
A club version of the Kechris-Martin theorem and
lightface scales

Rachid Atmai
Universität Wien
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Abstract

We answer a question of Woodin on the construction of lightface scales under deter-
minacy assumptions. We outline a general method to construct lightface scales on sets
of reals using the notion of stability under AD. The proof is reminiscent of proofs of the
Kechris-Martin theorem.

1 Introduction

We begin by recalling the standard notation and objects of descriptive set theory. For any set
X, we let X<ω denote the set of finite sequences of elements of X. If s ∈ X<ω, then let l(s)
denote the length of the sequence s. a tree T of a set X is a set of finite sequence from X which
is closed under initial segments.

As usual a tree T is a tree on ω × κ if T is a set of pairs (s, t) such that:
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1. s ∈ ω<ω and t ∈ κ<ω,

2. l(s) = l(t),

3. for all i < ls(s), (s|i, t|i) ∈ T .

Let T be a tree on ω × κ. For s ∈ ω<ω, we have the section of the tree T at s:

Ts = {t ∈ κ<ω : (s, t) ∈ T}

and for each x ∈ ω<ω, let

Tx =
⋃
{Tx|k : k ∈ ω}

The body of the tree is defined as

[T ] = {(x, f) : x ∈ ωω, f ∈ κω and for all k ∈ ω, (x|k, f |k) ∈ T}

[T ] is then the set of infinite branches of the tree T . The projection of [T ] onto the first
coordinate is defined as

p[T ] = {x ∈ ωω : (x, f) ∈ [T ] for some f ∈ κω}

A set of reals is κ-Suslin if there is some tree T on ω × κ such that A = p[T ]. This notion is
of course interesting only in a choiceless context: in the constructible universe L, every set of
reals is ℵ1-Suslin.

If T is an illfounded tree on a set wellordered set (X,<), then the leftmost branch of T ,
l(T ) = (l(0), l(1), ...) is defined as follows: l(0) is the <-least element of X such that there
exists an x ∈ Xω with x|1 = l(0) and x ∈ [T ]. In general, we define inductively l(n) to be the
<-least element of X such that there exists a branch f ∈ Xω with the property that f |n = l|n
and f ∈ [T ]. The branch l is leftmost in the sense that whenever g ∈ [T ] and g 6= l, then
considering the least n ∈ ω such that l(n) 6= g(n), we have l(n) < g(n).

A pointclass Γ is a collection of sets of reals closed under continuous inverse images, that is:

if f : ωω → ωω is continuous and A ⊆ ωω is in Γ then B = f−1[A] ∈ Γ

The scale property is a central notion in descriptive set theory. It turns out to be equivalent
to being Suslin. We recall the following basic definition:

Definition 1.1 (The scale property) 1. A semiscale is a sequence of norms 〈φn〉 on a
set A such that whenever we have a sequence {xn} ⊆ A converging to some x and for
every n, φn(xi) is eventually constant then x ∈ A. If in addition we have the lower semi-
continuity property, φn(x) ≤ limφn(xi) then the sequence of norms 〈φn〉 is a scale.

2. A scale 〈φn〉 is a Γ˜-scale if for every n, φn is a Γ˜-norm. The pointclass Γ has the scale
property if every Γ˜ set has a Γ˜-scale.
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3. A scale 〈φn〉 on a set A is good if whenever {xn} ⊆ A and for all n ∈ ω, ϕn(xm) is
eventually constant, then x = limxm exists and x ∈ A.

4. A scale 〈φn〉 on a set A is very-good if 〈φn〉 is good and whenever x, y ∈ A and ϕn(x) ≤
ϕn(y) then ϕk(x) ≤ ϕk(y) for all k < n.

5. A scale 〈φn〉 on a set A is excellent if it is very good and whenever x, y ∈ A and ϕn(x) =
ϕn(y), then x � n = y � n.

The following theorem is the second periodicity theorem. It shows that under suitable de-
terminacy assumption we can propagate the scale property.

Theorem 1 (Moschovakis) Assume projective determinacy. Then every Π˜1
2n+1 and every

Σ˜1
2n have the scale property.

Assuming determinacy hypotheses, one central theme of descriptive set theory is finding
methods and techniques which allow the propagation of the scale property to sets of reals
throughout the Wadge hierarchy. In particular it is useful to know where the next Suslin
cardinal appear and how to obtain scale to optimal complexity on sets of reals immediately at
the next level of complexity in the Wadge hierarchy.

One answer to this general problem was given by Martin and Solovay, see [3]. We recall this
result and the technical set-up behind it.

Definition 1.2 (homogeneous tree)
A tree T on ω × κ is said to be homogeneous of there is a family of measures 〈µs : s ∈ ωω〉

satisfying :

1. Each µs is a measure on Ts and µs(Ts) = 1,

2. If t extends s then µt projects to µs,

3. For every x ∈ R, if Tx is illfounded then for any sequence {An : n ∈ ω} of measure one
sets with µx�n(An) = 1, there a branch f ∈ κω such that for all n, (x � n, f �) ∈ T .

T is δ-homogeneous if in addition the measures are δ-complete.

The second clause in the above definition is what makes the tower of measures be countably
complete. It is a standard fact that a tower of measures is countably complete if and only
if the direct limit of the ultrapowers given by the measures µs is wellfounded. We say a tree
T is κ-homogeneous if the measures µs can be taken to be κ-complete. A set A ⊆ R is κ-
homogeneously-Suslin if A = p[T ] for T a κ-homogeneous tree.

If X is a set then we let m(X) denote the set of countably complete ultrafilters on the space
P(X). A special case of interest for us is when X = κ<ω for some ordinal κ. If µ ∈ m(κ<ω),
then by countable completeness, µ must concentrate on κn for some n ∈ ω, i.e there must be a
n ∈ ω such that µ(κn).
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Definition 1.3 Suppose T is a tree on ω × κ. The tree T is δ-weakly homogeneous if there is
a partial function

π : ω<ω × ω<ω → m(κ<ω)

such that

1. if (s, t) ∈ dom(π) then π(s, t)(Ts) = 1 and π(s, t) is a δ-complete measure,

2. for all x ∈ ω<ω, x ∈ p[T ] if and only if there exists y ∈ ωω such that

(a) for every k ∈ ω, (x|k, y|k) ∈ dom(π),

(b) for any sequence of measure one sets 〈Ak : k ∈ ω〉, there is a f ∈ κω such that
f |k ∈ Ak, for all k ∈ ω.

The notions of homogeneity and weak-homogeneity are connected by the following fact. Let
A ⊆ ωω. Then A is δ-weakly homogeneously Suslin if and only if A is the continuous image of
a set B which is δ-homogeneously Suslin.

Let A be a weakly-homogeneously Suslin set of reals and fix a weakly-homogeneous tree T
on ω× κ for some ordinal κ such that A = p[T ]. Then the Martin-Solovay construction gives a
homogeneous tree representation for ¬A, that is for x ∈ ¬A, we let

ϕn(x) = [fx,tn ]µx|l(tn),tn

More precisely, the Martin-Solovay tree which gives a Suslin representation to ¬A is defined as
follows:

Definition 1.4 (Martin-Solovay tree) Let T be a weakly-homogeneous tree on ω × κ with
measures µs,t each of which concentrates on κlh(s). The Martin-Solovay tree S is defined as
follows. Let (si, ti) be a reasonable enumeration of all (s, t) ∈ ω<ω × ω<ω satisfying l(s) = l(t),
in the sense that any proper extension of any (si, ti) is enumerated at a later stage. Define
(s, t) ∈ S if and only if there is a function f : Ts → κ+ which is order-preserving with respect
to the Brouwer-Kleene ordering <s

BK on Ts such that for every i < l(s),

αi = [f i]µsi,ti ,

where
f i = f |{~γ : (si, ~γ) ∈ T}

A standard reformulation of the above definition is that the Martin-Solovay tree attempts
to ill-found the direct limit of all ultrapowers by the homogeneity measures on the tree T . To
illustrate the Martin-Solovay construction we consider the following situation. First for any
pointclass Γ˜ and any ordinal κ, let A = {Aα}α<κ be a sequence of sets of reals. Let Ā be the
collection of all sets of reals A such that for all countable S ⊆ ωω, there is an α < κ such that
S ∩ A = S ∩ Aα. Let then

Λ(Γ˜, κ) =
⋃
{Ā : A ⊆ Γ˜ ∧ |A| ≤ κ}
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where |A| is the cardinality of the collection A. In practice, κ is taken to be δ˜(Γ). Λ(Γ˜, κ) is
the same as Env(Γ˜) as defined in [4].

Next, suppose Γ˜ is closed under ∀ωω
and pwo(Γ˜). Assume also that the pointclass ∃ωω

Γ˜has the scale property with all norms onto δ(Γ˜) = κ. Assume there is a Suslin cardinal ξ > κ.
Then by the Martin-Solovay construction the pointclass ∀ωω

Γ˜ admits a semi-scale each of which
norms is in the pointclass Λ(Γ˜, κ). The leftmost branches of the tree S give a scale on a universal
∀ωω

Γ˜ , however this scale has higher complexity in the Wadge hierarchy than the pointclass
Λ(Γ˜, κ)

The solution to the problem of obtaining a scale from the above semi-scale given by the
Martin-Solovay construction in certain situations is the notion of a stable tree introduced by
Jackson and we recall here the notions involved in the the definition of a stable tree.

Let T be a tree on ω×ω×κ be homogeneous via the measures µs,t on κ<ω. So, if we identify
the last two coordinates of the tree into a single coordinate by a bijection between ω × κ and
κ, the resulting tree T ′ on ω × κ is weakly homogeneous.

Recall that a sequence As,t of measure one sets with respect to the µs,t is said to stabilize
the tree T if for all x such that Tx is wellfounded we have that for any measure one sets Bx�n,t

and for any t ∈ ω<ω with has length n, we have [f
~A
x�n,t]µx�n,t

≤ [f
~B
x�n,t]µx�n,t

. Here fAx�n,t(~α) is the
rank of the tuple (x � n, t, ~α) in the tree

Tx � ~A = {(u, ~β) : (x � lh(u), u, ~β) ∈ T ∧ ∀k ≤ n (~β � k ∈ Ax�k,t�k)}.

We similarly define fBx�n,t(~α). That is the functions fAx�n,t are the ranking subfunctions of the
canonical ranking function fx : Tx → ORD, for x such that Tx is wellfounded, when the tree is
restricted to measure one sets. We isolate the notion of stability in the following definition:

Definition 1.5 T and {µs,t} is a stability system if there are measure one sets As,t such that
for all measure one sets Bs,t and all x ∈ ¬B, we have

[f
~A
x,tn ]µs,t ≤ [f

~B
x,tn ]µs,t

Lemma 1.6 (Jackson) Let T be a stable homogeneous tree as witnessed by measures
{µs : s ∈ ω<ω} and measure one sets {As : s ∈ ω<ω}. Let T ′ be the Martin-Solovay tree with

B = p[T ′] constructed from T
~A and µs for s ∈ ω<ω. Let ~ϕ be the corresponding semi-scale given

by for x ∈ B,

ϕn(x) = [f
~A
x�n]µx�n .

Then ~ϕ is a scale.

Theorem 2 (Jackson) Assume AD. Let ξ be the supremum of the Suslin cardinals if it exists.
Then every weakly homogeneous tree T on ω×κ, as witnessed by a sequence of measures {µs,t},
is stable, where κ < ξ.

Proofs of the above lemma and theorem are in [1]. In particular it then easily follows that the
semi-scale given by the Martin-Solovay construction is a scale when the weakly-homogeneous
tree T is restricted to a specific sequence ~A. As a corollary, one thus obtains a complete boldface
scale analysis under AD, see chapter 3 of [2].
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Question 1 (Woodin) Is there an effective procedure which refines the boldface scale analysis?
Can the scale analysis under AD be refined to obtain lightface scales?

The goal of this paper is to provide a positive answer to this question. We show a specific
procedure which gives lightface scales under AD.

2 Stabilizing ∆1
1 homogeneous trees

We will show our main lemma below in the context of ω1. We later outline the necessary
changes to fully generalize the main lemma in L(R). Let U on ω × ω1 be the Kunen tree. It
then follows that for every function f : ω1 → ω1, there is an x ∈ ωω such that Ux is wellfounded
and ∀∗αf(α) < |Ux � α|.

The Kunen tree U may also be used to code club sets of ω1 in the following way. Let x ∈ ωω
be such that Ux is wellfounded. Then define

Cx = {α < ω1 : α > ω ∧ ∀β < α|Ux � β| < α}

It now follows that for every closed unbounded set C ⊆ ω1, there is an x ∈ ωω such that Ux is
wellfounded and Cx ⊆ C.

Suppose we are given a fixed coding of ordinal less than some ordinal κ (say using a norm
on a set of reals or a more complex coding as in chapter 4 of [2]). Letting a real x be a code of
an ordinal α < κ, let |x| be the ordinal α. We then say a set A ⊆ κ is Γ in the codes if the set

A′ = {x : |x| = α ∈ A}

is a Γ set.

Theorem 3 Let T be a tree on ω × ω × ω1 which is homogeneous with measures W n
1 (i.e., the

n-fold products of the normal measure on ω1). Assume also that T is ∆1
1 in the codes. Then

there is a c.u.b. C ⊆ ω1 which stabilizes T and such that C is ∆1
3 in the codes.

Proof. Let U ⊆ ω × ω1 be the Kunen tree. If Ux is wellfounded, then let fx : ω1 → ω1 be
the function fx(α) = |Ux � α|. In this case, let

Cx = {α < ω1 : ∀β < α fx(β) < α}

be the c.u.b. set coded by x. For every c.u.b. C ⊆ ω1 there is an x with Ux wellfounded and
Cx ⊆ C.

For w ∈ ωω, and α < ω1, we say w is weakly α-good if for all β ≤ α either Uw � β is
wellfounded of rank < α or α is in the wellfounded part of Uw � β. We say w is strongly
α-good if for all β ≤ α we have that Uw � β is wellfounded. We say w is < α weakly (strongly)
good if for all α′ < α, w is weakly (strongly) α′-good. Let WGα be the set of w which are
α-weakly good, and SGα the set of w which are strongly α-good. Likewise define WG<α and
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SG<α. These sets are defined with respect to the tree U , and so we also write WGU
α , SGU

α . We
can also speak of good with respect to the tree T , and so write WGT

α , SGT
α . Note that WGU

α ,
WGU

<α are ∆˜ 1
1 (SGα is Π˜1

1).
Consider now the game G where I plays out w1, y, and II plays out w2. II wins the run iff

there is an η < ω1 such that one of the following holds:

1. w1 ∈WGU
<η, y ∈WGT

<η, w2 ∈ SGU
η , with either w1 /∈WGU

η or y /∈WGT
η , and w2 ∈ SGT

η .

2. w1 ∈WGU
η , y ∈WGT

η , w2 ∈ SGT
η , and there is a γ ≤ η such that (i) ∀β < γ|Uw1 � β| < γ,

(ii) ∀β < γ|Uw2 � β| < γ, (iii) Pγ(w1, y, w2).

Here Pγ(w1, y, w2) are, uniformly in γ, Π˜1
1 relations such that if Ty � γ is wellfounded and w1, w2

satisfy (1) and (2), then Pγ(w1, y, w2) holds iff |Ty � (Cw2 ∩ γ)| ≤ |Ty � (Cw1 ∩ γ)|.
Note that this is a Σ1

2 game for II. So, if II wins G, then II has a ∆1
3 winning strategy.

Claim 1 II has a winning strategy for G.

Proof.
Let C ⊆ ω1 be c.u.b. and stabilize T . Let w2 code a c.u.b. set and such that Cw2 ⊆ C. Let

II play w2 in G. Suppose I plays w1, y. If either w1 or y is not α-weakly good for some α < ω1,
then II wins by clause (1) as w2 is α-strongly good for all α. So assume w1, y are α-weakly
good for all α. Thus, Uw1 and Ty are wellfounded. So, Cw1 and Cw2 are defined. As Cw2 still
stabilizes T we have that

[F
Cw2
y ]W 1

1
≤ [F

Cw1
y ]W 1

1
.

It follows that there is an α < ω1 (in fact, a c.u.b. set) with α ∈ Cw1 ∩ Cw2 and such that

|Ty � Cw2 ∩ α| ≤ |Ty � Cw1 ∩ α|.

Thus II has won by clause (2).
Let τ be a ∆1

3 winning strategy for II. We define a c.u.b. set Cτ which stabilizes T . To do
this, we first define inductively a function b : ω1 → ω1. Assume b(β) is defined for all β < α.
Let

(w1, y) ∈ Wα ↔ [w1 ∈WGU
α ∧ y ∈WGT

α ∧ ¬∃γ ≤ α ( II wins by clause (2) at γ)]

So, Wα ∈ Σ1
1. We also easily have that Wα 6= ∅. If (w1, y) ∈ Wα and w2 = τ(w1, y), then w2

is α-strongly good, that is, Uw2 � α is wellfounded. That is, fw2(α) = |Uw2 � α| is defined. By
boundedness we then have that

b(α) = sup{fτ(w1,y)(α) : (w1, y) ∈ Wα} < ω1.

This completes the definition of the b function. Let Cb be the set of closure points of b.
We claim that Cb stabilizes T . Suppose not, and let C1, y be such that Ty is wellfounded and
[FC1
y ]W 1

1
< [FCb

y ]W 1
1
. Let C2 be c.u.b. such that

FC1
y (α) < FCb

y (α)
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for all α ∈ C2. Let w1 code a c.u.b. set such that Cw1 ⊆ C1 ∩ C2. Let I play w1, y against τ .
Let w2 = τ(w1, y). We have that Uw1 , Uw2 , and Ty are wellfounded.

We claim that for all α < ω1 that b(α) ≥ fw2(α) = |Uw2 � α|. We show this inductively on
α. Assuming this holds below α, we have that Cb ∩ α ⊆ Cw2 ∩ α. From the definitions of C1

and C2, there cannot be an η ∈ Cw1 such that

FCb
y (η) ≤ F

Cw1
y (α).

In particular, there cannot be an η ≤ α in Cw1 ∩ Cw2 for which F
Cw2
y (η) ≤ F

Cw1
y (α). That is,

there cannot be an η ≤ α such that II wins by clause (2) at η. Thus, (w1, y) ∈ Wα. From the
definition of the b function we now have that b(α) ≥ fw2(α).

Since b(α) ≥ fw2(α) for all α, we now have that Cb ⊆ Cw2 . Again from the definitions of C1

and C2 we have that there cannot be an η ∈ Cw1 such that

FCb
y (η) ≤ F

Cw1
y (α).

So, there cannot be an η ∈ Cw1 such that

F
Cw2
y (η) ≤ F

Cw1
y (α).

This shows that II has not won by clause (2), and since all the reals are fully good, I has won
the run, a contradiction.

So, Cb is a c.u.b. subset of ω1 which stabilizes T . Since τ is ∆1
3, it follows that b is ∆1

3 in
the codes, and hence that Cb is ∆1

3.
�

�

Finally we show that the relation

R(z1, z2)←→ z1, z2 ∈ WO ∧ b(|z1|) = |z2|

is ∆1
3. We have R(z1, z2) holds iff the following holds:

1. z1, z2 ∈ WO,

2. ∃y ∈ R and z ∈ WO with |z| = |z1|+ 1 and |0|≺z = |z1| satisfying:

(a) ∀n, yn ∈ WO

(b) the map n 7−→ |yn| defines an order preserving map from ≺z to ω1,

(c) ∀n ∈ dom(≺z),

|yn| = {fτ(w1,y)(|n|≺z) : ∀m ≺z n[(w1, y) is |m|≺z−good∧ II doesn’t win by the second clause.}

(d) |y0| = |z2|.

So R is Σ1
2(τ), so it is ∆1

3, so rng(b) = C is ∆1
3. This concludes the proof of the lemma.
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3 General argument under AD

In this section we generalize the above notions and outline how to obtain lightface on the next
Suslin cardinal in L(R) under AD. The proof of the theorem below is similar to the proof of
the corresponding situation at the level of ω1 above.

Definition 3.1 A pointclass Γ˜ is said to be Π˜1
1-like in case Γ˜ has the scale property, ∀ωω

Γ˜ ⊆ Γ
and there is a pointclass Γ˜1 ⊆ Γ˜, such that ∃ωω

Γ˜1 ⊆ Γ˜1 and Σ˜1
1 ⊆ Γ˜1 and such that

Γ˜ = ∀ωω

Γ˜1,

We fix a Π˜1
1-like pointclass Γ˜ for the rest of the paper. Let A be a Γ˜ universal set of reals

and fix {ϕn} a Γ˜ scale on A. Let κ = δ˜(Γ˜). In practice, κ is a regular cardinal.

Definition 3.2 Let κ be as above. Let y ∈ ωω, S ⊆ α and α < κ. Then a local assignment is
a map π : ωω × P(α)× κ→ κ such that

S1 ⊆ S2 → π(y, S1, α) ≤ π(y, S2, α)

Still working with κ as above, let µ be the ω-cofinal measure on κ. Let U be the Kunen tree
on ω × κ. By Kunen it then follows that for every function f : κ→ κ there is an x ∈ ωω such
that Ux is wellfounded and such that ∀∗µαf(α) < |Ux � α|. As above the Kunen tree is used to
code closed unbounded sets of κ and for x ∈ ωω we let Cx ⊆ κ be the closed unbounded set
coded by x.

Definition 3.3 Let π(y, S, α) be a local assignement. Then we say π(y, S, α) is ∆ in the codes
if there are Γ˜ and Γ̌˜ relations P and Q such that for any x ∈ A and for any y, w1, w2 ∈ ωω we
have:

π(y, Cw1 ∩ ϕ0(x), ϕ0(x)) ≤ π(y, Cw2 ∩ ϕ0(x), ϕ0(x))↔ P (x, y, w1, w2)↔ Q(x, y, w1, w2)

Theorem 4 Let Γ˜ be a Π˜1
1-like pointclass and let κ be the Wadge ordinal associated to Γ˜. Let

π(y, S, α) be a local assignment which is ∆ in the codes. Suppose there is a closed unbounded set
C ⊆ κ which minimizes π in the following sense. For any y ∈ ωω and for any closed unbounded
set D ⊆ κ, for µ almost all α < κ, we have

π(y, C ∩ α, α) ≤ π(y,D ∩ α, α).

Let Λ be the pointclass ∆(∀ωω∃ωω
Γ). Thee is then a Λ real z such that Uz is wellfounded and

such that Cz minimizes the local assignment π.

Proof.(sketch)
The theorem is proved by a straightforward adaptation of the proof of the theorem at the

level of ω1 in the second section. We outline here the necessary changes. Recall as above that
the tree U on ω × κ is the Kunen tree which analyzes function f : κ → κ. We define the
following two sets:
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1. z ∈ WGU
α ↔ ∀β ≤ α(|Uz � β| ≤ α ∨ α ∈ wfp(Uz � β))

2. z ∈ WGU
<α ↔ ∀β < α(|Uz � β| < α ∨ α ∈ wfp(Uz � β))

3. z ∈ SGU
α ↔ ∀β ≤ α(Uz � β is wellfounded)

4. z ∈ SGU
<α ↔ ∀β < α(Uz � β is wellfounded)

Notice that WGU
α is a ∆ set and SGU

α is Γ set. Consider the game G where player I plays
y, w1 and player II plays w2. Player II wins if and only if there is an η < κ such that one of the
following holds:

1. w1 ∈ WGU
<η, w2 ∈ SGU

η , and w1 /∈ WGU
η ,

2. w1 ∈ WGU
η , w2 ∈ SGU

η , and there is an γ < η such that:

(a) ∀β < γ|Uw1 � β| and |Uw1 � β| are both < γ

(b) B(y, w2, w1, γ)

where B((y, w2, w1, γ) is the ∆ relation witnessing that the local assignment map if ∆ in
the codes. The game G is ∃RΓ for player II, so if II wins, then II has a ∆1 = ∆(∀R∃RΓ) winning
strategy by the third periodicity theorem.

Claim 2 II has a winning strategy for the game G.

Proof.
We can find a club set C ⊂⊆ κ which minimizes the local assignment map π. Let player II

play w2 such that Cw2 ⊆ C. Suppose that player I plays y and w1. We must have w1 ∈ WGU
α

for all α < κ. it then follows that Uw1 is wellfounded. In addition we have that Cw1 and Cw2

are club in κ.
Since player II played a code w2 such that Cw2 ⊆ C it then follows from above that Cw2

also minimizes the assignment map π:

π(y, Cw2 ∩ α, α) ≤ π(y, Cw1 ∩ α, α)

for all α < κ.
We may then find an α < κ with α ∈ Cw1 ∩ Cw2 such that B(y, w1, w2, α) holds. This then

implies that player II has won by clause 2.
�

Fix for the rest of this proof a ∆1 winning strategy τ for player II in the game G. We must
now define a club set C(τ) ⊆ κ which minimizes the assignment map π. Define the function
b : κ→ κ by induction on κ as follows. Assume b(β) is defined for all β < α. Let then

(y, w1) ∈ Wα ↔ (w1 ∈ WGU
α ∧ ¬∃η ≤ α(II wins by clause2 at η))
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Notice by the above that Wα is nonempty and Wα ∈ Γ̌. If (y, w1) ∈ Wα then we have τ(y, w1) =
w2. It then follows that Uw2 � α is wellfounded. Define

b(α) = sup{|Uτ(y,w1) � α| : (y, w1) ∈ Wα} < κ

As above let C(τ) be the set of closure point of the function b and we next show that C(τ)
must minimize the local assignment π.

Suppose that C(τ) does not minimize π and let C1 and y be a counterexample. We then
have

∀∗απ(y, C1, α) < π(y, C(τ), α)

where again the quantification is with respect to the ω-cofinal measure on κ. Let C2 ⊆ κ be a
club set witnessing this statement. Let Cw1 ⊆ C1 ∩ C2 and let τ(y, w1) = w2.

The next claim establishes that Uw2 must be wellfounded and this directly implies by defi-
nition that Cw2 is a club.

Claim 3 For all α < κ, |Uw2 � α| ≤ b(α)

Proof.
Assume this is true below α. We then have that C(τ) ∩ α ⊆ Cw2 ∩ α. By definition of C2

there cannot be any η ∈ Cw1 such that

π(y, C(τ), η) ≤ π(y, Cw1 , η).

Therefore there cannot be any η ≤ α with η ∈ Cw1 ∩ Cw2 such that

π(y, Cw2 , η) ≤ π(y, Cw1 , η).

This in turn implies that (y, w1) ∈ Wα. So we must have |Uw2 � α| ≤ b(α).
�

Now the claim implies that C(τ) ⊆ Cw2 . From the definition of C2, there cannot be any
η ∈ Cw1 such that

π(y, C(τ), η) ≤ π(y, Cw1 , η)

and this implies that there cannot be any η ∈ Cw1 ∩ Cw2 such that

π(y, Cw2 , η) ≤ π(y, Cw1 , η).

But this then implies that τ loses the run of the game G, contradiction!
Therefore C(τ) minimizes the assignment π and C(τ) ∈ ∆1 since τ ∈ ∆1 and b is ∆1 in the

codes.
�
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