ αω, II has a canonical winning
strategy in Gz

α,~α. We call this canonical wining strategy τ zα,~α. We next proceed to define

θn(z) = 〈θπ0n (z), ..., θπkn (z)〉

and bn extending b′n to satisfy the following. We first extend successively b′n to bπ0n , b
π1
n , ..., b

πn
n

to obtain bπ0n ⊆ bπ1n ⊆ ... ⊆ bπnn . We will then let bn = bπnn , so that bn does not depend on which
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permutation we consider. This is because we must consider which ~α player I plays. Let π = πi
be a possible permutations of n− 1. Let

bπn = [(α0, ..., αn−1)→ bπn(α0, ..., αn−1)]Wn−1
1

.

This defines bn if we define bπn(α0, ..., αn−1). Now we define θπn(z)(α0, ..., αn−1, α) and bπn(α0, ..., αn−1)
by the following equation:

∀∗Wn
1

(α0, ..., αn−1, α)∀∗bπn(α0,...,αn−1)
~α ∈ αωτ z,πα,~α = τ zα,~α(α0, ..., αn−1, α) = θπn(z)(α0, ..., αn−1, α),

where x1 � n ∼= π and τ z,πα,~α is restricted to sequences ~α order-isomorphic to the permutation π.
Notice that on a measure one set the strategies σ̃0, ..., σ̃n are defined.

We then have a comeager set G ⊆ 2ω, which is the intersection of the comeager sets Nsn

defined above, where the sn’s are dense in 2<ω. By countable additivity of the measures W n
1

we can fix the sn and by additivity of category, a comeager set for each sn.
We now show this next claim:

Claim 4 For any z ∈ G if we fill the diagram using the strategies σ̃n if z(n) = 1 and τ if
z(n) = 0 then the resulting y0, y1, ..., yn, ... are in A.

Proof.
We show that yi ∈ Aα0 for all α0 and for all i. Fix a measure one sets An with respect to

W n
1 , so that we have

∀∗Wn
1

(α0, ..., αn−1, α)∀∗bn(α0,...,αn−1)
~α ∈ αωτ z,πα,~α = τ zα,~α(α0, ..., αn−1, α) = θπn(z)(α0, ..., αn−1, α),

for all (α0, ..., αn−1, α) ∈ An. Let Cn ⊆ ω1 be c.u.b sets generating the An and let C =
⋂
nCn.

Let α′ > α0 be a closure point of C. Let x1 ∈WO such that |x1| = α′. Let (α0, α1, ...) ∈ Cω be
such that (x1, α0, α1, ...) ∈ TWO by homogeneity of TWO, where the homogeneity measures are
really just the W π

1 which are the natural measures on n-tuples ~α which are order-isomorphic
to π. This then defines the sequence b0 = b(α0), b1 = b(α0, α1),... . Let πn ∼= x1 � n. From the
equation we have, we can fix π0, π1, ... such that

∀∗bn(α0,...,αn−1)
~α ∈ αωθπnn (z)(α0, ..., αn, α) = τ zα,~α(α0, ..., αn−1, α),

a run of Gz
α,~α in which II has not yet lost. This then shows that II wins the run of Gz

α,~α where
player I plays x1 and (α0, α1, ...) as above. In this run of Gz

α,~α the reals y0, y1, ... produced are
equal to σ̃0(z), σ̃1(z), .... So we have σ̃n(z) ∈ Aα for all n.

�

Finally the following claim concludes the proof.

Claim 5 ∀n, σ̃n flips membership in B in that if x /∈ B then σ̃n(x) ∈ B and if x ∈ B and
σ̃n(x) ∈ A then σ̃n(x) /∈ B.
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Proof.
We just have to modify the above game so that player I has to produce ordinals δ0, δ1, ...

which witness (σ̃n � n,~δ � n) are in the tree witnessing the properties (∗). Therefore the σ̃n have
the above three properties. So for z ∈ G, the σ̃n then give a contradiction in the Martin-Monk
argument.

�

We next outline how to extend to the previous argument to work for any λ < κ with λ a
regular cardinal. The set up is basically the same except we need to modify the definition of
the generic coding function f . We then start out by fixing a regular cardinal λ and assume
that we are within scales. We fix a scale ~ϕ on a universal Γλ set W . Again for every α < λ,
one can show that the strategies σnα exists. We may pick a λ′ > λ with λ′ < κ such that the
scale ~ϕ appears. Notice that the scale ~ϕ may be a lot more complicated than Γλ′ . We also let
TW be the tree from the scale and assume for notational simplicity that it is a tree on 2× λ′.

Once the strategies σnα are shown to exist for every α < λ then by the Coding lemma and
by uniformization we have a function f : W → {σn|x|} such that the strategies {σn|x|} are as

expected. Next we then define the generic coding function f : (λ′)ω → R. The only difference
is that now we need to take the supercompactness measures on ω1 into account since these
appear in the general definition of the generic coding function. Notice that f has the following
two properties:

1. ∀α < λ∀~α ∈ αωf(α, ~α) ∈ W

2. ∀α < λ∀∗νS ∈ Pω1(λ
′)∀~α ∈ Sω|f(α, ~α)| = α, where f(α, ~α) = x and |x| = α.

The main points are the following. First we fix homogeneity measures 〈µu : u ∈ 2<ω〉 for the
tree TW . As above we must define a branch bn and the ordinals θun(α0, ..., αn) which correspond
to canonical strategies in the Becker-Kechris game. We then fix a neighborhood determined
by tn (recall these correspond to z ∈ 2ω which determines which strategies to chose to fill up
the Martin-Monk diagram) We then define for sequences u ∈ 2<ω such that lh(u) = n the
product measure µn =

∏
{u:lh(u)=n} µu. We do this in order to handle all possible sequences u of

a specific length in our quantifiers computations. Notice that if u0 ⊆ u1 then by homogeneity
the measure µu1 naturally projects to µu0 . However if we have two sequence u0 and u1 such
that u0 * u1 and u1 * u0 then we must go to a more general measure which projects to both
µu0 and µu1 in order to define the ordinal, θu. Notice that the product measure µn projects to
each µui for i ≤ k, some k < ω and need not be normal.

We define θun as follows:

∀∗tnz∀u ∈ 2n∀∗µn(α0, ..., αn−1)∀∗νS ∈ Pω1(λ
′)∀∗bn(α0,...,αn−1)

~α ∈ Sω[θun(πu(α0, ..., αn−1) = τ zα,~α(πu(α0, ..., αn−1)]

and similarly for the definition of bun, where πu is the projection map from the product measure
µn to the homogeneity measure µu. When extending bn−1 to bn we must use normality of the
supercompactness measure ν on Pω1(λ

′) to stabilize the extension of bn−1. The rest of the proof
involving the Becker-Kechris game with the appropriate modifications is now as above.

To conclude this section, we show the following lemma of independent interest:
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Lemma 2.15 Let κ be a regular cardinal, then Γκ is closed under < κ intersections.

Proof.
Suppose not. Then we have that Γ̌κ is not closed under < κ unions. So let let δ < κ be

such that {Aα}α<δ be in Γ̌κ and A =
⋃
α<δ Aα /∈ Γ̌κ. Then by Wadge’s lemma we have that

A =
⋃
α<δ Aα ∈ Γκ. By Sep(Γ̌κ), for every α < δ, there is a ∆κ set which separates Aα from Ac.

Since κ is a regular cardinal and since δ < κ then there is a θ < κ such that for each ∆κ sets
separating Aα from A (call them Cα), we have that |Cα|W ≤ θ. Next let Γ0 be a pointclass such
that θ < o(Γ) and ∃RΓ0 ⊆ Γ0. Then by the coding lemma we have a Γ0 relation R such that
R is the set of codes of Γ0 sets which separate Aα from Ac. But then A ∈ Γ0. Contradiction!

�

In the next section we analyze projective-like hierarchies by means of the ordinal associated
to the base of the projective-like hierarchy, o(∆).

3 Characterization of type IV Projective-Like Hierar-

chies by the Associated Ordinals

3.1 Summary

Before we move on, we discuss the situation on the projective-like hierarchies of type II and
III which arises from the above results. We will then introduce a conjecture pertaining to the
characterization of type IV projective-like hierarchies in terms of the associated ordinal and we
will give a proof to the conjecture.

First we briefly recall the situation at the level of type I projective-like hierarchies. Let Λ
be a projective algebra. Let Γ1,Γ2,Γ3... be the projective like hierarchy generated by Λ. Let
α be the ordinal associated with Λ, that is

α = o(Λ) = sup{|A|W : A ∈ Λ}.

Kechris, Solovay and Steel conjectured in [6] that α alone determines which projective-like
hierarchy arises. If cof(α) = ω then we are in the situation of a projective-like hierarchy of
type I. We briefly recall the set up. Let {An} be sets such that for every n < ω, we have
|An|W = αn < α. Assume that |An|W < |An+1|W . We then let A = ⊕An be the join of the
sets An. Then at A we have a selfdual degree, that is A ≡W Ac. Let Σ0 =

⋃
ω Λ be the

pointclass of sets which are countable unions of sets in Λ. Then A ∈ Σ0 and Σ0 is closed under
countable unions by definition. Σ0 is closed under ∃R, since if A(x)↔ ∃yB(x, y) with B ∈ Σ0

and B =
⋃
ω Bn with Bn ∈ Λ, then we have

A(x)↔ ∃yB(x, y)↔ ∃y∃nBn(x, y)↔ ∃n∃yBn(x, y),

and this last set is in Σ0 by definition. In addition Σ0 is nonselfdual pointclass. To see this,
assuming all An as above are nonselfdual degrees, define universal sets Un for the intermediate
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pointclasses {B : B ≤W An}. If we let

U(x, y)↔ ∃nUn((x)n, y)

then U is universal for Σ0. Also Σ0 cannot be closed under countable intersections since if it
were then it would contain Π0 = Σ̌0 and therefore would not be nonselfdual. Then a type I
projective-like hierarchy is generated in the usual way starting from Σ0. Notice that we have
pwo(Σ0) since we can define the natural norm ϕ on A =

⋃
nAn, for An ∈ Λ by ϕ(x) = the

least n such that x ∈ An. Then ≤ϕ and <ϕ are both countable unions of sets in Λ.
Next if ω < cof(α) and α is singular then Γ1,Γ2,Γ3, ... is a type II projective-like hierarchy.

If not then Λ = Γ1 ∩ Γ̌1 and we are in a type III projective-like hierarchy, so by results of [6],
we have pwo(Γ1). Since Γ1 is closed under ∀R, letting

α = sup{ξ : ξ is the length of a ∆1 prewellordering}

and since Γ1 is closed under ∧,∨, in this case by [9] we must have α is regular, contradiction.
Notice that this can be seen directly using the above theorem of Steel which shows that the
singularity of α implies the non-closure of Γ under ∨. Then by the results of the second
section, it is true that whenever α is regular and α /∈ Spc(Λ), then Λ generates a projective-
like hierarchy of type III or IV. So there are no projective-like hierarchies of type II for which
α is regular: if β = cof(α) < α, then the Steel pointclass in within a type II projective-like
hierarchy and if α is regular then the Steel pointclass is at least within a type III projective-like
hierarchy, whenever α /∈ Spc(Λ). If α ∈ Spc(Λ), then we are in a special subcase of the type
III projective-like hierarchy, which we call type II+. In this case, α is still a regular cardinal,
however α ∈ Spc(Λ) which implies non closure of the Steel pointclass under disjunction. In the
type IV case we speak of an inductive-like hierarchy instead of a projective-like hierarchy. We
summarize the situation:

1. If cof(α) = ω, then we start a type I projective-like hierarchy,

2. If cof(α) > ω and α is singular, then we start a type II projective-like hierarchy,

3. If α is regular and α ∈ Spc(Λ) then we start a type II+ projective-like hierarchy,

4. If α is regular and α /∈ Spc(Λ) then we start a type III projective-like hierarchy.

3.2 Characterizing the type IV case

The last item to study is the type IV projective-like hierarchies. We then introduce a conjecture
below. To introduce the conjecture which pertains to a characterization of type IV projective-
like hierarchies in terms of the associated ordinal, we recall some definitions from [4]. For any
ordinal α, let

Bα = {x : ∃γ < α, x ⊆ Lγ}.
Notice that Lα ⊆ Bα and Bα is a transitive set. The set of ∆0 formulas is the closure un-
der boolean combinations and bounded quantification of atomic formulas. A formula in the
language of set theory is Π2 if it is of the form ∀y∃xϕ where ϕ ∈ ∆0.
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Definition 3.1 A cardinal α is bΠ1
2-indescribable if for every X ⊆ Lα and for every Π2 formula

ϕ of the language of set theory with parameters from Bα we have

(Bα,∈, X) � ϕ→ ∃β < α s.t (Bβ,∈, X ∩ Lβ) � ϕ

Given the above picture of the Wadge hierarchy, we then have the following conjecture as
in [6]:

Conjecture 2 Let Γ be any pointclass closed under ∀R and suppose pwo(Γ). Suppose ∃R∆ ⊆∆
and o(∆) = κ is bΠ1

2-indescribable and Mahlo. Then Γ is closed under ∃R.

Using the above notion of bΠ1
2-indescribability, Kechris has shown that if κ is a Suslin

cardinal such that ω < cof(κ), then S(κ) is closed under ∀R if and only if κ is bΠ1
2-indescribable,

where S(κ) is the pointclass of all κ-Suslin sets. It is standard that S(κ) is closed under ∃R (see
[9]). Therefore the conjecture is true if we assume that Λ ⊆ IND, where IND is the boldface
pointclass of the inductive sets and where Λ generates Γ, since by a result of Kechris every set
in IND is κ-Suslin for some κ < κR. Recall that an interval of ordinals [α, β] is a Σ1-gap if and
only if

1. Lα(R) ≺R1 Lβ(R)

2. ∀ξ < α(Lξ(R) ⊀R1 Lα(R))

3. ∀γ > β(Lβ(R) ⊀R1 Lγ(R))

The scale property is depends on whether we are in a Σ1-gap. Basically, new scales appear
when new Σ1 facts about the reals are verified in L(R). Kechris has shown that once one is past
the pointclass of inductive sets IND then the scale property no longer holds in a projective-like
hierarchy of type IV. For example, consider Π1 = ∀R(IND ∨ ˇIND). Then Π1 does not have
the scale property and no Πn or Σn can have the scale property. This is a gap of length ω.
Past this gap the scale property resumes, since Moschovakis has shown that the pointclass Σω,
the least pointclass closed under ∃R and containing

⋃
n Σn, has the scale property. But then,

later on, longer and longer gaps occur. We feel that there are characterizations of the lengths
of the Σ1 gaps in terms of the associated ordinal of the pointclass which closes a gap, but we
do not know how to precisely show this.

The above conjecture is true below the first nontrivial gap in scales. Past the first Σ1 gap
in scales, the conjecture remained unsolved. We show the conjecture below. In the proof we
use the notion of ∞-Borel set which we first define:

Definition 3.2 (∞-Borel set) Let A ⊆ R. Then A is ∞-Borel if and only if there is a set
S ⊆ γ, for some γ ∈ ORD and a formula ϕ in the language of set theory such that

x ∈ A↔ L[S, x] � ϕ[S, x]

(ϕ, S) ⊆ ORD is the code of the ∞-Borel set A and we let A = Aϕ,S.
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Also, we use a theorem of Woodin which gives a bound on where the code of an ∞-Borel
set appears.

Theorem 14 (Woodin) Let A ⊆ R be an ∞-Borel set. Then there is a γ < Θ and a
prewellorder �∈ Π1

2(A) of length γ such that S ⊆ γ and S is the Borel code of A.

We now show the above conjecture pertaining to inductive-like hierarchies.

Theorem 15 (AD + V = L(R)) Let Γ be a Steel pointclass, that is Γ is closed under ∀R,
pwo(Γ) and suppose that ∃R∆ ⊆∆. Suppose that o(∆) = κ. Then the following are equivalent:

1. κ is bΠ1
2-indescribable and Mahlo.

2. Γ is closed under ∃R.

Proof.
Recall that we are in the situation where we have Sep(Γ̌). Assume first that Γ is closed

under ∃R. We need to see that κ is bΠ1
2-indescribable. By theorem 3.1 of [5], we must have

that for every inductive-like pointclass Γ, that κ is Mahlo. Let

δ =def sup{ξ : ξ is the length of a ∆ prewellordering of R}.

Then by the companion theorem of Moschovakis (see theorem 9E.1 in [8]), δ is the ordinal of
its admissible companion M above R. So o(M) = δ. Since every admissible ordinal is Π2-
reflecting and every set A ⊆ Lδ+1 is ∆1 overM by the coding lemma, and |Lδ+1| = δ, we have
that δ is bΠ1

2-indescribable.
We must now show that δ = κ. The result is true for any projective algebra.

Claim 6 Let ∆ = Γ ∩ Γ̌ be a projective algebra. Then the following ordinals are equal:

1. δ = sup{ξ : ξ is the length of a ∆ prewellordering of R}

2. o(∆) = κ = sup{|A|W : A ∈∆}

Proof.
The following argument is due to Jackson. First let α < o(∆) such that for some A ∈ ∆

we have |A|W = α. Then this initial segment determined by A in the Wadge hierarchy defines
a prewellordering � in ∆ of length α, since ∆ is closed under quantifiers, ∨ and ∧. We define
� by x � y ↔ f−1x (A) ≤w f−1y (A), where fx, fy are the Lipschitz continuous functions coded

by x and y. Notice that for some n ∈ ω, �∈ Σ1
n(A) and since ∆ is closed under quantifiers, ∨

and ∧ we have Σ1
n(�) ∈∆. So α < δ(∆), hence o(∆) ≤ δ(∆).

Next let α < δ(∆). We need to see that α < o(∆). We will use the jump function. Let
� be a prewellordering in ∆ of length α. We then construct an increasing sequence of Wadge
degrees of length α. There is a function F : P(R)→ P(R) such that

for all A ⊆ R, A <W F (A).
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The function F is the jump of A, where we let F (A) = A′ be defined by

A′(x)↔ (x(0) = 0 ∧ τx′(x) /∈ A) ∨ (x(0) = 1 ∧ τx′(x) ∈ A),

where x′ is the shift of x, i.e x′(n) = x(n + 1) and τx′ is the continuous function coded by x′.
Notice that F (A) is not Wadge reducible to either A or Ac and it has Wadge degree strictly
higher to either A or Ac. For if τx′ reduced A′ to A then we would get 0ax′ ∈ A′ iff τx′(0ax′) ∈ A
but since

0ax′ ∈ A′ ←→ τx′(0
ax′) /∈ A,

by definition, contradiction!
Next we define by induction on α < | � | a ∆ set Aα. Let A0 = ∅ and let Aα+1 = A′α. If α

is a limit ordinal then let Aα(x) ↔ (|x0|� < α ∧ x1 ∈ A|x0|�). Then by definition of the jump
function and by induction the Aα are strictly increasing in Wadge degrees. Now we check that
each ADα ∈ ∆. Let R(x, y) ↔ x ∈ dom(�) ∧ y ∈ A|x|� . We show that R ∈ ∆. We define
a relation W , for i = 0, 1 such that if W (x, y, i, z, w, j) holds means that i = 1 and (z, w, j)
witnesses that R(x, y) holds and i = 0 and (z, w, j) witnesses that ¬R(x, y) holds. Then define
W (x, y, i, z, w, j) as follows:

1. i = 1 and x is an immediate successor of z in � and either 0 < y(0), w = τy′(y)and j = 0
or y(0) = 0 and w = τy′(y) and j = 1,

2. i = 1 and x has limit rank in �, y0 � x, y0 = z, w = y1 and j = 1,

3. i = 0 and either x /∈ dom(�) or x is an immediate successor of z in � and either 0 < y(0),
w = τy′(y) and j = 1 or y(0) = 0, w = τy′(y) and j = 0,

4. i = 0 and either x /∈ dom(�) or x has limit rank in � and the following hold: ¬y0 ≺
x ∨ (z = y0 ∧ w = y1 ∧ j = 0,

5. i = 0 and either x /∈ dom(�) or |x|� = 0.

Then W is in ∆ as �∈∆. We then have:

R(x, y)↔ ∃z, w, ε(z0 = x ∧ w0 = y ∧ ε(0) = 1 ∧ ∀iW (zi, wi, ε(i), zi+1, wi+1, ε(i+ 1)).

So R ∈∆, and for every α < | � |, Aα ∈∆.
�

This now finishes the proof of (2) → (1). Next we must show that whenever κ is bΠ1
2-

indescribable and Mahlo then Γ is closed under ∃R. Assume that κ is bΠ1
2-indescribable. We

must show that Γ is closed under ∃R. Specifically we show the following:

Claim 7 Let Γ be a Steel pointclass such that ∃R∆ ⊆ ∆ and κ = o(∆) is bΠ1
2-indescribable.

Then Γ is closed under ∃R.
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Proof.
We make the general assumption that we are in the context where we do not have the scale

property, since by the above remark if Γ ⊆ IND or Γ is not located in a Σ1-gap, then we can
localize scales to Γ or Γ sets are κ Suslin for some κ, and then by the result mentioned above
of Kechris, see [4], the conjecture is true. We also work by contradiction below. Assume Γ is
either located in a Σ1-gap below the last Σ1-gap [δ2

1,Θ], or that Γ is located in the last Σ1 gap
[δ2

1,Θ]. Suppose that o(∆) is bΠ1
2-indescribable. We must see that Γ is closed under ∃R. So

let B ∈ Γ \ Γ̌ and let A(x)↔ ∃yB(x, y). Under AD + V = L(R), every set of reals is ∞-Borel,
so the set B is ∞-Borel, and thus there is a formula ϕ and a set of ordinals S ⊆ γ for some γ
such that

B(x, y)↔ L[S, x, y] � ϕ(x, y),

see [6]. By Woodin’s theorem, the Borel code S can be taken to be subset of γ, where γ is the
length of a Π1

2(B) prewellordering. So we have that γ < δ12(B), where

δ12(B) = sup{ξ : ξ is the length of a ∆1
2(B) p.w.o of R}.

Since Π1
1(B) ⊆ Γ, because Γ is closed under ∀R and by the proof of Steel’s conjecture, Γ is

also closed under ∨ as κ is regular, and since there must be a Γ prewellordering of length
δ11(B) = o(∆1

1(B)) and δ12(B) = (δ11(B))+, we may then assume that S ⊆ κ and γ ≤ κ, because
o(Γ) = κ+ 1 and since one can define a Π1

1(B) prewellordering of length |B|W . We then have

A(x)↔ ∃yL[S, x, y] � ϕ(x, y).

Let (ϕ, S) be the Borel code of the set B. Thus

A(x)↔ (Bκ+1,∈, x, (ϕ, S)) � “∃yL[S, x, y] � ϕ(x, y)”.

This implies then that there is a κ′ < κ such that

(Bκ′+1,∈, x, (ϕ, S � κ′ + 1)) � “∃yL[S � κ′ + 1, x, y] � ϕ(x, y)”,

since “∃yL[S � κ′ + 1, x, y] � ϕ(x, y)” is a Π2 formula, as the satisfaction relation is ∆1. Hence
we have A(x)↔ ∃yL[S1, x, y] � ϕ(x, y) for some S1 ⊆ κ′ + 1 ≤ γ. Let then

Γ̃ = {A : A is an effective κ union of < κ-Borel codes}

Notice then that we have ∆  Γ̃  
⋃
κ ∆  ∃RΓ. We first show that Γ̃ is closed under the ∀R

quantifier. Let then B ∈ Γ̃ and consider

A(x)↔ ∀yB(x, y)

Now applying bΠ1
2-indescribability again we have that

A(x)↔ ∃γ < κ(∀yL[T, x] � ϕ(x, y)),

38



where T is a Borel code of size ≤ γ. This shows that A ∈ Γ̃. So A is also in ∃RΓ. Notice that
we must then have by Wadge Γ̃ = Γ. It is then sufficient to notice that Γ̃ is closed under ∃R to
obtain the desired contradiction. This follows by a general argument using the Vopenka algebra
to make any real of L(R) generic over the image of L[S, x] in an ultrapower by supercompactness
measures (This is an argument of Caicedo and Ketchersid). This shows the theorem. However
we explain briefly that the result follows directly from ADL(R) using Turing-determinacy (which
itself is equivalent to AD in the context of L(R), by a result of Woodin), without having to
refer to the Vopenka algebra. Let then B ∈ Γ̃, we wish to see that A(x) ↔ ∃yB(x, y) is still
in Γ̃. Let d denote a Turing degree. By ∀∗dA(d) we means that ∃e0∀e ≥ e0A(e), where ≤ is
the Turing degree partial order: x ≤ d means that x ≤T y for any y of Turing degree d . The
main point is that if we have a set D ∈ Γ̃, then we may replace all occurrences of ∀∗d∃xD(x)
by ∃x∀∗dD(x) by Turing determinacy.

�

We next include facts about type IV projective-like hierarchies. Suppose that κ is bΠ1
2-

indescribable. Then Γ is closed under ∃R. Thus Γ is closed under both ∃R and ∀R, hence also
under countable unions and intersections. Define the pointclass Π1 = Γ ∧ Γ̌ and let Σ1 = Π̌1.
A typical example of this type of hierarchy is letting Γ = IND, the pointclass of inductive sets.
In this case, since IND is closed under continuous substitutions,∧,∨, we define

Σ∗1(Γ) = {A ⊆ R : ∃B ∈ Γ, C ∈ Γ̌ such that x ∈ A↔ ∃y(B(x, y) ∧ C(x, y))}.

Then we let
Π∗n(Γ) = {Ac : A ∈ Σ∗n(Γ)}

and
Σ∗n+1 = {∃yA(x, y) : A ∈ Π∗n(Γ)}.

Notice that Π1 is closed under ∀R since both Γ and Γ̌ are closed under ∀R and ∃R. Assume
that Π1 can be characterized as the pointclass of all Σ1

1 bounded unions of Γ̌ sets of length κ,
that is

Π1 = {
⋃
α<κ

Aα : ∀α < κ(Aα ∈ Γ̌) ∧
⋃
α<κ

Aα is Σ1
1 bounded}.

Let Π′1 = {
⋃
α<κAα : ∀α < κ(Aα ∈ Γ̌) ∧

⋃
α<κAα is Γ̌ bounded}. Our goal is to show that

Π1 = Π′1 first and then later we verify that Π1 can indeed be characterized as the pointclass
of all sets which can be written as Σ1

1-bounded unions of Γ̌ sets.

Subclaim 1 Π1 = {
⋃
α<κAα : ∀α < κ(Aα ∈ Γ̌) ∧

⋃
α<κAα is Γ̌ bounded} = Π′1.

Proof.
Every Γ̌-bounded union is Σ1

1-bounded. Let A ∈ Π1 \Σ1. and let A =
⋃
α<κAα where each

Aα ∈ Γ̌, the union is Σ1
1-bounded and κ = o(∆). We may assume that the Aα’s are increasing

and that the union is continuous. Then 〈|Aα|W : α < o(∆)〉 is cofinal in o(∆). Now for α < κ
define the sets Cα by

Cα =def {(x, y) : y ∈ Aα+1 \ Aα ∧ x codes a continuous function fx s.t f−1x (Aα) ⊆ A}.
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Then notice that for each α < κ, Cα is defined as Γ̌ ∧ ∀R(Γ ∨ Γ) = Γ̌ ∧ Γ. Then by definition,
Cα ∈ Π1. We have that if C =

⋃
α<κCα, then the proof of subclaim 2.28 also shows that

C ∈ ∃RΠ1 = Σ2, since κ is regular. So let C =
⋃
α<κDα where each Dα ∈ Γ̌ and the union is

increasing. Define the sets Bα as follows

z ∈ Bα ↔ ∃(x, y) ∈ Dα∃β ≤ α(y ∈ Aβ+1 \ Aβ ∧ fx(z) ∈ Aβ)

Then for every α < κ, we have that Bα ∈ Γ̌, since Γ̌ is closed under ∃R,∧ and ∨, by the proof
of Steel’s conjecture. Then we have that

⋃
α<κBα = A. In addition

⋃
α<κBα is a Γ̌-bounded

union since any Γ̌ is of the form f−1x (Aβ) for some β < κ and some x ∈ R. So A ∈ Π′1.
�

Finally we show that the pointclass Π1 = Γ ∧ Γ̌ is the pointclass of all sets which can be
written as Σ1

1-bounded unions of Γ̌ sets.

Subclaim 2 Π1 = {
⋃
α<κAα : ∀α < κ(Aα ∈ Γ̌) ∧

⋃
α<κAα is Σ1

1 bounded}.

Proof.
Let Ω = {

⋃
α<κAα : ∀α < κ(Aα ∈ Γ̌) ∧

⋃
α<κAα is Σ1

1 bounded}. We must show that

Π1 = Ω. Suppose that A ∈ Π1. So let B ∈ Γ and C ∈ Γ̌ such that A = B ∩ C. Then since
Γ is a Steel pointclass, let B =

⋃
α<κBα and the union is increasing and Σ1

1-bounded and each

Bα ∈ ∆. Then we have that A =
⋃
α<κBα ∩ C. This union is a Σ1

1-bounded union of Γ̌ sets

since Γ̌ is closed under ∧ so in particular Γ̌ is closed under intersections with ∆ sets. So we
have Π1 ⊆ Ω.

Next notice that since Γ̌ is closed under ∀R then Ω is also closed under ∀R by Addison’s
argument. Let � be a Γ prewellordering of length κ, let ϕ be the Γ norm associated to � and
let U be a universal Γ̌ set of reals. Apply the coding lemma to obtain a relation R(w, ε) ∈ Γ
such that

1. ϕ(w) = ϕ(ε)→ (R(w, ε)↔ R(z, ε))

2. R(w, ε) → ε ∈ C , where C is the set of codes of the sets in some sequence of Γ̌ sets
{Aα}α<κ.

3. ∀w∃ε(R(w, ε) ∧ Uε = Aϕ(w)).

Then we compute that x ∈
⋃
α<κAα → ∃w∃ε(R(w, ε) ∧ x ∈ Uε). Thefore we have

⋃
κ Γ̌ ⊆

∃R(Γ ∧ Γ̌). Now since Π1 ⊆ Ω ⊆ Σ2 and since Ω is closed under ∀R then we must have that
Π1 = Ω, since if not then by Wadge’s lemma we have Ω ⊆ Σ1 and thus Π1 ⊆ Σ1, contradiction!

�

Now from the above we can show that pwo(Π1). The following argument is due to Jackson.

Subclaim 3 pwo(Π1)
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Proof.
Let A ∈ Π1 be such that A = B ∩ C for B ∈ Γ where B =

⋃
α<κBα a Σ1

1-bounded union

of ∆ sets and C ∈ Γ̌. Then we have A =
⋃
α<κBα ∩ C. Let Aα = Bα ∩ C, so that for every

α < κ, Aα ∈ Γ̌ and A =
⋃
α<κ is a Σ1

1 bounded union of Γ̌ sets. Let ϕ be the natural norm
on A coming from the union, i.e ϕ(x) = the least γ such that x ∈ Aγ. We must see that ϕ is
a Π1 norm. Since C ∈ Γ̌ then let R \ C =

⋃
ξ<κCξ where for every ξ < κ, Cξ are ∆ sets and

the union is Σ1
1 bounded since R \C is in Γ. Let ψ be the norm coming from the union of the

Cξ, i.e the norm defined by ψ(x) = the least γ such that x ∈ Cγ. Then the argument below
applied to Γ will show that ψ is a Γ norm, and then since Γ is closed under ∧,∨ and since by
4C.11 of [9] Γ̌ will be bounded in the norm ψ. For every α < κ, let Acα = Cγ ∪ Bc

α. But then
the sequence of sets {Cγ ∪Bc

α}γ<κ is a Γ̌ bounded union. Now let

x <∗ϕ y ↔ ∃β < κ∃γ ≤ β(x ∈ Aα ∧ x ∈ Cβ ∪Bc
α).

Notice that
∃γ ≤ β(x ∈ Aα ∧ x ∈ Cβ ∪Bc

α)

defines a Γ̌ set, since Γ̌ is closed under union of lengths less than κ and the union is of length
less than β < κ. So let Eβ be sets in Γ̌ such that <∗ϕ

⋃
β Eβ. We need to see that this union

is Σ1
1 bounded. Let S ⊆<∗ϕ be a Σ1

1 set. Then S1 = {x : ∃yS(x, y)} is also Σ1
1 and S1 ⊆ A, so

there is a κ0 < κ such that S1 ⊆ Aκ0
�

�
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