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CHAPTER 1
INTRODUCTION

1.1. Main Results and Motivation

In this paper we prove several descriptive set theoretical results. The main theme
is that of closure properties of pointclasses, lightface scales on sets of reals and canonical
inner models of ZFC which naturally appear in models of determinacy. Scales on sets of
reals are a central object of study in descriptive set theory since from scales one obtains
Suslin representations for sets of reals and Suslin representations are the best way to un-
derstand sets of reals. Descriptive set theory is the study of definable sets of reals. The
subject essentially got developed as an effective approach to the continuum problem *. Un-
der large cardinal hypothesis, it turns out that L(R) is a natural model of determinacy. In
this context, the structure of L(R), in particular its cardinal structure, reflects in a central
way to properties of sets of reals. In addition, in L(R) and under large cardinal hypothesis,
the bound of the complexity of sets of reals, ©, is very large. Under choice, © is just the
successor of the continuum, ¢*. Below we outline results which come out of our work and
which can be classified as pertaining to the analysis of the structure of L(R). Occasionally,
we look at the structure from the point of view of inner model theory, this is deferred to the

fourth chapter.

First we investigate general closure properties of pointclasses 2. We give a solution to
a conjecture of Steel on certain pointclasses of the Wadge hierarchy ®. From it we can reprove
a result on strong partition properties for the ordinals associated to the Steel pointclasses.

Assuming AD + V = L(R):
THEOREM 1.1. Suppose I' is a Steel pointclass and let A = T'NT such that o(A) is a reqular

IPirst with Cantor, then Borel Baire, Lebesgue, Luzin and Suslin

ZPointclasses are a measure of the complexity of sets of reals, we define them precisely below

3see the section Preliminaries and basic definitions for a definition of the Wadge hierarchy. Roughly, it is a

pre-wellordered hierarchy of the complexity of sets of reals



cardinal. Then I' is closed under V. FEquivalently, A sets are bounded in the norm.

The theorem allows us to obtain a very strong form of boundedness which could be
useful on its own. The above also allows characterizing type III projective-like hierarchies
in terms of the associated ordinals. Pushing the analysis further we also characterize IV

projective-like hierarchies, which solves a conjecture of Kechris, Solovay and Steel.

THEOREM 1.2. Let I' be a Steel pointclass and let A =T NT and o(A) is I1}-indescribable
and Mahlo. Then T is closed under 3.

Therefore we have the following characterization of projective-like hierarchies: let
k = o(A) and T starts a projective-like hierarchies. Then if x has cofinality w, I' starts a
type I projective-like hierarchy. If x is singular such that w < cof(k), then I starts a type I1
projective-like hierarchy. If x is regular then I' starts a type III projective-like hierarchy. If
k is *IIi-indescribable then T starts a type IV projective-like hierarchy. The second chapter

is devoted to proofs of these theorems.

From the proof of Steel’s conjecture, we also obtain a new strong partition property
result on some regular Suslin cardinals. It should be noted that it is still open whether every
regular Suslin cardinal has the strong partition property. This would require a deep analysis

of the structure of L(R).

THEOREM 1.3. If k such that k = o(A), A is selfdual and XA C A, then the strong
partition property holds at k, i.e., Kk — (K)".

We thank Steve Jackson for introducing us to the above topic and for numerous
discussion on the above results. Strong partition relations are important for the structure of
L(R), since they imply that all sets of reals are homogeneous. It should be noted that the
above closure properties are very general. However finer closure properties of pointclasses and
methods to obtain scales on sets of reals are very closely related to the study of canonical inner
models of ZFC, containing all the ordinals, which naturally arise in models of determinacy.
This is our next topic of investigation. Namely we investigate the L[T5,] models and show

their uniqueness, where Tb, is a tree on w X k3,,,, and where xj, ., is the least ordinal



such that X}, sets are k3, ;-Suslin. One could think of these models as a very small
definable part of a hierarchy of canonical inner models of ZFC, which starts with L = L[T}],
with T7 being the Schoenfield tree, and which potentially goes to HOD. To put this into
perspective, recall that the constructible universe L is obtained by iterated the definable
power set operation using first order logic and it is a theorem of Scott and Myhill that
HOD is the constructible universe obtained by iterating the definable power set operation
using second order logic. So basically the models L[Tb,] can be thought of as fragments * of
HOD corresponding to some levels of determinacy well below AD. Neeman and Woodin has
shown that these levels of determinacy below AD correspond to specific large cardinals and
we touch on this aspect later on in the paper. In particular, we show that the models L[T3,]
are constructible models from direct limits of mice.

To show the uniqueness of the L[T3,], we need to prove a generalization of the Kechris-
Martin theorem and a characterization of the sets of reals of L,[T5,], where x is the least
admissible above k1 13- The Kechris-Martin theorem states a closure property of the point-

class T} under existential quantification over a set of ordinals coded by reals.

THEOREM 1.4. For every n € w, the pointclass I}, , 5 is closed under existential quantifica-
tion up to k3,5, where K3, 4 is the (2n + 3)™ Suslin cardinal of cofinality w. In particular
every 113, , 5 subset of k3,5 contains a A}, 5 member.

In the above statement, a A}, ordinal is simply an ordinal coded by a A}, ., real.
We will make this notion precise below. The generalizations of the Kechris-Martin theorem
simplify the complexity of descriptive set theoretical statements. This means that results
like the above allow us to obtain better bounds in computing the complexity of objects we
encounter in descriptive set theory. In addition to analyzing the structure of the L[T5,]
models, we apply the methods used in the proof of the generalizations of the Kechris-Martin
theorem to show that certain lightface sets of reals admit lightface scales. The advantage
of this method is that it avoids any reference to periodicity phenomena in L(R) under
determinacy as in the third periodicity theorem of Moschovakis. From these scales, we

4although this is not literally true as we show in chapter 4



construct canonical trees Ty, which project to universal T3 sets of reals, in the same vein
as the Martin-Solovay tree construction. The main technical lemma which is used in the

construction of lightface scales on projective sets of reals is the following:

LEMMA 1.5. Let T be a tree on w X w X 83, which is homogeneous with measures W,
i.e., the n-fold products of the normal measure on 8, ,. Assume also that T is A}, ., in the
codes. Then there is a c.u.b. C' C 83,1 which stabilizes T and such that C' is A}, 4 in the
codes.

As mentioned above, the above generalization of the Kechris-Martin theorem is central
in showing that the L[T5,] models do not depend on the choice of universal IT3  sets and the
choice of scales on the universal sets. In prior work, Hjorth has choice that the model L[T5]

is unique. The proof however depends on the theory of sharps.

THEOREM 1.6. The models L[Ty,] are independent of the choice of the I13, universal set A
and of the choice of the scale g on A.

Since the models L[T5,] satisfy AC, these models cannot satisfy significant amount
of boldface determinacy. We do not know how much boldface determinacy holds in these
models. It turns out the the L[T5,] models can be characterized precisely using inner model
theory. Woodin has conjectured that the models L[T3,]| satisfy the GCH, for every n € w.

We give a positive solution to this conjecture.

THEOREM 1.7. Let Miﬂm be the HOD limit associated to MEJZH, where M#nﬂ is the

manimal active mouse with 2n + 1 Woodin cardinals. Then
L[Ty,) = LIMZ, 11 o]

Moreover L[Ty, 2] N V,{%HB is an extender model, satisfies the GCH and thus LT, F GCH.

The above result is the counterpart to Steel’s result that the Hr models, in the case
where T is a IT}-like pointclass, are extender models. A proof of the above theorem can be
found in section 4. We thank Grigor Sargsyan for having introduced us to this topic and for

providing invaluable help in showing the above result. We are also thankful to Hugh Woodin



for very helpful discussions on how to show that the GCH holds in the L[T5,] models. The
Hr models are defined as follows. Let T' be a pointclass which resembles IT{. For A a set of
reals in I', let p: A — § be a regular I' norm onto §. By definition, I' is w-parametrized, so

let G C w x R be a good universal set in 3*I". Define the set P, C w X § by
P,s(n,a) > Jx(z € AN p(z) = aANG(n,x))

Then if AD holds we let Hr = L[P,|. Moschovakis has shown that the models Hr do
not depend on the choice of universal set and norm. Subsequently Becker and Kechris
have shown that for I' = II}, _,, HH%n+1 = L[Ty,41] where Ty, ;1 is a tree which projects
to a universal I3, set. In addition, Harrington, Kechris and Solovay have shown that
R N L[Ty,41] = Cap12 using descriptive set theoretical methods. Later in the 90’s, Steel has
shown using the HOD analysis, that the model Hr satisfy the GCH for I" a pointclass which
resembles [T}, by showing that they are fully sound extender models. Theorems 1.5 and
1.6 above are thus counterparts to this analysis but for the IT}, pointclasses. Part of the
difficulty in the analysis is that the II3, do not have the scale property. Furthermore there is
a difficulty in directly trying to show that the GCH holds in these models and this requires
adapting the HOD analysis to our context. In this same line of investigation, we have the
following characterization of the set of reals of L, [T, 2] in terms of Q-theory ® which follows
from the generalizations of the Kechris-Martin theorem. We show the following at the end

of section 3.

THEOREM 1.8. Assume AD and let k be the least admissible above k3, .5 Then

Q2n+3 = LK[TQn_A,_Q] N R.

A lot more can of course be said on the interactions between descriptive set theory and
inner model theory , but this requires us to go to the context of axioms of determinacy which
significantly go beyond AD and which belong to the Solovay hierarchy. In particular, beyond

ADE® one consider determinacy axioms based on AD' and models of the form L(P(R))

"We define the notions of Q-theory in the last section of chapter 3



and L(I',R). This is the area of modern descriptive inner model theory. We will not touch
on this important interplay between inner model theory and descriptive set theory. Instead
we limit ourselves to study the structure of L(R) under AD and for this goal we may use pure
descriptive set theory or inner model theory. Extending the context of this paper, we believe
most of the theorems proved using combinatorial methods in this paper can be proved using
inner model theoretic tools. These tools also have deep applications to Q-theory. We leave

the aspect of this subject for a different paper.

1.2. Preliminaries and Basic Notions of Descriptive Set Theory

The purpose of this section is to introduce the notions and objects we’ll use in the
paper. We introduce here the basic notions of descriptive set theory used throughout the

paper. We will introduce the inner model theory notions as they come along in section 4.3.

We will work in the theory ZF+DC+AD. In some places we may use AD*®) so one
could think of the work as taking place under ZF+DC+AD™.

Although we use R for the set of reals in the paper, it is standard to identify the set of
reals R with the Baire space w“ (this can be done by using continued fractions to show that
the set of irrational numbers is homeomorphic with w® for example). So whenever we use
R, we actually really mean w®. The advantage of this shift is that w* is now homeomorphic
with (w*)?. Reals simply become w sequences in w, instead of Dedekind cuts, which are very

complicated objects in themselves.

Any sequence (z; : i < n) with z; € R for every i < n can be coded into a single real

via a recursive bijection
(X1, ey Tp) = (X1, oy Ty

We will also let x — ((2)o, ..., (z),,) denote the decoding map. We'll often drop the parenthe-
sis and just write x; instead of (z);. It is also true that countably many reals can be coded

into a single reals and the coding real will be denoted by (x,,).

A tree T on a set X is a set of finite sequences (1, ..., z;) from X closed under initial



segments, that is,
whenever (z1,...,x;) € T, (21, ...,z;) € T, for any i < j

Letting s = (21, ..., ), it is standard to denote the length of s by lh(s). For s,t € T, we
say that t extends s, denoted by s <t if [h(s) < [h(t) and ¢ | lh(s) = s. A branch through
the tree T is an infinite sequence f = (¢, 1, ...) such that for every n, f [ n € T. If the
tree T has a branch then it is said to be illfounded, otherwise it is wellfounded. The set of
all branches of a tree T is called the body of T" and is denoted by [T]. All trees in the paper
will be in the descriptive set theoretic sense outlined in this paragraph, that is they will have
height w.

Although one could define the notion of a tree T on a general perfect product space
X=X x..xX,, where X; =R or X; =w,

we will not need this more general notion and prefer to concentrate on the basic case where

T is a tree on w X k where k is an ordinal. This move is harmless as suggested below.

DEFINITION 1.9 (I-measurable function). Let I" be a pointclass and X, Y two Polish spaces.

We say a function f: X — Y is -measurable if for every open set U C Y, f~1(U) € T.

THEOREM 1.10. Any Polish space X is a continuous surjective image of R wvia a AY-
measurable function.
It is standard to identify (w x k)<“ with w<* x k<“  since they are homeomorphic

and when we write the former we always mean the latter.

Let T' C (w x k)<“. The projection of the tree T" is defined as
plT)={x:3f € k(x| n,f | n) €T), for every n}.
The section of the tree T" at x € R is

T, ={s:(x [lh(s),s) eT}.



The notion of a left-most branch is essential in the context of scales on sets of reals, so we
proceed to introduce it. For T on w X k it makes sense to speak of the left-most branch
since w X k comes equipped with a natural wellordering =< it inherits from the ordinals.
The left-most branch [ is the lexicographically least branch in the wellorder =<, that is

for all branches g € [T,
f # g — for the least n such that f(n) # g(n) we have f(n) < g(n).

For T be a tree on w x x and for x € R, the natural wellordering < on x induces a
linear order on 7, called the Brouwer-Kleene order <gr. The linear order <ggx is defined

as follows:

s <pg t <> s<9tVIn <min{lh(s),lh(t)}

such that s(n) # t(n) and for a least such n, s(n) < t(n).

The Brouwer-Kleene, on T}, is a wellordering if and only if T}, is wellfounded, that is p[T] = 0.
It is standard to use the following notation in computations involving trees and sections of
trees: |T,(s)| is the rank of s in T, and it is denoted by |s|r,. Also |T, | a(s)| denotes the

rank of s in the tree T, | a, if T}, | a is wellfounded . We define T, [ a = T, Na=* as follows:
T.la={seT,:s(i) <a,Vi<lIlh(s)}

Also, we denoted this by |s|r, . Instead of writing T, | a(s), we will often write T}, | a(6),
after identifying finite sequences of ordinals, s, with single ordinals (say via Godel’s pairing
function for example).

AD is the statement that every two player game on N, with perfect information, is
determined. This means that given an A C R, players I and II play integers and a run of
the game is an = € R and I wins the run of the game if and only if z € A. Equivalently, II
wins the run of the game if and only if © ¢ A. This basic game will be denoted by G 4.

A measure on a set A is a countably complete ultrafilter on A. Recall that under AD
every ultrafilter on a set A is countably complete. This follows from the fact that of u is a

non-principal ultrafilter on w then p is non-measurable and does not have the property of



Baire ©. Recall that AD eliminates the pathological sets introduced by AC. In particular, AD
implies that every set of reals has the perfect set property, the Baire property and is Lebesgue
measurable. Notice that we are not studying AD in the hope that it will be adopted as an
axiom to be added to ZF. The situation is a bit more subtle: determinacy is a phenomenon
which naturally occurs in symmetric submodels of generic extensions of HOD and as such
determinacy can help study the large cardinals hierarchy.

Next we introduce basic notions of the theory of pointclasses which we need through-
out. A pointclass I' is a collection of sets of reals closed under continuous inverse images,

that is:

if f:R — R is continuous and A CRis €' then B = f'[A] €T

For example X! and Y2 are two examples of pointclasses. Subscripts denote the numbers of
quantifiers involved in the syntactic formula defining the set belonging to the pointclass and
superscripts denotes the type of objects which fall on the scope of the quantification.
Wadge reduction is a central concept in descriptive set theory. Wadge reduction
provides a measure of the complexity of sets of reals. For two sets A, B C R, we say A
is Wadge reducible to B and write A <y B if and only if there is a continuous function
f : R — R such that B = f~![A], i.e computing membership in A should be no more
complicated than computing membership in B. In other words, A <y B if and only if there

is a continuous function f : R — R such that for all z,
re A+ f(xr) € B.

So a pointclass I' € P(R) is a collection of sets of reals closed under Wadge reduction. One
basic consequence of AD is Wadge’s Lemma with says that any two sets of reals can be

compared simply by the continuous substitution and taking complements. In particular

A<, B A= f7B.

6A set of reals X has the Baire property if it differs from an open set by a meager set



It is a very useful fact in descriptive set theory that the relation <y, is wellfounded, and this

is due to Martin and Monk. Given a pointclass I', we have the dual pointclass
['={A:A°cT}.

Recall that there are two hierarchies of definability: the lightface hierarchy and the
boldface hierarchy. Sets of reals are said to be lightface if their definition does not involve
reals as parameters in the definitions and they are boldface if reals parameters are mentioned
in the definitions. As customary, lightface pointclasses will be denoted by I" and boldface
pointclasses will be denoted by I'. The boldface pointclasses can be derived by relativizing

the lightface pointclasses:

L=JrI@)

In other words, for X C R
X el +— IX*CR* X* €T and some z € R such that X = X} = {y : X*(z,9)}

The most robust notion of definability one can have if that of ordinal definability. In
the lightface case we talk about OD sets of reals and in the boldface case we talk about
OD(RR) sets of reals, that is we are allowed real parameters in the definition of the sets.

If T is a pointclass, we say U C R? is a universal set for [ if and only if for every
B e T, there is a y € R such that U, = B ={z: (y,z) € U}.

A pointclass is non-selfdual if and only if it is not closed under complements and a
pointclass is called selfdual if it is closed under complements. Under AD, Wadge’s lemma
implies that every nonselfdual pointclass has a universal set. Selfdual pointclasses do not
have universal sets by a diagonal argument. It is standard to denote selfdual pointclasses by

A and we’ll write

A=InT

The closure of [ under existential quantification is given by
F°L = {A: 3B € IVa(A(x) < IyB(z,)}

10



Notice that this is the same as taking continuous images by continuous functions f : R — R.
For instance, considering II9 the pointclass of closed sets then one has XY = Y1, namely
a continuous image of a closed set is an analytic set. One can also define VRL, which
is just I®L. The projective hierarchy is defined in analogous fashion: Yh = I and
[} = =YL, Another way to generate to the projective hierarchy is to look at J(RR), the Jensen

constructible universe containing all the reals and ordinals. We have that 3;(J;(R)) = 3]
and so IT;(J;(R)) = II}. Similarly, ¥5(J1(R)) = 23, 33(J1(R)) = X} and I1,(/1(R)) = 1.,
etc... So the projective hierarchy is entirely contained in Jo(R). At the higher up levels, the
pointclass of the inductive sets is given by X1(J.=(R)), where ¥ is the least R-admissible
ordinal. Also EIL(R) = ¥} = 51 (Jp2(R)), where 67 is the least stable cardinal of L(R). The

least stable ordinal " in L(RR) is the least ordinal § for which we have
Ls(R) <R [(R)

DEFINITION 1.11 (Levy pointclass). A Levy pointclass I' is a nonselfdual pointclass which

is closed under either 3% or V® or possibly under both.

There are other pointclasses than the Levy pointclasses, for instance the o(wn) — I1}
or the O"(wn) — II} are pointclasses which we will introduce later. These pointclasses are
used in central ways in the sections below for complexity estimates of norms. We remind

some basic properties of pointclasses.

DEFINITION 1.12. T has the reduction property if for all A, B € I" there are A’, B’ € [
such that A" C A, B’ C B,A'NB =(,A’"UB = AU B. [ has the separation property
if for every A, B € T" such that AN B = () there exists a set C' € A such that A C C and
CnNB=0.

One of the central properties a pointclass can have is the prewellordering property:
[ has the prewellordering property if every [ set admits a I’ norm, where a norm on a set of

reals A is a map ¢ such that ¢ : A — ORD. The norm is regular if it is into an ordinal .

Tsee [19] for a proof of this fact

11



DEFINITION 1.13. A norm ¢ is called a [ norm if the following norm relations are in I
<3, <p with:

r<,ycrcAN(y¢EAV(ye ANd(z) < d(y)))

r<zycr€ANYEAV(yEANI(T) < P(y)))

Notice that the prewellordering property is a way of splitting our I" set A into A

pieces. © is the supremum of the length of the prewellorderings of R, that is:
© =sup{a:3f:R— a}.

Under AC, © is ¢t but under determinacy © can exhibit large cardinal properties.

Recall that under ZF, we have the following:

1) if L is closed under V, PWO(L) — Red(L)
2) Red(L') — Sep(L)

3) if [ has a universal set then Red(L') — —Sep(L).

(1)
(2)
(3)
(4) (Steel, Van Wesep) Under ZF4+AD, if Sep(L) and for any A, B € A, ANB € I then
Red(L).

It is a classical fact of descriptive set theory that under ZF+AD for any Levy pointclass
I, either PWO(L) or PWO(L). Under ZF only, if T is a pointclass with PWO(L) then every
set in I*I" admits a VEI®T' norm. What gets us going through the Wadge hierarchy is the

first periodicity theorem:

THEOREM 1.14 (Moschovakis). Suppose that A-determinacy holds and that T is a nonself-

dual pointclass with PWO(L) then every set in VRI' admits a I*VET norm.

DEFINITION 1.15 (The scale property). A semiscale is a sequence of norms (¢,) on a set
A such that whenever we have a sequence {z,} C A converging to some z and for every
n, ¢n(x;) is eventually constant then z € A. If in addition we have the lower semi-continuity
property, ¢,(z) < lim ¢, (x;) then the sequence of norms (¢,) is a scale. A scale (¢,) is a
[-scale if for every n, ¢, is a [-norm. The pointclass I' has the scale property if every I set

has a [-scale.

12



A scale (¢,) on a set A is good if whenever {z,} C A and for all n € w, p,(x,,) is
eventually constant, then x = lim x,,, exists and x € A.

A scale (¢,) on a set A is very-good if (¢,) is good and whenever z,y € A and
on() < @u(y) then pr(z) < pr(y) for all k < n.

A scale (¢,) on a set A is excellent if it is very good and whenever x,y € A and

on(z) = pn(y), then z [ n =y | n.

DEFINITION 1.16 (Inductive-like pointclass). A pointclass [ is inductive like, if it is closed

under 3% VR and I has the scale property.

The following theorem is the second periodicity theorem. It shows that under suitable

determinacy assumption we can propagate the scale property.

THEOREM 1.17 (Moschovakis). Assume projective determinacy. Then every H%nﬂ and every

¥} have the scale property.

Recall that a set A C R is k-Suslin if there is a tree T" on w X & such that:
A=p[T|={z:3f € kn(x [ n,f [ n)eT}.

A cardinal k is a Suslin cardinal if there is a set A C R which is x-Suslin but not y-Suslin
for any v < k. The first few Suslin cardinals are Ny, N;, N, and N, ;. To draw an analogy
with ©, the supremum of all prewellorderings of the reals, 8; = §1 is the supremum of all
Al prewellordering of R. Similarly §1 = R, ® is the supremum of all Al prewellorderings
of R. Basically the problem of the continuum is viewed from the point of view of the Wadge
hierarchy. Scales provide sets of reals both with a Suslin representation and a notion of
definability associated to that representation. There is a basic relationship between having

scales and being Suslin:

FAacT 1.18. A set A C R is k-Suslin if and only if it admits a k-semi-scale if and only if it

admits a k-scale if and only if it admits an excellent k-scale.

8this is actually a theorem

13



Constructing a scale from a semi-scale turns out to be a fundamental problem in
descriptive inner model theory. Part of the work in this paper is to explore methods which
allow constructing scales on certain sets of reals.

We now state the third periodicity theorem. This is a result on the definability of
iteration strategies in integer games. The Third periodicity theorem is a very useful result
on lowering the complexity of winning strategies 7. For instance let A be a ¥} set and let
7 be a winning strategy for player II in the game G 4. Then the set of all winning strategies

for IT is computed to be IT3, , ;:
TEW & Va(r*[z] € A)

Assuming AD (Det(A3},,) suffices), the pointclass IT},, . | satisfies the Basis theorem (see [22]),
so there a winning strategy 7 € A}, .,. The third periodicty theorem states that one can

find a winning strategy in W which is A} ;. We'll use the results in several places in the

paper:

THEOREM 1.19 (Third periodicity theorem). Suppose T' be an adequate pointclass, Det(L)
holds and let A C R be in I' and admits a I' semi-scale. If player I wins the game G4 then
I has a OI'-recursive winning strategy o.

We now define the notion of a projective hierarchy in the general context. This is will

allow us to define the Steel pointclasses which we need for the next section.
DEFINITION 1.20. A projective algebra is a pointclass A which is closed under 3%V, A, —.

A nice additional closure property of A is, by Steel-Van Wesep, if A € A and if 3B
which is not ordinal definable from A then A is closed under sharps, i.e for any A € A,

A# € A. This would hold under 6, < © for example, where
0y = the least ordinal which is not an OD surjective image of R.

Next we introduce Levy pointclasses, one of the most basic objects in descriptive set

theory.
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DEFINITION 1.21. A Levy pointclass [ is a non-selfdual pointclass that is closed under either

3% or VR or possibly under both.

Recall that assuming AD, Wadge’s lemma says that for any two sets of reals A, B,
either A <y B or B <y R\ A. For any set A C R there is then a notion of Wadge degree.
We say that A C R is selfdual if the pointclass [y = {B : B <y A} is selfdual. The Wadge
degree of A is the equivalence class [A]y of sets Wadge equivalent to A if A is self-dual, that
is A <y R\ A and the pair ([A]w, [R\ A]w) if A is nonself-dual. Martin and Monk showed
that the Wadge degrees are wellfounded under AD. The Wadge degree of a set A is denoted
by o(A).

DEFINITION 1.22. o(L') = sup{o(A) : A € ['}, where o(A) is the Wadge degree of A.

Levy pointclasses are classified into 4 different projective-like hierarchies. Suppose I'
is nonselfdual and closed under either 3® or V* or possibly both. First let o be the supremum

of the limit ordinals 8 such that

(1) Ag={A:0(A) < B} is closed under both F* and V¥ and
(2) Ag CT.

We then have the following types of projective-like hierarchies:

e Type I: If cof(a) = w there is a projective algebra A (i.e closed under I* v A =)
of Wadge degree o whose sets are w-joins of sets of smaller Wadge degree. Letting
I'y = U, A then I'y is a nonselfdual pointclass at the base of a new projective like
hierarchy, A C Ty, T is closed under 3® and PWO(Ty). Ty is not closed under
countable intersections since I'y is nonselfdual.

e Type IT/III: If cof(a) > w then there is a pointclass 'y closed under V¥ with
PWO(Ty) of Wadge degree a.. Ty is not closed under I® in this case. Ty is generated
from a projective algebra A: Ty is the pointclass of ¥1-bounded cof(a) length unions
of A sets. If 'y is closed under countable unions and disjunction then I'y is said to

start a type III projective-like hierarchy.
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e Type IV: If cof(a) > w and Ty is as above and closed under 3* and V¥, then
PWO(I'y) but this can’t be propagated by periodicity as in types L,II and III. So
define II; = Iy ATy, II; is said to be at the base of a type IV projective-like
hierarchy. II; is closed under countable intersections, V*® but not under V therefore

not under I,

We refer the reader to [6] for more facts on the general theory of pointclasses.

We now introduce partition relations in the context of AD. Partition relations are
central in the context of AD*® for the internal structure of L(R), since many properties of
sets of reals rely on these relations. An example of such properties is that of homogeneity

and weak homogeneity.

DEFINITION 1.23. Let A be a cardinal and let s,~ be cardinals such that A\ < k,7 < k.

A

5, 1e for

Then we say that s has the weak partition property if for every A < k, kK — (k)
every partition F : [k]* — ~ of the set of increasing A\ sequences from & into « pieces there

is a set H C r such that |H| = x which is homogeneous for F, i.e F' | [H]* is constant. &

K

has the strong partition partition if x — ()~

Notice that in the above definition, if v > 2, then x — (k)3 holds. We will work with
partition into 2 pieces and we drop the subscript 2. It should be true that every regular
Suslin cardinal satisfies the strong partition property, but this turns out to be a very hard

problem. In general it should also be true that if [’ is a nonselfdual pointclass such that

PWO(L), V*L € I,U,L C L and N,L C T, then for
9 =qes sup of the length of the A prewellorderings of R,

0 should satisfy the strong partition property. In the next chapter, we extend previous results
of [14] with regards to which ordinals associated to a pointclass satisfy the strong partition
property. In particular it is shown in [14] that AD implies that for every x < ©, there exists
A > k such that A\ has the strong partition property. It turns out that the converse is also

true:
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THEOREM 1.24 (Kechris, Woodin, [18]). Assume ZF+DC+ V = L(R). Then the following
are equivalent:

(1) L(R) E AD,

(2) LIR) FVYA < O3k s.t k > ANk — (K)",

(3) L(R) EVA < O3k s.t k > AA Kk — (k)

See [18] for more on the equivalence of determinacy with strong partition properties.
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CHAPTER 2

A PROOF OF A CONJECTURE OF STEEL ON POINTCLASSES,
CHARACTERIZATION OF PROJECTIVE-LIKE HIERARCHIES BY THE
ASSOCIATED ORDINALS AND STRONG PARTITION RELATIONS

2.1. Closure property of the Steel Pointclass

In this section, we give a positive answer to a conjecture of Steel in [27]. We introduce

the Steel pointclass below and the background needed to show that the conjecture is true.

We fix a Levy pointclass I'. We let A be the pointclass associated to I' and obtained
by taking unions of all sets in A, where A =T'NT, and A is closed under 3%, complements
and finite intersections. Then we have that A C I' and A is the largest projective algebra
contained in I since it is closed under I*, complements and finite unions and intersections.
It can also be shown that A is at the base of a projective hierarchy containing I'. Let
a = sup{o(A4) : A € A} and suppose w < cof(«) (the case w = cof(«) is the case of a type
I hierarchy). By general theory of the Wadge degrees, we have a nonselfdual pointclass I'y
such that o(T'g) = a. One of T'y and 'y has the separation property, so let 'y be the side

with the separation property. It turns out that Iy is closed under V*:

THEOREM 2.1 ([17]). Assume ZF+AD. Let Ty be as above and assume that Ty has the

separation property. Then Ty is closed under 3X.

PROOF. The proof uses a variant of an argument by Addison which was used to show the
separation property for the pointclass 3. Suppose that there is a set A € S \ L.
Then by Wadge’s lemma, Ty € 3R,. Let P,Q € Ty such that PN Q = (. Since P,Q €
3Ry, then let A, B € 'y be such that P(z) <+ JyA(z,y) and Q(x) < JyB(z,y). Define
Al(x,y,2) < A(z,y) and B'(z,y,2) <> B(z,2z). Then AN B = and A", B’ € Ty. By the
separation property of I'y, let D € A such that A’ C D and B'N D = (. But now letting
E(x) <> 3yVzD(z,y,z), we have E € A since A is closed under F* and complements and

PCE,ENQ@=10. SoI'y has the separation property. Contradiction!
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We call I'y as above the Steel pointclass. Notice that there are no reasons why I'y
should be closed under V at this point.

Steel has shown that Ty is obtained by taking cof(«) length ¥} bounded unions of
sets in the projective algebra A. We now show how to generated I'y from A this way. So let
w < cof(a) = B, where a = o(A) and let T' be the Steel pointclass. So we have Sep(I") and
there is a set A € T'\ I such that o(A) = o. By the above theorem T is closed under V®. We
show that A is closed under unions of length strictly less than 3. We will need this fact to

generate the Steel pointclass from A.

LEMMA 2.2. Assume that A C P(R), then [ is the least ordinal such that for a sequence of

sets {A,}y<p, with each A, € A we have that |J,_; A, ¢ A

v<B

PRrROOF. Let < be a prewellordering of length 5 in A. Let ¢ be the least ordinal such that
there is a ¢ sequence of sets in A such that |J _; A, ¢ A. Then we show that § = 3. Notice
that 0 is a regular cardinal since if not then letting f : £ — § be a cofinal map for £ < § we
could obtain J, . A, ¢ A and then ¢ is not least. Suppose § < §. Assume § < a. We can
also assume that there is an oy < « such that for each v < §, we have |A,|w < ap, since
§ is regular. Fix then a nonselfdual pointclass IV C A such that I is closed under 3% A, V,
A, € I" for every v < 0 and such that there is a prewellordering of length 4 in I". Let
¢ : R — 0 be a I" norm and for each § sequence of I sets {A¢}e< let by the coding lemma
R(w,€) be a I relation such that
(1) ¢(w) = ¢(2) = (R(w, &) ¢ R(z,¢))
(2) R(w,e) — € € C where C is the set of codes of the I sets in the sequence {A,},<s.
C' can be defined using a universal [ set as follows: let U € I” be a universal set.
Then for every v < 0 we let ¢ € R such that U, = A,). Then C' € I".
(3) VwIe(R(w,e) NU: = Apw))

Then we have z € |J,_;A, < JwIe(R(w,e) Az € U.). So the union is in I".

<8

Contradiction!
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Next, assume o < 0. Let [ C A be a pointclass as above. Consider a sequence of I

sets {A, },<s and define the natural prewellordering < defined by
x <y <> 31,72 such that (3 <Az e A, \Acy, ANye A, \ Acy,)

Notice that there is an ap < « such that for every v < a, we have | <, lw < g, where <

has length 7. So for each v, we have <,€ A. But now <=} <, is a prewellordering of

<o
length o in A, since A is closed under unions of length o by minimality of §. Contradiction!
If 0 < B then since § < « then we still have § < o and we would get a contradiction

using the coding lemma as above. So we must have § > . In case § = «, then « is also

regular and so a = 3. So § = 3.

Continuing, we have from the above lemma A C 5 A. We cannot have that
UsA = I'. To see this, let A, B € T'. Then let {A,},.5 be a sequence of sets in A such that
A=U,.34, and let {B,},<5 be a sequence of sets in A such that B = J,_, B,. We first
show that T has the reduction property. Define the set A’ by

reA Ip@eA, nzé | B,)

Y<71

and define the set B’ by

reB ¢ Im@eB, Are | A)

YN
Then notice both A" and B’ are in T'. Also A’ C A and B’ C B and A’N B’ = (). So Red(I").
But recall that we also have by assumption Sep(T'). We quickly justify that the reduction
property and the separation property can’t both hold for I'. Let A, B € I'. Then by Red(f),
let A" and B’ be disjoint sets such that A C A and B’ C B and AU B = AU B. Let
U € T be a universal set which codes the pair of sets A’, B’ by A'(z,y) + U((x)o,y) and
B'(z,y) <> U((2)1,y). Now let C' be a set in A which separates A’ from B, i.e A’ C C' and

CNB =0. Now let D be an arbitrary A set. Then there exists a z € R such that
D(y) e U(z)o (y) A4 _|U(Z)1(y)'
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Then we have that D(y) < A.(y) <> —B.(y). But then D(y) < A.,(y) < —B.(y). So
D(y) <> C.(y), because C' € A separates A’ from B’. So every A set is coded as a section
of a single A set. But selfdual pointclasses can’t have universal sets: if U € A is universal
for A sets then U € T and U € I". Then define A(x) <+ =U(z,z). Since A is closed under
recursive substitutions, then we have A € I'. So there exists a z € R such that A = U, but
now we have A(z) <» U(z, z) <> = A(z). Contradiction!

Therefore, by Wadge’s lemma we must have that I" C s\, Since A is a projective
hierarchy then 3T C [ J, A.

We say that a union A = J,_; A, is X}-bounded if

a<d

for any ¥} set S C A, there exists a y < § such that S C A.,.

Let T'; be the pointclass of Yi-bounded 3 length unions of A sets. Using the above set up,
it is then shown in [27] and [17] that [' = I';. So the Steel pointclass corresponding to the
projective algebra A can be characterized as all sets which are Xi-bounded S length unions
of sets in A. We proceed to show that the Steel pointclass has the prewellordering property
(see [27]). This will motivate a different characterization of the Steel pointclass which we

will adopt in the rest of the section.

THEOREM 2.3 (Steel). Let A be a projective algebra with o = o(A) and assume that w <

cof(a). let T be the Steel pointclass corresponding to A. Then PWO(T).

PROOF. Let 8 = cof(a) and let A C R be a complete I' set of reals.Let A = |J,_z A, be

<8
an increasing 1 bounded 3 length union of sets such that for each v < 8, A, € A. Let ¢
be the natural norm in A such that for x € A, p(x) = least £ such that z € A;. The norm
<}, associated to ¢ can be written as |, _; B, where B,(z,y) ¢+ x € A, Ay ¢ A,. Then for
each v < 3, B, € A. Tt remains to show that <€ I". We proceed to show that < is ¥l
bounded. So let S C R x R be a ¥} and S C<}. Notice that if S(z,y) holds then z € A.
Since by assumption U7 <8 A, is a X1 bounded union, there is a 7y < /3 such that whenever

S(z,y) holds x € A, .If p(z) < p(y), then there is a v < 7y such that x € A, ad y ¢ A, and

B,(x,y) holds. So <€ I'. A similar computation shows that <7 € I'. So PWO(T).
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Gathering all the facts above we characterize the Steel pointclass as follows:

DEFINITION 2.4 (Steel pointclass). If A is selfdual, closed under real quantifiers, o(A) has

uncountable cofinality, A is not closed under well-ordered unions, then the Steel pointclass

is the pointclass ' such that A =T NT, T is closed under ¥* and PWO(T").

Since the Steel pointclass is nonselfdual and closed under V¥ then it is closed under
A. A natural question which arises then is whether the Steel pointclass is closed under V.
The following theorem below shows that what prevents closure of the Steel pointclass under
V is the singularity of o(A).

To introduce the following theorem, recall that if I" is a nonselfdual pointclass closed
under V® and V, and if ¢ : A — & is a regular I'-norm on a I'-complete set A, then for every
B €T such that B C A, there is a < & such that sup{¢(z) : € B} = n '. In this case
we say that ¢ is [-bounded. Similarly say that a norm is s-Suslin bounded if for every set

B C A which is k-Suslin ,sup{¢(z) : . € B} < for ¢ : A — 7.

THEOREM 2.5 (Steel, [27]). Suppose Sep(T') and suppose A = T' N T is closed under 3%,
Assume A € A and that there is a norm @ : A — X\ which is Yi-bounded, where X\ =
cof(o(A)). Then there is a B € I such that ANB ¢ T.

A variation of the proof of the above theorem, shows the following limitation to the

closure of the Steel pointclass under V.

THEOREM 2.6 (Steel). Suppose Sep(I') and suppose I*A C A and o(A) is singular. Then

I is not closed under intersections with A sets.

PROOF. Let o = cof(0(A)) < o(A) and let {x, : v < a} be a cofinal sequence in o(A). Let

U be a universal " set. Let A € A and let ¢ : A — « be a A norm of length . By the
Lsee [22], 4C.11 for a proof of this fact
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coding lemma there is a relation P such that
P(z,e) > VaIe(xr € A = Uy, = UGy, AUy lw 2 Fpa))
Notice that P € A. Now define the relation R as follows:
R(z,e) <+ x € AN(e)o & U,

Then R € T'. But since the set {|R|w : © € A} is cofinal in o(A), then R ¢ A andso R ¢ T'.

Also R can be written as:

R(z,e) <> x € AN () € Uy,

and so R is the intersection of a set in A and a set in I which is not in I

U

Steel conjectures whether the regularity of o(A) would imply closure of I' under

intersections.

CONJECTURE 2.7 (Steel, [27]). If T" is the Steel pointclass such that o(A) is regular and

FRA C A then T is closed under V.

Notice that the conjecture can be rephrased by asking that if Sep(f), FA C A
and o(A) is a regular cardinal, then (),T' C I, and this is actually how the conjecture was
originally stated.

The proof of the conjecture relies on a generalization of the boundedness property

which we discussed briefly above. As in [27], let
C={o(A): F*A C A A Ais a selfdual pointclass}

Notice that there are cofinally many in © such ordinals k € C|, since these are the places
where we are at the base of a projective-like hierarchy of type II, III or IV. If k € C' and
cf(k) > w then, as noted above, Steel shows in [27] that there is a Steel pointclass I' such
that o(A) = k.

The following is a weaker version of the main conjecture. Essentially it says that the

Steel pointclass is closed under unions if A contains the x-Suslin sets where k < cof(o(A)).
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The proof uses the Martin-Monk method which exploits the fact that a certain strategy flips

membership to construct two disjoint sets which are comeager.

THEOREM 2.8 (Steel, [27]). Let T be nonselfdual, closed under V® and such that PWO(T).Suppose
that IA C A. Then T is closed under union with r-Suslin sets for k < cf(o(A)).

This is turn gives the following boundedness principle:

THEOREM 2.9 (Steel, see [6]). Let v < © be a limit ordinal. Then there is a set A C R and
a norm ¢ : A — v which is onto and k-Suslin bounded for all K < cf(7y).

Therefore Steel’s conjecture is true in the least initial segment of the Wadge hierarchy
containing the inductive sets, IND, since by a result of Kechris, every A C R € HYP is k-
Suslin for k < x® and scales can be localized to smaller pointclass within HYP. This implies

the following corollary:

COROLLARY 2.10. If T is the Steel pointclass and IND C T', then for A € IND,B € T', we
have that AUB € T.

Our goal is to generalize the above boundedness principle to all sets in A associated
to the Steel pointclass I'.

Let A be a selfdual pointclass such that F®A C A. Let x = o(A) be such that  is
regular. Let ' be the Steel pointclass above A, so we have VEI' C I" and PWO(T"). We will
show that A sets are bounded in the norm, which turns out to be the same as I" being closed
under V by the lemma below.

First, we introduce the pointclass 3i(A), for some A C R. We will need this notion

in the proof below.

DEFINITION 2.11. Let A C R. X{(A) is the pointclass of all sets B such that:
B(z) < C(z) vV Iy(Vn(y), € AN D((z,y))),

where C' and D are X sets.

Notice that ¥1(A) is a pointclass which contains A, is closed under 3% Vv, A. Let
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C = 0, then we have A(z) + Jy(Vn(y), € AN D((z,y))), where D(z) <> Vi,j(((2)1); =
(2)1); Ax = ((2)1)0). D is a X1 set and this shows that A € X1(A). Also notice that Xi(A)
is indeed a pointclass since taking the preimage of a set in X1(A) yields another set with
complexity ¥1(A). Next we show closure of X1(A) under V. Let B, B’ € ¥1(A) be written as
B(z) < C(z)VIy(vn(y), € AND((z,y))) and B'(z) <> C'(z)V Iz(Vn(z), € AND'({x, z)))
where C,C’, D, D' € ¥1. Then we have

(C(x) V Iy(Vn(y), € AND{z,y)] VI[C'(x) VI2(Vn(2), € AAND'((z,2)))] <
F(z)V Iw(Vn(w), € AN (G((x,y)) VG({x,z))))

where F' = C'U (" is a X} set since X} is closed under arbitrary unions and G = D'U D is a

Y1 set since X} is closed under recursive substitutions. We next show that X1(A) is closed
under 3%, Let B € X{(A) be given by B((z, 2)) > C((z,2))VIy(Vn(y), € AND({{z, z),y)))
and let U(z) <> 32B({x, 2)) with C, D € ¥{. We show that U € Xi(A). But notice that

F[C((x, 2)) V Fy(Vn(y)n € AN D(((z,2),9)))]
is logically equivalent to
32C((z,2)) V Iy(Yn(y), € AN F2D(((z, 2),y))),

using that X7 is closed under existential quantification. Finally %} (A) is closed under A. To
see this again let B, B’ € X}(A) be written as B(z) <> C(z) V Jy(vVn(y), € AN D({x,y)))
and B'(z) +» C'(z) vV 32(Yn(2), € AN D'((z,2))) where C,C’, D, D' € 1. We want to see
that B(x) A B'(x) € X1(A). Then we consider

[C(z) vV Iy(Vn(y), € AAND{(z,y))] AN [C'(x) vV Iz(Vn(2), € AN D'((z,2)))].

To compute this just notice that when the whole expression is unfolded, the X1 set C’ can
be pushed in the second disjunct defining the set B past the quantification over y so that

we have
C'(x) A 3y(Vn(y)n € AN D((z,y))) <> Jy(Vr(y), € AN D((z,y)) AN C')
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and D((z,y))AC" is now a ¥ set. Similarly for C' and 3z(Vn(z), € AAD'((z,z))). Also when
the expression is unfolded one writes Jy(Vn(y), € AAND({(x,y)))AIz(Vn(z), € AAND'({x, z)))

as

Fw(Vn(w), € AN Jeo, e1(D((x,€0)) A D'((w,1))) AVj((€0); = (w)a; A (€1); = (W)aj41)-

¢

So w is now a single real witnessing the above conjunction in a “zig-zag” way. Notice that

Jeo, e1(D({z,e0)) A D'({z,21))) is still a X1 set and Vj((g0); = (w)a; A (€1); = (w)aj11) 1 A

These closure properties of $1(A) will be important below. The pointclass X1(A)
also has a universal set which comes from the universal set for X} sets in a natural way. Let
U C R? be universal for ¥i sets of reals. Then define V(e,z) +> Ul(gg, z) V Jy(Vn(y), €
AN Ule, (z,y))). Then V € L1(A) and is universal for X1(A) sets of reals by letting
C(x) +» Uy (z) and D({x,y)) <> U, ({x,y)) be the two L] sets coded by &y and €;. Since we

sometimes use the recursion theorem, we go ahead and recall the statements of the s-m-n

and the recursion theorem:

THEOREM 2.12 (s-m-n-theorem, recursion theorem, Kleene). Let I be a pointclass with a
universal set. Then there are universal sets Uy C R x X, for all perfect product spaces X

with the following properties:

(1) (smn-theorem)
For every X = X1 x ... x X, and Y = X; x ... x X, X ... Xx X,,,, where m > n,

there is a continuous function sy xy : R X X — R such that

Uy<y7$17 vy T, "7xm) — UX’(Sy,X(yaxla "7xn)7xn+17 "7xm)a

where X' = X, 11 X ... x X,
(2) (Recursion theorem)
For every perfect product space X = X1 X ... Xx X, and I" set A C R x X, there

1s a y* € R such that for all ¥ € X,
Ux(y", @) <— A(y", 7)
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We next show the following theorem, which reduces Steel’s conjecture to the question
of whether A sets are bounded in the norm. We say that A sets are bounded in the norm if
there is a A-bounded norm, that is a norm ¢ : P — & for some ordinal x and a set P C R

such that for every A set S C P, sup{p(z):x € S} < k.

THEOREM 2.13. Let I' be the Steel pointclass and let A = T N T be such that IRA C A.

Then the following are equivalent:

PROOF. Let I' be a nonselfdual pointclass such that 3*A € A, PWO(T") and T is closed
under V®. (1) — (2) holds because we have =Sep(T'), this is theorem 2.2 in [27]. (2) — (1)
is immediate. That clause (2) implies clause (3) is also immediate. We next show that (3)
implies (2). So let A, B € I'. We show that AU B € I'. Since Red(I') holds, we may assume
that AN B = 0. Let A = J,_, Ap and B = (J;_, B where a is the ordinal such that
U, A € A. Define
I*={ |J 4a:Va(Aa € A)A ] Aqis A bounded}
a<o(A) a<o(A)

Cram 2.14. T* =T

PROOF. We have I'* C T since every set on I'* is a ¥1-bounded union of set A sets. We next
show that ' C T*. Solet A € T'\T. Let A = Upea As with Ag € A for every 8 < o and o
is least such that [J, A € A. We may assume that the union is increasing. Let ¢ : A — «
be a Xi-bounded I-norm on A. Let {ks : 8 < a} be cofinal in o(A). Let U be a universal

I' set. Define the Solovay game as follows:

I (w,y,z)
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The payoff condition is then defined by:
Player II wins iff € A — (U, = US = Ay A |Uylw > Fop))-

Since ¢ is Yi-bounded then Player II has a wining strategy 7 for this game. Then let
R(z,w,y) < x € ANw="T(2)o AUsr@m), = Ap) N Y & Ur@a),-

Then we have that {|R,;|w : * € A} is unbounded in o(A) and so {|Aglw : 8 < a} is
unbounded in o(A).

Next for g < a, let
Cs = {(x,y) 1y € Agy1 \ Ag A x codes a continuous function f, s.t f,'(Az) C A}

Then for every 3 < a, Cj is defined as (A AVR(AVT)) and so because we are assuming that
I' is closed under unions with A sets, we have for every 8 < a, Cg € I'. Let C' = UB<a Cp.
Then another Solovay game argument as above shows that C' € 3®I". Actually one can show
that C € T". Notice that because I*A = A and because I' = | J_, A, then I*T" C [J_, A. So
let Dg € A for every 8 < a such that C' = [Jz_, Dg. We may assume that the union is

increasing. Define the sets Bg by
Bs(z) <> 3(x,y) € DIy < By € A1 \ A, A fo(2) € A,).

Then Bs € A. Notice that A = {J,_, Bs and Uy, Bs is A-bounded since every A set is
coded as a set f, '(Ap) for some § < a.

0

Now recall that A = {,_, A and B = (J,_,, Bs. These unions are A-bounded and
increasing with each Ag and B in A. We show that J;_,(As U Bg) is A bounded. Then
let €' C Upo(As U Bg) with C € A. Then CN A € I' as I' is closed under intersections.
Also CNA=CnNBand CN B eT, since by assumptions I is closed under intersections
with A sets. So C N A € A and 3y; < o such that C N A C A,,. Similarly, there exists a
72 < acsuch that CN B C B,,. Let v = max(y1,72). Then C C A,UB,. So AUB €I and
U, CT.

28



Finally it just remains to show that A sets are bounded in the norm if and only if
[ is closed under unions with A sets. Recall that o(A) = k is regular. We’ll make use of
this in the proof. Suppose first that A sets are bounded in the norm. We need to see that
I' is closed under unions with A sets. So let A € I' such that A = (J,_, As with Ag € A for
every 3 < r and let B € A such that B = (J;_, Bs for some o < k with Bs € A for every
B < «. It suffices to show that AU B is A-bounded. We may assume that the unions are
increasing and continuous, that is at all limit ordinal v < x we have A, = sy Ap. So let

C C AU B such that C € A. We also have that

AuB=JAsulJBs=JsuBs)U | Ae

B<k B<a B<a a<é<k

But notice that we must have J,_,(As U Bg) € A since k is a regular cardinal, a < &
and since cof(k) = k is least such that Ucof(n A ¢ A Solet D= Jz.,(AsgU Bg). Then

CuUD e A. Sowehave CUD C (J =4y A" = A, since the union is continuous.

acgan
Let ¢ : A = k be the natural norm defined by ¢(x) = the least £ < s such that x € Ag.
Since A sets are bounded in the norm and since k is regular, there exists a £ < k be such
that C UD C Ag. So the union AU B is A bounded. Next we must show that a union is
A-bounded union of A sets if and only if it is a ['-complete set. This will ensure that AU B
isin D\ T. Solet A =J,., As be a A-bounded union of A sets. We need to see that A
is I\ I'. We start first by showing that our assumption implies that if A € T’ \ ' then A
is a A bounded union of A sets. By PWO(I'), let ¢ : A — k be a I' norm. Since A sets
are bounded in the norm then for any A subset of A, C A, there exists an § < k such that
elements of A, are sent before 5. In addition every initial segment of the norm ¢ is a A set.
So A is a union of A sets which are A bounded. Now we justify why any A-bounded union

of Asetsisin T'\I. Solet A=J,_, A, be a A bounded union of A sets. We may assume

that the union is increasing and continuous. Consider the following game:
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I (w,y,z)

The pay off condition is determined by player II wins the run of the game if and only
if
re€A—=3aU,=U, =As Nz €U,y Nz €U,)

Then player II has a winning strategy 7. Next notice that
re|JAs & v € Urnyy ANUr), = Uy, N 7(x)2 € Ur(z),- Then ., Aa is in I' \ A. Thus
Uper Ao € T\ T
Finally notice that if T" is closed under unions with A sets, then I' is closed under
finite unions by the above and thus Moschovakis argument (see 4.C.11 in [22]) applies and
this implies that A sets are bounded in the norm. This finishes the proof.
OJ

The following now shows Steel’s conjecture. From it we obtain the above A-boundedness

principle.

THEOREM 2.15 (A, Jackson). Assume ZF+DC+AD. Let k be a cardinal such that o(A,) = Kk
where A, =T, NT,, and A, is closed under I, A and V. Assume Sep(lv“n). Let A < cof (k)
be a cardinal such that o(Ay) = X and A is closed under 3%, A and \V/, where Ay = Ty NT,.

Assume Sep(T'y). Suppose that T, N Ay C T'.. Then

(1) . NT, C T, and more generally if ¥ is the pointclass of \ length unions of A,
sets, then [.NXCrl,.

(2) Ty is not closed under real quantifiers then r.NT,CT,.

(3) Suppose cof (X) = w and let A be the pointclass of all countable intersections of Ay
sets, i.e A =), Ay then [.NACT,.

(4) Suppose cof(N) = wy and let A be the pointclass of all length wy intersections Ay

sets, i.e A =) Ay then T, N A CT,.. Moreover if A < k is a reqular cardinal,

a<wi

then T.. N A C I, where A is the pointclass of all intersections of Ay sets of length
A.
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PROOF. We begin by showing I',NI'y C I',. Let then A € T’y and B € T',.. Let A = Uper 4a
where for every a < A\, A, € A,.

Let 0 be a winning strategy for player I in the Wadge game G 4np g, that is:

r¢ B—o(r)e ANB
r€B—o(r)¢ ANDB
As in Steel [27], we define a sequence of winning strategies (o, : n € w) for I in the

game G anp p. Suppose oy is defined for all £ < n. We also let 7 be the copying strategy for

II. For any =z € R we let

o, ifx(n)=0
Tp =
T ifz(n)=1
73 T2 1 7o

x3(0) x2(0) 21(0) z0(0

(0)

z2(1) @1(1) @o(1)
71(2) 0(2)
o(3)

TABLE 2.1. Diagram of Martin-Monk games

At stage n we have a pair of A, inseparable sets C' and D such that D € I',.. That
is we have C C B¢ and D C B with D € I',, and B as above. Let E, = {z :0(x) € A,}.
Then we have E, € A,. Now by assumption we have that DN E, = D, € .. We show the

following claim:

CLAIM 2.16. For some o < A\, C'N E,, 1s A.-inseparable from D N E,.
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PROOF. Notice that since A < cof(k) and by the Coding lemma applied to I',, for some
a < A C, = CNE, must be A.-inseparable from D (otherwise C' and D would not be
A, inseparable, since C' = |, <, Ca. This then implies that C, is A, inseparable from
D, = D N E, since if not then let F' € A, separate C,, from D,, that is we have C, C F

and F'N D, = (. This would then imply that F' N E, separates C, from D.

Next, consider the game in which player I plays x and player II plays y and player I

wins iff

x¢ B—yeC,

reB—ye D,

Notice that player II cannot have a winning strategy 7 in this game since if 7 is a
winning strategy then we have y € C, — 7(y) € B and y € D, — 7(y) ¢ B. But this then
implies that C,, C 7~ %(B) and 7~ *(B) N D, = 0. But 77 *(B), D, € T'x so by Sep(I',.), there

is a A, set which separates C,, from D,, contradiction!

So fix a winning strategy p for player I in the separation game and let o, = o o p.
Notice then that = ¢ B — p(z) € C, C E,, so we have that o o p(x) C A, € A. Also
x € B— p(x) € D, C E, so we have that o o p(x) € A, C A. Therefore the strategies o,
always give a play which is in A. We also need to see that o,, flips membership in B for every
n € w. Notice that z ¢ B — p(z) € C, € B°so ogop(z) € B. Also x € B — p(x) € D,
and o o p(x) € A. Therefore o o p(x) ¢ B. So we have z ¢ B — cop(x) € AN B and
x € B— ogop(x) € AN B¢ This now allows us to derive a contradiction as in Martin-
Monk proof that <y is a prewellorder. Namely, let [ = {z € R : V*°nz(n) = 0} and let
M ={xz €1I:xy€ B}. M has the Baire property so there is a cone N, determined by some

s € w< on which M is meager or comeager. Let i ¢ dom(s) and let
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x(k) ifi £k
1= (k) ifi=k

T(x)(k) =

T is a homeomorphism and we have T” N, = N,. Recall that x; is the real obtained
after filling the diagram of Martin-Monk game. Then if # € I then T'(x), = x for i < k
and T'(z), € B if and only if 25, ¢ B if k <. So we have T"(M NI N Ng) = M°NINN;.
But since I was comeager, this is a contradiction. This finishes the proof in the case where
[, NIy CI.. Next we show the theorem in the case where I', N Ty C I..

Next let A = (,.\ Ao With A, € Ay, so that A € I'y. That is A is a ¥ bounded
intersection of sets in Ay, that is the collection {A¢},<x is a 3 bounded union of sets in

Ay. Let B € T,.. Next let ¢ be a prewellordering on a set ' C R of length A such that

(1) All initial segments of ¢ are in A,.

(2) F € T'y,that is F'is a ¥} bounded union of A, sets.

This is always possible since if I'y is a Steel pointclass closed under ¥® we can define
¢ € I'n. We will denote F' by F,. F, is of course in I'y. We will also let {F,},<\ be a A
sequence of Ay sets such that F,, = |, o Foisa Y1-bounded union of Ay sets. For every
a < A, we then consider the game where player I plays a real z and player 1I plays a real y
and player IT wins the run of the game iff + ¢ A — 3a3B(y € Fu Ap(y) = LAz & Ayy)).
Then II has a winning strategy p for this game by Yl-boundedness 2. Let o be as in the
previous case. We want to define a sequence of strategies (o, : n € w). At stage n we have
o, and a pair of A,-inseparable sets C,, and D,,, where C,, C B¢ and D,, C B. For a < A,
let B, ={z:poo(x) ¢ F,V (lJpoo(x)|=aAno(x)e A,)}. Notice that we have F,, € A,.
We also let as above C,, = CNE, and D, = DN E,. Then again by the coding lemma (and
since A < cof(k)). we must have that for some o < A, C, must be A,-inseparable from D
since if not D and C' would not be A,-inseparable. We must then have that C, must be

A,-inseparable from D,. Notice also that

Dyo=Dn{x:poo(z) ¢ F,} U(DN{x:|poo(x)]=aAno(z) € Au}).

2recall that A€ is a ¥t bounded union of Ay sets
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Then since the set {z : |poo(z)| =aAo(zx) € A,} and the set F,, are both in Ay and since
D e T, then D, must be in I',. Now as above we consider the separation game in which

player I plays a real = and player II plays a real y and player I wins iff

r¢ B—yel,

reB—yeD,

Player II cannot have a winning strategy 7 in this game since then if 7 is winning
for II then we have y € C, — 7(y) € B and y € D, — 7(y) ¢ B. This would then imply
that C,, C 7~(B) and 7 *(B) N D, = . But since both 7='(B) and D, are in T, then by
Sep(f‘,{), there is a A, set which separates C\, from D,,, contradiction!

So we fix a winning strategy e for player I and we let 0, = o0 o e. Notice that ¢
is winning for I for every a < A. Suppose first that po o oe(z) € F,. Then we have
x ¢ B —e(x) € Cy C E, and so we have g o e(x) € A, for every a« < A\. Also z € B —
e(z) € D, C E, so we have coe(z) € A, for every v < A. In both cases, if pococe(z) ¢ F,,
for every o < A, then o o e(x) € A, since p is winning for player II in the above game
involving F,.

Now as above this gives a contradiction by the Martin-Monk argument.

Finally, we show that if cof(\) = w and let A be the pointclass of all countable
intersections of A sets, i.e A = [, A, then [.NA CT,. Notice that Ty C N, Ax. We

let A e (),A\and B € I'.. We need to see that ANB € I',.. Let A = N A,,, where

nw

for every n < w, A, € A,. As above suppose not. Then this means that player I wins the

following Wadge game:

r¢B—o(xr)e ANB

re€B—o(xr) ¢ ANB
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o is a winning strategy for player I in the Wadge game G np . We wish to define
strategies o,, as above such that we can fill the diagram of Martin-Monk games and derive
a contradiction using the usual Martin-Monk argument. We then define the strategies o,
inductively. Suppose o, has been defined at stage n. We show how to define o,,, at stage
n+ 1. Define the set X; as follows: X; = {x:o(x) € AANTi(coo,0...00;(x) ¢ A;)}. Notice
that X; € A,.. Then there is an 7 such that BN X, is A, inseparable from B N A;, since

BN X; is A, inseparable from B. In addition we have (),_, BN A; = BN A. This means

<w

that we can run the separation game argument: player I wins the following game

r¢B—yeB‘NX;

reB—yeBNA;

The Martin-Monk contradiction can be carried out as above now.

O

Next we show that if A has cofinality wy, then I, is closed under intersections with the
pointclass A of w; length intersections of A, sets. So let A € A be such that A = ﬂa<w1 A,
where A, € A, for every a < wy. Let B € I',. Suppose again that AN B ¢ I',.. Therefore
we can fix a winning strategy o for player I in the Wadge game G4 snp. Again our goal will
be to define a sequence of winning strategies (o, : n < oo) for which we can carry out the

Martin-Monk contradiction. Recall that the Wadge game G4 4np is given by:

r¢ B—o(xr)e ANB
re€B—o(r)¢ ANDB
Notice that o flips membership in B if o(z) € A. For every o < wy there are strategies
for player I, 62,0l 02, ... such that the following Martin-Monk diagram of games is filled up,

that is for any z € 2 the strategies o' are picked. Notice that we cannot pick the strategies

ol in function of «a.

35



€3 ) X1 X

TABLE 2.2. Diagram of Martin-Monk games in the ¢f(w;) case

and such that for z € 2¥, the digits of z chose either the copying strategy 7 or o} for
a given n.The strategies ¢! have the following property. For every n,
(1) If x4y ¢ B, then 0, (xp41) = 050 ... 0 0p(xny1) € A, V) < n,
(2) If 2,41 € B then 0 ,(x,11) € Ay, Vj < n and
(3) If x,11 ¢ B then 07 (x,41) € B and if 2,,1 € B and 0”(z,41) € A then we have

oo (Tny1) & B.

We now show the following claim:

CLAIM 2.17. The strategies o)} exist, for any a < wy.

PRrOOF. We start with the case n = 0. First notice that if x ¢ B then o(z) € BNA C BNA,
and BN A, € I',. Now B and B° cannot be separated by a A, set, therefore B¢ cannot
be separated by a A, set from BN {z : o(z) € A}, which is in T, so there is a strategy
p for player I in the separation game such that if x ¢ B then p(x) ¢ B and if € B then
p(z) € BNo " A,. Then let 02 = 5o p. 02 has the above properties and flips membership.
We now show the general case. Assume that 03, ...,07" ! are defined. We show how to define
o”. As in Steel [27], this is done in 2" steps, depending on whether z € 2“ chooses T or .

Let

Xn+1 = {xn—i-l . O'([L’n_H) S AN S 7’L($1 ¢ A)}
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Notice that BN X417 = 0. Then B¢\ X,,;; and B are A, inseparable. This then implies
that B¢\ X4 and

BN {zp1:Vi<no oo™ o. 00" oo(rny) € An}

are A, inseparable. Then by the separation game we have a wining strategy p for player I

such that if z,.1 ¢ B then p(x,,1) € B\ X,11 and if x € B then we have
p(Tni1) € BN {py1:0 000" o(x,,) € A, for all i < n}.

Then let o]} = oo p.

O

Next by the Coding lemma and by uniformization we have function f : x — ¢ on
the set WO such that for x € WO, the strategies {07} are as in {o'} for a = |z|. We will
use the theory of generic codes of Kechris and Woodin. Fix then a generic coding function
fwy — R. Recall that o equipped with the product of the discrete topology carries all
notions of category. The function f : a® — R is such that Vo < wy,Va € o, f(a™d) € WO
and V*a@ € o”|f(a™d)| = x, where |x| = a. We now define a branch b € w{ which will be
used to witness that we have strategies for player I 6¢, &1, ..., G, ..., from which we obtain the
usual Martin-Monk contradiction. We define b = lim,,b,,, and b, € w. Suppose then that
b,_1 is defined. We show how to define b,,. In addition, we define a sequence of ordinals 6,
as we define the b, for all n. We also let by C by C ... Cb, C ... and b =, b,. First extend
b,—1 to b, such that there is a sequence t,, C s,, where s, € 2<% and t,, is the n'-sequence

in an enumeration of sequence in 2<%, such that

V*Wlla < wl‘v’zho_f € o, J?C(QA&) In,..., U?(QA&) ' n

i

are fixed. Here a}(aA&) [ m means we use z € 2* to decide whether we use 7 or Tfa—a) O
fill the Martin-Monk diagram. This fixes the values of oy [ n,...,7, | n.

Next fix a relation R(z,y) <+ v € WO Ay € Ay Let Jn be a scale on R. We
now define 6,(z) for all z € N, . By additivity of category, we will get t,, C s, such that

S

Vi 2bn(2) = by N On(2) = 0,. So fix z € N, and define 0,(z) as follows. Consider the game
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G, ~ as in Becker and Kechris: player I plays a real z; € 2* and a sequence of ordinals below
a, d, € o®. Player II answers by playing a real x5 € 2, a sequence of ordinals ﬁn € a”,
finitely many reals yo, ..., yn, finitely many sequences of ordinals €0, ..., €" < sup{i, }, finitely
many reals wy, ..., w,, finitely many sequences of ordinals 7y, ..., 7, each ordinals of which is
below w; and finitely many sequences of integers 7, ..., 7,. In addition player I must play

so that y; [ n = a;(aﬁ &)(z) I n. The payoff is defined as follows: player II wins provided

—

(1‘1 [n7aﬂa f”) ETWO_> ((xQ f”aar\grn) GTWO/\(Il f”#EQ f”,wl rna---awn rn7770 [

N, .,y [ n) €S),

where S is a tree on w® witnessing that
($1 [na |w1|7 ceey |wn|) € TWO r |l‘2| and (I27ly’i7€i) S TJ?

where T}, is the tree from the scale ¢. The relation (21 | n,|wyl, ... |wn|) € Tuo | |a2] is
Y1 in the codes for wy, ..., w,, x1, 2. This is closed game for II for if the run of the game
in infinite then II wins. For each z € N, and for each v < w; and each @ € o*, II has a
canonical winning strategy in G7, ;. We call this canonical wining strategy 7 ;. We define
0,(2) = (0°(2),...,00%(2)) and b, extending b/, to satisfy the following. We first extend
successively b/, to b0, b7, ..., b to obtain b7° C b7 C ... C bi». We will then let b, = b,

so that b, does not depend on which permutation we consider. Let m = m; be possible

permutations of n — 1. Let
bg = [(()40, ceny Oén_l) — bZ(Oéo, ceey O‘n—l)]W{l*L

This defines b, if we define b7 (v, ..., a,—1). Now we define 07 (2)(ag, ..., a1, @) and b7 (v, ..., 1)

by the following equation:
* * — w, 2, T zZ _ Y
W (0, ooy 1, Y (0 )@ € QFTLG =T 2(Q0, oy a1, @) = 07(2) (o, -y i1, @),

where 2, [ n = 7 and 7.7 is restricted to sequences @ order-isomorphic to the permutation

7. Notice that on a measure one set the strategies oy, ..., 7,, are defined.

38



We then have a comeager set G C 2“, which is the intersection of the comeager sets
N;, defined above, where the s, are dense in 2<“. By countable additivity of the measures
W we can fix the s, and by additivity of category, a comeager set for each s,,.

We now show this next claim:

CLAIM 2.18. For any z € G if we fill the diagram using the strategies &, if z(n) =1 and T

if z(n) = 0 then the resulting xo, x1, ..., Ty, ... are in A.

PrOOF. We show that z; € A,, for all o and for all . Fix a measure one sets A, with

respect to W, so that we have

W,__Z,T

W (@0, oy o1, )V (a0 an )@ € Q°T 5 = T4 a(Q0, oy anr, @) = 07(2)(qo, -y a1, @),

for all (a, ..., n—1, @) € A,,. Let C,, C wy be c.u.b sets generating the A,, and let C' =), C,,.
Let a > « be a closure point of C. Let x; € WO such that |z;| = a. Let (ag, aq,...) € C¥
be such that (z1, a, ag, a1, ...) € Two by homogeneity of Tiwo. This then defines the sequence
by = b(ay), by = b(ag, ). Let m, = z,, [ n. From the equation we have, we can fix m, m, ...

such that

*
bn(ao,“.,anfl)

a € a0 (z)(qo, .., an, @) = 75 5(00, -y 1, Q)
a run of G7 5 in which IT has not yet lost. This then shows that II wins G7, ; where player I
plays z; and (ay,aq,...) as above. In this run of G?, 5 the reals yo, y1, ... produced are equal

to 6o(2),71(2), .... So we have G,,(z) € A, for all n. Contradiction!

Finally the following claim concludes the proof.

CLAIM 2.19. Vn, &, flips membership in B in that if x ¢ B then &,(x) € B and if x € B
and ¢, (z) € A then 6,(z) ¢ B.

PRrROOF. We just have to modify the above game so that player I has to produce ordinals
do, 01, ... which witness (&, | n, 5 [ n) are in the tree witnessing the above two properties
of o. Therefore the &, have the above two properties. So for z € G, the &, then give a

contradiction in the Martin-Monk argument.

39



O

We next outline how to extend to the previous argument to work for any A < x with
A a regular cardinal. The set up is basically the same except we need to modify the definition
of the generic coding function f. We then start out by fixing a regular cardinal A and assume
that we are within scales. We fix a scale ¢ on a universal I'y set W. Again for every o < A,
one can show that the strategies o} exists. We may pick a A’ > A with \" < k such that the
scale ¢ appears. Notice that the scale ¢ may be a lot more complicated than I'y,. We also
let Ty be the tree from the scale and assume for notational simplicity that it is a tree on
2 x N,

Once the strategies o]} are shown to exist for every a < A then by the Coding lemma
and by uniformization we have a function f : W — {o]; } such that the strategies {o]},}
are as expected. Next we then define the generic coding function f : (A\)¥ — R. The only
difference is that now we need to take the supercompactness measures on w; into account
since these appear in the general definition of the generic coding function. Notice that f has
the following two properties:

(1) Ya < AVa € o f(a,d) e W
(2) Yo < A\VES € P, (N)Va € S¥|f(a, d)| = a, where f(a,d) =z and |z| = a.

The main points are the following. First we fix homogeneity measure (p,, : v € 2<
for the tree Ty,. As above we must define a branch b,, and the ordinals 6*(ay, ..., a;,) which
correspond to canonical strategies in the Becker-Kechris game. We then fix a neighborhood
determined by ¢, (recall these correspond to z € 2¢ which determines which strategies to
chose to fill up the Martin-Monk diagram) We then define for sequences u € 2<“ such that
Ih(u) = n the product measure ft, = [],p()=n) #u- We do this in order to handle all
possible sequences u of a speficic length in our quantifiers computations. Notice that if
ug C up then by homogeneity the measure p,,, naturally projects to p,,. However if we have
two sequence ug and u; such that ug Q u; and uq Q up then we must go to a more general
measure which projects to both pu,, and p,, in order to define the ordinal, §*. Notice that

the product measure p,, projects to each p,,, for i <k, some k£ < w and need not be normal.
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We define 0 as follows:

Vi 2Vu € 2" (o, e an 1)V S € Puy (V)Y (a0 ya € S0 (mu(ao, .y ) = 79 (1, (g, .ny Ot )]

seeesOn—1

and similarly for the definition of b}, where 7, is the projection map from the product measure
4 to the homogeneity measure p,,. The main important points is that when extending b,,
to b, we must use normality of the supercompactness measure v on P, (\) to stabilize
the extension of b, ;. The rest of the proof involving the Becker-Kechris game with the
appropriate modifications is now as above.

Finally we show the following lemma of independent interest:
LEMMA 2.20. Let k be a reqular cardinal, then 'y is closed under < k intersections.

PROOF. Suppose not. Then we have that T',, is not closed under < x unions. So let let § < &
be such that {A,}qcs be in I', and A = Upes Aa ¢ I',.. Then by Wadge’s lemma we have
that A =J,_sAs € I'x. By Sep(I',), for every a < 4, there is a A, set which separates A,
from A°. Since k is a regular cardinal and since 6 < k then there is a § < k such that for
each A, sets separating A, from A (call them C,), we have that |C,|w < 6. Next let 'y be
a pointclass such that § < o(I') and I8y C T'y. Then by the coding lemma we have a Ty
relation R such that R is the set of codes of I'y sets which separate A, from A°. But then
A €Ty. Contradiction!

O

In the next section we analyze projective-like hierarchies by means of the ordinal

associated to the base of the projective-like hierarchy, o(A).

2.2. Characterization of Projective-Like Hierarchies by the Associated Ordinals

Before we move on, we discuss the situation on the projective-like hierarchies of type IT
and III which arises from the above theorem. We will then introduce a conjecture pertaining
to the characterization of type I'V projective-like hierarchies in terms of the associated ordinal

and we will give a proof to the conjecture.
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First we briefly recall the situation at the level of type I projective-like hierarchies.
Let A be a projective algebra. Let I'1,I's, I's... be the projective like hierarchy generated by
A. Let « be the ordinal associated with A, that is a = o(A) = sup{|A|w : A € A}. Kechris,
Solovay and Steel conjectured in [17] that a alone determines which projective-like hierarchy
arises. If cof(a) = w then we are in the situation of a projective-like hierarchy of type I. We
briefly recall the set up. Let {A,,} be sets such that for every n < w, we have |4, |y = a,, < a.
Assume that |A,|lw < |Ansi|lw. We then let A = @A, be the join of the sets A,. Then
at A we have a selfdual degree, that is A =y A°. Let ¥y = |J_, A be the pointclass of sets
which are countable unions of sets in A. Then A € ¥y and ¥, is closed under countable
unions by definition. Y is closed under 3%, since if A(z) <> JyB(x,y) with B € Xy and
B =, B, with B,, € A, then we have A(z) <> JyB(z,y) <> JyanB,(z,y) <> InyB,(z,y),
and this last set is in Yy by definition. In addition ¥ is nonselfdual pointclass. To see this,
assuming all A,, as above are nonselfdual degrees, define universal sets U, for the intermediate
pointclasses {B : B <y A,}. If we let U(x,y) <> InU,((2)n,y) then U is universal for .
Also ¥y cannot be closed under countable intersections since if it were then it would contain
I, = X, and therefore would not be nonselfdual. Then a type I projective-like hierarchy
is generated in the usual way starting from ¥,. Notice that we have PWO(Xg) since we
can define the natural norm ¢ on A =, A,, for A, € A by ¢(z) = the least n such that
x € A,. Then <, and <, are both countable unions of sets in A.

Next if w < cof(a) and « is singular then T'y,T'5, s, ... is a type II projective-like

hierarchy. If not then A = I'y NT'; and we are in a type III projective-like hierarchy, so by
results of [17], we have PWO(T;). Since Ty is closed under V¥, letting

a = sup{¢ : £ is the length of a A; prewellordering}

and since I'; is closed under A, V, in this case by [22] we must have « is regular, contradiction.
Notice that this can be seen directly using the above theorem of Steel which shows that the
singularity of o implies the non-closure of I" under V. Then by the above theorem which

give a solution to Steel’s conjecture, it is true that whenever « is regular, A generates a
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projective-like hierarchy of type III or IV. So there are no projective-like hierarchies of type
IT for which « is regular: if § = cof(a) < a, then the Steel pointclass in within a type I1
projective-like hierarchy and if « is regular then the Steel pointclass is at least within a type
III projective-like hierarchy. In the type IV case we speak of an inductive-like hierarchy
instead of a projective-like hierarchy. To introduce the conjecture below which pertains to a
characterization of type IV projective-like hierarchies in terms of the associated ordinal, we
recall some definitions from [12]. For any ordinal a, let B, = {z : 3y < o, C L, }. Notice
that L, C B, and B,, is a transitive set. The set of Ay formulas is the closure under boolean
combinations and bounded quantification of atomic formulas. A formula in the language of

set theory is Il if it is of the form Vydzy where p € A,.

DEFINITION 2.21. A cardinal « is *IIi-indescribable if for every X C L, and for every II,

formula ¢ of the language of set theory with parameters from B, we have
(Ba €, X)Fo =3 <ast (Bs e, XNLs) Ep

Given the above picture of the Wadge hierarchy, we then have the following conjecture

as in [17]:

CONJECTURE 2.22. Let I" be any pointclass closed under V® and suppose PWO(T'). Suppose
FRA C A and o(A) = & is *II}-indescribable and Mahlo. Then T is closed under 3%,

Using the above notion of °IIi-indescribability, Kechris has shown that if x is a
Suslin cardinal such that w < cof(x), then S(k) is closed under V® if and only if & is
*I1i-indescribable, where S(k) is the pointclass of all k-Suslin sets. It is standard that S(k)
is closed under I® (see [22]). Therefore the conjecture is true if we assume that A C IND,
where IND is the boldface pointclass of the inductive sets and where A generates I', since
by a result of Kechris every set in IND is s-Suslin for some x < x®. Recall that an interval
of ordinals [«, ] is a ¥;-gap if and only if

(1) La(R) <Y Ls(R)
(2) V€ < a(Le(R) A} La(R))
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(3) Vv > B(Ls(R) A7 Ly(R))

The scale property is depends on whether we are in a Y;-gap. Basically, new scales
appear when new Y, facts about the reals are verified in L(R). Kechris has shown that once
one is past the pointclass of inductive sets IND then the scale property no longer holds
in a projective-like hierarchy of type IV. For example, consider II; = VR(IND v IND).
Then II; does not have the scale property and no II, or X, can have the scale property.
This is a gap of length w. Past this gap the scale property resumes, since Moschovakis has
shown that the pointclass X, the least pointclass closed under 3® and containing U, 2n,
has the scale property. But then, later on, longer and longer gaps occur. We feel that there
are characterizations of the lengths of the ¥; gaps in terms of the associated ordinal of the
pointclass which closes a gap, but we do not know how to precisely show this.

The above conjecture is true below the first nontrivial gap in scales. Past the first
Y1 gap in scales, the conjecture remained unsolved. We show the conjecture below. In the

proof we use the notion of co-Borel set which we first define:

DEFINITION 2.23 (oo-Borel set). Let A C R. Then A is co-Borel if and only if there is a set

S C ~, for some v € ORD and a formula ¢ in the language of set theory such that
r €A+ L[S z] F ¢S, ]
(p,5) € ORD is the code of the co-Borel set A and we let A = A, s.

Also, we use a theorem of Woodin which gives a bound on where the code of an

oo-Borel set appears.

THEOREM 2.24 (Woodin). Let A C R be an oco-Borel set. Then there is a v < © and a
prewellorder <€ IL(A) of length v such that S C v and S is the Borel code of A.

We now show the above conjecture pertaining to inductive-like hierarchies.

THEOREM 2.25 (AD +V = L(R)). Let I' be a Steel pointclass, that is T' is closed under
VR PWO(T) and suppose that I*A C A. Suppose that o(A) = k. Then the following are

equivalent:
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(1) & is T -indescribable and Mahlo.
(2) T is closed under I®.

PROOF. Recall that we are in the situation where we have Sep(I'). Assume first that I" is
closed under 3®. We need to see that r is ®II}-indescribable. By theorem 3.1 of [14], we must

have that for every inductive-like pointclass I', that « is Mahlo. Let
§ =gef sup{¢ : € is the length of a A prewellordering of R}.

Then by the companion theorem of Moschovakis (see theorem 9E.1 in [21]), 4 is the ordinal
of its admissible companion M above R. So o(M) = ¢§. Since every admissible ordinal is
I,-reflecting and every set A C Ly is Ay over M by the coding lemma, and [Ls41| = 4,

we have that § is *II}-indescribable.

We must now show that § = k. The result is true for any projective algebra.

CLAIM 2.26. Let A =T NT be a projective algebra. Then the following ordinals are equal:

(1) § = sup{& : € is the length of a A prewellordering of R}
(2) o(A) =k =sup{|A|lw : A € A}

PRrOOF. The following argument is due to Jackson. First let v < o(A) such that for some
A € A we have |A|w = «. Then this initial segment determined by A in the Wadge hierarchy
defines a prewellordering < in A of length «, since A is closed under quantifiers, V and A.
We define < by v =y < f,'(A) <u f,;'(A), where f,, f, are the Lipschitz continuous
functions coded by x and y. Notice that for some n € w, <€ X! (A) and since A is closed
under quantifiers, V and A we have 3! (<) € A. So a < §(A), hence o(A) < §(A).

Next let o < (A). We need to see that a < o(A). We will use the jump function.
Let < be a prewellordering in A of length . We then construct an increasing sequence of

Wadge degrees of length «. There is a function F : P(R) — P(R) such that

forall AC R, A <y F(A).
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The function F is the jump of A, where we let F'(A) = A’ be defined by
Al(z) < (x(0) =0ATw(z) & A)V (2(0) =1 AT (x) € A),

where 2’ is the shift of z, i.e 2/(n) = x(n + 1) and 7,/ is the continuous function coded by
x’. Notice that F(A) is not Wadge reducible to either A or A° and it has Wadge degree
strictly higher to either A or A°. For if 7,» reduced A’ to A then we would get 072’ € A iff
7 (072") € A but since
072’ € A" +— 7, (072") ¢ A,
by definition, contradiction!
Next we define by induction on @ < | < | a A set A,. Let Ag =0 and let A, = A..
If o is a limit ordinal then let A,(z) < (|vo|< < @ Axy € Ay, ). Then by definition of the
jump function and by induction the A, are strictly increasing in Wadge degrees. Now we
check that each AD, € A. Let R(z,y) <+ x € dom(=) Ay € Aj,,. We show that R € A.
We define a relation W, for i = 0, 1 such that if W(x,y, 1, z,w, j) holds means that i = 1 and
(z,w,j) witnesses that R(x,y) holds and ¢ = 0 and (z,w, j) witnesses that =R(z,y) holds.
Then define W (x,y, 1, z,w, j) as follows:
(1) i =1 and x is an immediate successor of z in < and either 0 < y(0), w = 7,/(y)and
j=0ory(0)=0and w="7,(y) and j = 1,
(2) i =1 and z has limit rank in <, yo < 2,90 = z,w =y; and j = 1,
(3) i = 0 and either z ¢ dom(=X) or x is an immediate successor of z in < and either
0<y(0), w=my(y) and j=1or y(0) =0, w =7, (y) and j =0,
(4) ¢ = 0 and either ¢ dom(=) or = has limit rank in < and the following hold:
Yo <zV(z=yAw=y1Aj=0,
(5) i =0 and either x ¢ dom(=) or |z|< = 0.

Then W is in A as <€ A. We then have:
R(z,y) <> 3z,w,e(zo =x Awy =y AN e(0) = 1L AVIW (25, wy, €(i), zit1, wit1,e(i + 1)).
So R € A, and for every o < | X |, A, € A.
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This now finishes the proof of (2) — (1). Next we must show that whenever x is
’IIi-indescribable and Mahlo then I is closed under I¥. Assume that & is *II3-indescribable.

We must show that I' is closed under I®. Specifically we show the following:

CLAIM 2.27. LetT be a Steel pointclass such that 32A C A and k = o(A) is *T1}-indescribable.

Then T is closed under 3X.

ProoOF. We make the general assumption that we are in the context where we do not have
the scale property, since by the above remark if I' C IND or I' is not located in a ¥;-gap,
then we can localize scales to I' or I' sets are k Suslin for some k, and then by the result
mentioned above of Kechris, see [12], the conjecture is true. We also work by contradiction
below. Assume T is either located in a ¥;-gap below the last 3i-gap [§%,0)], or that T is
located in the last 3, gap [§7, ©]. Suppose that o(A) is *TIi-indescribable. We must see that
I is closed under I®. So let B € I'\ I and let A(z) <+ 3yB(z,y). Under AD +V = L(R),
every set of reals is co-Borel, so the set B is co-Borel, and thus there is a formula ¢ and a

set of ordinals S C « for some ~ such that
B(z,y) < L[S, z,y] F ¢(z,y),

see [17]. By Woodin’s theorem, the Borel code S can be taken to be subset of v, where 7 is

the length of a II}(B) prewellordering. So we have that v < §3(B), where
85(B) = sup{¢ : € is the length of a AY(B) p.w.o of R}.

Since II}(B) C T, because I is closed under V¥ and by the proof of Steel’s conjecture, T' is
also closed under V as k is regular, and since there must be a I' prewellordering of length
d1(B) = o(A}(B)) and 03(B) = (J{(B))", we may then assume that S C k and v < &,
because o(I') = x + 1 and since one can define a II}(B) prewellordering of length |B|y,. We

then have

A(r) <> JYL[S, x,y] F p(z,9).
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Let (¢, S) be the Borel code of the set B. Thus
A(x) ¢ (Bit, €, 7, (¢, 5)) F “FYL[S, 2,y = o(z,y)”.
This implies then that there is a &’ < x such that
(Bury1, €1, (0, S 1K + 1)) E “TyL[S | &' + 1,2,y E p(z,y)”,

since “JyL[S | k' + 1,2,y] F p(z,y)” is a Il formula, as the satisfaction relation is A;.
Hence we have A(x) <+ JyL[Sy, z,y| E p(z,y) for some S; C k' + 1 < ~. Let then

I'={A: Ais an effective x union of < s-Borel codes}

Notice then that we have A ¢ T' ¢ J, A & F®T. We first show that I is closed under the

VR quantifier. Let then B € ' and consider
A(z) < VyB(z,y)

Now applying *TIi-indescribability again we have that A(x) <> 3y < k(VyL[T, x] E ¢(z,v)),
where T is a Borel code of size < . This shows that A € . So A is also in F*T. Notice
that we must then have by Wadge I' = T'. It is then sufficient to notice that I is closed
under 3® to obtain the desired contradiction. This follows by a general argument using the
Vopenka algebra to make any real of L(R) generic over the image of L[S, z| in an ultrapower
by supercompactness measures (This is an argument of Caicedo and Ketchersid). This shows
the theorem. However we explain briefly that the result follows directly from AD*® using
Turing-determinacy (which itself is equivalent to AD in the context of L(R), by a result of
Woodin), without having to refer to the Vopenka algebra. Let then B € T, we wish to see
that A(z) < JyB(x,y) is still in I'. Let d denote a Turing degree. By V*dA(d) we means
that JeyVe > egA(e), where < is the Turing degree partial order: = < d means that = <7 y
for any y of Turing degree d. The main point is that if we have a set D € I, then we may

replace all occurrences of V*d3xD(x) by JxV*dD(x) by Turing determinacy. O

We next include facts about type IV projective-like hierarchies. Suppose that s is

*I1i-indescribable. Then T is closed under F*. Thus I is closed under both 3* and V¥, hence
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also under countable unions and intersections. Define the pointclass II; = T' AT and let
Y, = II;. A typical example of this type of hierarchy is letting I' = IND, the pointclass
of inductive sets. In this case, since IND is closed under continuous substitutions,A, V, we
define ¥*(T') = {A CR: 3B € T,C € T such that = € A < 3y(B(z,y) A C(z,y))}. Then
we let IT}(I") = {A°: A € 35 (")} and X}, = {IyA(z,y) : A € I (") }. Notice that II; is
closed under VR since both I' and T are closed under V¥ and 3®. Assume that II; can be
characterized as the pointclass of all 31 bounded unions of I" sets of length &, that is

I, = {U Ay Vo < k(Aq €T) A U A, is X7 bounded}.

a<k a<k

Let I} = {U,., Aa : Va < k(A, € T) AU, A is T bounded}. Our goal is to show that

a<k a<k

IT, = II} first and then later we verify that II; can indeed be characterized as the pointclass

of all sets which can be written as $1-bounded unions of T" sets.

suBCLAIM 2.28. I} = {{J, ., Aa : Vo < (Aq € D) AU, Ao is T bounded} = I1;.

a<k

PROOF. Every I-bounded union is X}-bounded. Let A € II; \ ;. and let A = |J,_, Aa
where each A, € T', the union is X1-bounded and x = o(A). We may assume that the A,’s
are increasing and that the union is continuous. Then (|A,|w : @ < o(A)) is cofinal in o(A).

Now for a < k define the sets C, by
Co =dges {(7,y) 1y € A1 \ Aa A 7 codes a continuous function f, s.t f,'(4,) C A}.

Then notice that for each o < x, C, is defined as I' AVR(I'VT) = I' AT. Then by definition,

C, € II;. We have that if C' = |J__, C,, then the proof of subclaim 2.28 also shows that

a<k

C € 3*II, = %, since & is regular. So let C' = U.,.. Do where each D,, € " and the union

a<k

is increasing. Define the sets B, as follows
2 € By 3(x,y) € DB < aly € Agiq \ Ag A fu(z) € Ap)

Then for every a < k, we have that B, € I, since I is closed under 3%, A and V, by the proof

of Steel’s conjecture. Then we have that |J,_, Ba = A. In addition |J,,_, B, is a [-bounded

a<k

union since any I is of the form f;!(Ag) for some 3 < x and some x € R. So A € .
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Finally we show that the pointclass II; = I' AT is the pointclass of all sets which can

be written as ¥1-bounded unions of T sets.

SUBCLAIM 2.29. I} = {{J,_. Aqs : Yo < k(As € T)AU,_, Ay is X1 bounded}.

a<k a<k

PRrOOF. Let Q = {{J,., Aa : Vo < (A € ) AU,-, Aq is S} bounded}. We must show

a<k

that IT; = . Suppose that A € II;. So let B € I" and C € T such that A = BN C. Then

since I' is a Steel pointclass, let B =] _,_ B, and the union is increasing and :}-bounded

a<k

and each B, € A. Then we have that A = B, NC. This union is a 2}—bounded union

a<k
of T sets since T is closed under A so in particular T' is closed under intersections with A
sets. So we have II; C Q.

Next notice that since I is closed under ¥R then 2 is also closed under ¥® by Addison’s
argument. Let < be a ' prewellordering of length «, let ¢ be the I' norm associated to < and
let U be a universal T set of reals. Apply the coding lemma to obtain a relation R(w,e) € T
such that

(1) p(w) = ¢(e) = (R(w,s) ¢ R(22))

(2) R(w,e) — ¢ € C , where C'is the set of codes of the sets in some sequence of I' sets
{Aatacs:

(3) VwIe(R(w,e) AU = Agw))-

Then we compute that z € (J,_, Aa = JwIe(R(w,e) Az € U,). Thefore we have
U.T € 3¥[T AT). Now since I} € Q C %5 and since Q is closed under V* then we must
have that II; = 2, since if not then by Wadge’s lemma we have Q2 C ¥; and thus II; C ¥,
contradiction!

O

Now from the above we can show that PWO(II;). The following argument is due to

Jackson.

SUBCLAIM 2.30. PWO(II;)
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PROOF. Let A € II; be such that A= BNC for B € T where B =J_, B, a £}-bounded

a<k

union of A sets and C' € I'. Then we have A = U._.B.NC. Let A, = B,NC, so that for

a<k

every a < k, A, € T'and A =|J__,_ is a £} bounded union of I" sets. Let ¢ be the natural

a<r
norm on A coming from the union, i.e ¢(x) = the least v such that z € A,. We must see
that ¢ is a II; norm. Since C' € T then let R\ C' = Ue< Ce where for every € < k, C¢ are
A sets and the union is ¥} bounded since R\ C'is in I'. Let 1) be the norm coming from
the union of the C¢, i.e the norm defined by 1(x) = the least v such that x € C,. Then
the argument below applied to I" will show that v is a I' norm, and then since I" is closed

under A,V and since by 4C.11 of [22] I" will be bounded in the norm 9. For every a < k, let

A = C, U BS. But then the sequence of sets {C, U B¢}, is a I bounded union. Now let
v <,y IB<kIy<P(r e A Nr € CsUBy).

Notice that

dy < fBr e Ay ANz € CgUBY)

defines a I set, since I is closed under union of lengths less than x and the union is of length
less than 3 < k. So let Es be sets in I such that <}, Ug Es. We need to see that this union
is X1 bounded. Let S C<? be a X} set. Then S; = {z : JyS(z,y)} is also X1 and S; C A,

so there is a ko < k such that S; C A,,

2.3. Strong Partition Relations

Let T’ be a Steel pointclass and let F¥A C A and let xk = o(A) be the Wadge ordinal
of the Steel pointclass [' and « is regular. Then we show that s has the strong partition
property, that is K — (k)". Notice that by [14], there are cofinally many in © pointclasses

I such that A = I' N T is selfdual and closed under 38. As alluded to above, if we let
C = {o(A): F*A C A A A is selfdual},
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then C' is a c.u.b set in ©. These correspond to the places where we are at the base of
a projective-like hierarchy. By the Coding Lemma, every x € C' is a cardinal. As noted
above, a theorem of Kechris in [13] shows that for A < o(IND) where IND is the pointclass of
inductive sets, such that wA = A, the A\ cardinal of C' is the A" Suslin cardinal. Steel uses
this to obtain a characterization of o(*E), the supremum of the length of the prewellordering
of R recursive in *E, where *F is the deterministic quantification over R (see [27]). More
specifically 3E is defined as follows. By induction on n < w define the objects T™ of type n

over w:

T = w

T ={f:T" — w: fis unary}

Then letting ¥ be an object of type n + 1 and = an object of type n we have:

) < 0 if IZ(W(E) = 0)

1 if 32(Y(E) #£0)

For example, let f : X — w be a partial function. Then we say that f is ['-recursive
if Graph(f) =aes {(z,7) : f(x) =i} is in I'. We then say that I' is closed under Kleene *F,

if whenever f : X x R — w is a ['-recursive partial function, then the relation
P(z) <> Vz(f(x,2) is defined ) A Fz(f(z,2) =0)

is in T'. The precise statement of Steel’s result is that o(*E) is the least regular limit cardinal
in C'.

The proof of Steel’s conjecture implies a specific boundedness result and this will
allows us to prove a new strong partition relation for the ordinals associated to the Steel

pointclass.

THEOREM 2.31. Let T’ be a nonselfdual pointclass, closed under V= and vV with PWO(T) and

such that I*A C A, then §(A) has the strong partition property.
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Using the proof of Steel’s conjecture, notice that the Steel pointclass I' satisfies all the
properties of the above theorem. Even though the above theorem directly shows that o(A)
has the strong partition property, we outline a direct proof of this fact below. Before we
start, we note that every known proof of strong partition properties goes through Martin’s

theorem which we state below.

We show that for k € C' as above,
k is regular iff k has the strong partition property. (1)
In particular o(*E) satisfies the relation
o(*E) — (o(* B

If k has the strong partition relation then x must be regular, so the right to left direction of
(1) is immediate. In our proof we use the uniform coding lemma for wellfounded relations.
We refer to [19] and [14] for a proof of the uniform coding lemma for prewellorderings. This
version of the coding lemma is different than the one in [19] and [14] but the proof is basically

the same with some modifications.

THEOREM 2.32 (Uniform Coding Lemma for wellfounded relations). Let U be universal for
the class 31(Q) where Q is a binary predicate symbol. Let T' be a any pointclass such that
A(Q) CT and IRT CT. Let < be a T wellfounded relation of length o(A). Then for every
relation R C R? such that R = dom(=), there exists € € R which codes, via U, a ¥1(=,)

choice set Co, C R? for Ry, C=4 xR uniformly in o < o(A).

THEOREM 2.33. Let T be a Steel pointclass, i.e F*A C A and o(A) = k is a reqular cardinal

and PWO(T"). Then we have k — (k)"

ProoFr. We recall Martin’s conditions used in showing strong partition properties. It should
be noted that this is the only known method of showing weak and strong partition relations

under AD.
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Let k be a regular cardinal. We say that s is reasonable if there is a nonselfdual
pointclass T' such that T is closed under F* and a map ® with dom(®) = R with the

following properties:
(1) Va(P(x) C k X k)
(2) Vf:k — k, 3z € R(P(z) = f)
(3) VB < k,Vy < k,Rg € A, where x € Rz, «— ©(z)(8,7) AVY < 6(®(2)(8,7) —
7=")
(4) Suppose that 8 < k and A € F*A; A C Rg = {x : Iy < KRz, (x)}, then Fyy < &
such that Vo € A3y < v, Rg(x).
Our goal is to see I will do the job, using that I®T C T.

We define the coding map ® for all z € R. Let U be universal for the class 3 (Q)
where () is a binary predicate symbol. In our case here () will be interpreted to be a I'-norm.

Then for a formula X € ¥, we have that

X € %1(Q) « (Y (x,y) AVnQ((y)n)),

where Y is a 3 formula. Then one can define a universal set U(Q) for 3,(Q) by
U.(z,y) +> 32(S(z, (z,y), w) ANVnQ((w),)) where S is a universal 3 set.

Let A be a I'-complete set and let ¢ be a norm on A. Let A, = {x € A: ¢p(x) < a}.
Consider < o = {(z,y) €<5: p(z) < ¢(y) < a}, i.e we restrict to reals of norm less than
a. We now code the functions f : kK — k where k = o(A). For every f : kK — k there is

z € R such that Vo < K, Up(<[ @) codes f [ a. That is we let

Us(<L1 a)(y, 2) < o(y) <aAp(z) <aforz € Aand p(z) = f(p(y))

So we let x codes a function f: xk — k at a if U,(<)] «) satisfies:

(1) Yy, p(y) = a — Jz with U, (<L T a)(y, 2)
(2) Yy, v, z, 2" we have that U,(<,[ a)(y, 2) AU (S, @)y, 2') ANo(y) = o(y) = a —

©(z) = @(z')) holds. So basically we let
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U(z)(B,7) < g, 21y, 21 € AN (1) = BA@(21) =7 AU
a)(y1, 21) AV, 21 (0(yn) = (yn) A Un(S5T a)(yr,21) — w(21) = 9(21))]
Now conditions 1,2 and 3 follow by the Uniform Coding Lemma and condition 4
follows from the fact that A sets being bounded in the norm and from the fact that I*A C A,

since

{z:3weSTye Ayl =anUs(<}] ,y,2))}

is a A subset of A.
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CHAPTER 3

LIGHTFACE SCALES ANALYSIS UNDER AD, GENERALIZATIONS OF THE
KECHRIS-MARTIN THEOREM AND CANONICAL 75y TREES

3.1. Context

The notion of a scale is the most important concept in descriptive set theory. Scales
allow us to have definable choice principles under determinacy in contrast to the fact that
AD is inconsistent with AC. Thus using scales, one can establish definable uniformization
theorems for subsets of R2. By definable uniformizations we mean if I has the scale property
and if [ is closed under universal quantifiers, conjunctions and disjunctions then for every

set A C R? there exists B C A, B € [ such that
Vo € R[Fy € RA(z,y) « 3y € RB(z,y)].

Roughly, what the scale does is allow picking reals which are least to be in the sets. The
situation is somewhat similar in some sense to that of the Coding lemma, which provides
another definable choice-like principle we can use under AD. As an instance of the work in
this section, consider the problem of defining a lightface scale on a universal II} set of reals
and which doesn’t use the theory of sharps. The Martin-Solovay analysis yields a A} scale
on a universal II3 set but this is done under the assumption that for every z € R, 2% exists
and thus this analysis relies on the theory of sharps for reals, which is difficult to generalize
1. The upshot is to define OD scales on OD sets of reals. Closer to us here, the immediate
goal is to identify canonical trees which we call T5,. The methods we use here are purely
descriptive set theoretical, but notice that we have to use boldface determinacy. This last
point is very important since we repeatedly use the Third periodicity Theorem. Without
any boldface determinacy, we wouldn’t be able to do this. In different work with Sargsyan

and Woodin, lightface scales on OD sets of reals are obtained via inner model theory and

IWe believe it can be generalized using inner model theory. This is relevant to a generalization of the Kechris-
Martin theorem using inner model theory. @-theory plays an important role in such a generalization. This
will be the object of a different paper
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a strong condensation lemma just from OD-determinacy. Analyzing scales is of importance
in the core model induction, since such inductions are organized according to the pattern of

appearance of scales.

As a bit of context, recall the following theorem of Steel:

THEOREM 3.1 (Steel). Every X7 set admits a very good scale @ all of whose norms ¢, are
w.(n + 1) — I}, uniformly in n.
Then by the proof of Moschovakis theorem on the transfer of scales using the game

quantifier one obtains:

THEOREM 3.2 (Steel, Moschovakis). Assume 0*" %w.k — 1} determinacy holds. Then every
113, set admits an excellent scale all of whose norms are " 'w.(k+ 1) — 7 uniformly in k.
Therefore, if A3, -determinacy holds, then every ¥4, ., set of reals admits an excellent scale

all of whose norms are 0*"w.(k + 1) — 11}, uniformly in k.

In this section we will outline a technique which allows us to obtain excellent scales
on II}, sets, and therefore on X}, , sets without any use of Moschovakis ”scale transfer”

theorem using the game quantifier.

Recall that obtaining scales and obtaining Suslin representations is the same thing.
The Suslin representation of a set of reals A is one of the most important concept in de-
scriptive set theory. Scales give more information on the Suslin representation of a set of
reals. In addition to proving definable choice principle under determinacy and giving more
information on Suslin representations, another non-trivial use of scales lies in absoluteness
and correctness results. For example the Schoenfield tree T on w x wy has a left-most branch
in L and since it projects to X} sets, this shows that L is Yi-correct. In general, under
large cardinal hypothesis, one obtains projective absoluteness and Ef(R) absoluteness using
certain ordinal definable trees (see for instance applications of the Tree Production lemma

in [26] to show that the pointclass Hom™ has the scale property).

An important property that Suslin representations have is that of homogeneity. We

first quickly recall the definition of homogeneity and weak-homogeneity. The notion of
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homogeneity is due to Kechris, Kunen and Martin. Recall that under AD", every tree T'
on w x k for k < © is homogeneous (Martin, Woodin) and homogeneously Suslin trees are
determined (Martin). We begin by recalling the definition of a homogeneous tree. Basically
a homogeneous tree looks the same at every section: whenever a sequence & in the section of

the tree is order-isomorphic to another sequence 5 then ﬁ is also in the section of the tree.

DEFINITION 3.3. (homogeneous tree)

A tree T on w X k is said to be homogeneous of there is a family of measures (u; :

s € w¥) satisfying :

(1) Each ps is a measure on Ty and us(Ts) = 1,

(2) If t extends s then p,; projects to s,

(3) For every x € R, if T, is illfounded then for any sequence {A,, : n € w} of measure
one sets with gz, (A,) = 1, there a branch f € x* such that for all n, (x [ n, f ]) €
T.

T is d-homogeneous if in addition the measures are d-complete.

The second clause in the above definition is what makes the tower of measures be
countably complete. It is a standard fact that a tower of measures is countably complete
if and only if the direct limit of the ultrapowers given by the measures p, is wellfounded.
We say a tree T' is k-homogeneous if the measures pg can be taken to be k-complete. A set

A C R is k-homogeneously-Suslin if A = p[T] for T" a k-homogeneous tree

The second property a tree can have is that of stability. This notion is due to Jackson
and we define it below. Let 7" be a tree on w X w X kK be homogeneous via the measures /i, ¢
on k<¥. So, if we identify the last two coordinates of the tree into a single coordinate by a

bijection between w X k and k, the resulting tree 77 on w X k is weakly homogeneous.

Recall that a sequence A;, of measure one sets with respect to the p,, is said to
stabilize the tree T if for all x such that T, is wellfounded we have that for any measure one

—

sets Byine and for any ¢ € w=* with has length n, we have [f2, ], < [fﬁn’t]um’t. Here
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f;‘mt(o?) is the rank of the tuple (z | n,t, @) in the tree
To 1 A= {(u,B): (@ | h(w),u,6) € TAVE<n (B k€ Apunl}-

We similarly define f£, ,(a@). That is the functions f7}, , are the ranking subfunctions of the
canonical ranking function f, : T, — ORD, for x such that T} is wellfounded, when the tree

is restricted to measure one sets.

LEMMA 3.4 (Jackson). Let T be a stable homogeneous tree as witnessed by measures
{1s : s € WU} and measure one sets {As : s € w<}. Let T be the Martin-Solovay tree with
B = p[T"] constructed from T4 and s for s € w<Y. Let @ be the corresponding semi-scale
given by for x € B, @, (x) = [ffm]%m. Then @ is a scale.

Recall that assuming AD™T, for a (weakly) homogeneous tree T, there is a sequence

A of measure one sets stabilizing the tree T.

THEOREM 3.5 (Jackson). FEvery homogeneous tree Ton w X k, as witnessed by a sequence of
measures {ps} s stable, for Kk < © is stable.

So stability is another property that Suslin representations have and it is a weaker
notion than homogeneity. The lemma in the next section is inspired by Jackson’s proof
of the Kechris-Martin theorem using his theory of descriptions, see [6] for more details on
Jackson’s proof the Kechris-Martin theorem using. For the original proof of the Kechris-

Martin theorem we refer the reader to [8].

3.2. Lightface Sets of Ordinals and Stabilizing the Kunen and Martin Trees

In this section we show the following technical lemma, which tells us that we can
stabilize lightface trees by a lightface set of ordinals. The lemma can be generalized to
higher levels of the Wadge hierarchy and it will allow us to define lightface scales on sets of
reals without having to transfer them using the game quantifier as in the theorem quoted
in the previous section. The canonical trees Ts, will be trees coming from these lightface

scales.
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LEMMA 3.6 (A., Jackson). Let T be a tree on w X w X wy which is homogeneous with measures
WP (i.e., the n-fold products of the normal measure on wy ). Assume also that T is A{ in the

codes. Then there is a c.u.b. C' C wy which stabilizes T' and such that C is Aé i the codes.

PROOF. Let U C w x w; be the Kunen tree. If U, is wellfounded, then let f, : w; — w; be

the function f,(a) = |U, | «|. In this case, let
C,={a<w :Vi<a f,(f) <a}

be the c.u.b. set coded by xz. For every c.u.b. C' C w; there is an x with U, wellfounded and
C.cC.

For w € w¥, and a < wy, we say w is weakly a-good if for all § < « either U, |
is wellfounded of rank < « or « is in the wellfounded part of U,, | 5. We say w is strongly
a-good if for all # < a we have that U, | § is wellfounded. We say w is < «a weakly
(strongly) good if for all &/ < a, w is weakly (strongly) o/-good. Let WG,, be the set of w
which are a-weakly good, and SG,, the set of w which are strongly a-good. Likewise define
WG, and SG.,. These sets are defined with respect to the tree U, and so we also write
WGg, SGg. We can also speak of good with respect to the tree T, and so write WGZ, SGZ.
Note that WGY, WGY  are Al (SG,, is II}).

Consider now the game G where I plays out wy,y, and II plays out ws. II wins the

run iff there is an n < w; such that one of the following holds:
(1) wy € WGZn, y € WGZW we € SGg, with either w; ¢ WGg ory ¢ WG;, and
Wy € SG?
(2) wy € WG;], y € WGZ, wo € SGZ, and there is a v < n such that (i) V5 < v|Uy, |

6‘ < v (11) VB < ’7|Uw2 r5| < v, (111> P’Y(wlay7w2)’
Here P, (w1,y,ws) are, uniformly in ~, II relations such that if 7, | v is wellfounded and
wy, wy satisfy (1) and (2), then P, (wq,y, ws) holds iff [T}, [ (Cy, NY)| < |T, T (Cuwy N ).

Note that this is a 333 game for II. So, if IT wins G, then II has a A} winning strategy.

CraM 3.7. II has a winning strategy for G.
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PrOOF. Let C' C w; be c.u.b. and stabilize T. Let wy, code a c.u.b. set and such that
Cuw, € C. Let II play we in G. Suppose I plays wy,y. If either wy or y is not a-weakly good
for some av < wy, then IT wins by clause (1) as wy is a-strongly good for all «. So assume wy, y
are a-weakly good for all a. Thus, Uy, and T}, are wellfounded. So, C,, and C,,, are defined.
As C,, still stabilizes T' we have that [ch s < [Fyo “wa. It follows that there is an o < wy
(in fact, a c.u.b. set) with a € C,, N C,, and such that [T, [ Cy, N < |T, | Cy, Nal.
Thus II has won by clause (2).

Let 7 be a Al winning strategy for II. We define a c.u.b. set C™ which stabilizes 7.

To do this, we first define inductively a function b: w; — w;. Assume b(3) is defined for all

b < a. Let
(wy,y) € Wy > [wy € WGY Ay € WGE A =Ty < o (1T wins by clause (2) at 7)]

So, W, € X]. We also easily have that W, # 0. If (w1,y) € W, and wy = 7(w1,y), then w,
is a-strongly good, that is, Uy, | « is wellfounded. That is, f,,(a) = |Uy, | | is defined.

By boundedness we then have that
b(a) = supq{ fr(w, y)(@): (w1,y) € Wa} <wi.

This completes the definition of the b function. Let C} be the set of closure points of
b. We claim that Cj stabilizes T'. Suppose not, and let Cy, y be such that T}, is wellfounded
and [F{ |y < [F{*]y1. Let Cy be cub. such that F{' (a) < Ff*(a) for all a € Cy. Let wy
code a c.u.b. set such that C,, € C; N Cy. Let I play wq,y against 7. Let wy = 7(wy,y).
We have that Uy, , U,,, and T, are wellfounded.

We claim that for all @ < wy that b(a) > fu,(a) = |Uy, | a]. We show this inductively
on «. Assuming this holds below «, we have that C, N a C C,, N . From the definitions
of Cy and Cy, there cannot be an 1 € C,, such that F°t(n) < chwl (). In particular, there
cannot be an n < « in Cy,, N C,,, for which chw2 (n) < chwl (). That is, there cannot be an
n < « such that II wins by clause (2) at n. Thus, (wy,y) € W,. From the definition of the b

function we now have that b(a) > fi, ().
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Since b(a) > fu, () for all o, we now have that C, C C,,,. Again from the definitions
of Cy and C, we have that there cannot be an n € C,, such that F(n) < chwl (o). So,
there cannot be an n € C,,, such that chw2 (n) < chwl (). This shows that II has not won
by clause (2), and since all the reals are fully good, I has won the run, a contradiction.

So, Cj is a c.u.b. subset of w; which stabilizes T. Since 7 is Al it follows that b is
A} in the codes, and hence that Cj is Al

U

O

Finally we show that the relation R(z1,22) <— 21,22 € WO A b(|z1]) = |2o] is Al
We have R(zi, z3) holds iff the following holds:
(1) 21,20 € WO,
(2) Jy € R and z € WO with |z| = |z1] + 1 and |0|<, = |21 satisfying:
(a) Vn,y, € WO
(b) the map n — |y,| defines an order preserving map from <, to wy,

(c) ¥Yn € dom(=<,),

<) Vm <, n[(wy,y) is |m|<.—goodA II doesn’t win by the second clause.}

|yn| = {fT(why)(ln

(d) lyo| = ||
So R is X1(7), so it is AL, so rng(b) = C is Al. This concludes the proof of the

lemma.

3.3. The Stable Tree Construction and Lightface Scales on I1}, Sets

Before we go into the construction of the canonical trees T, we need to recall the
background theory of the Suslin cardinals which we will need for the coding of ordinals below
N, and the theory of descriptions which we need for the construction. As before our base

theory is ZF+DC+AD. In this theory, successor cardinals need not be regular. As usual,
8. =4ep sup{| = | :=X is a A} prewellordering of R}
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Recall that by the coding lemma the §' are regular successor cardinals. To see this, first

recall that

8 = sup{¢ : € is the length of a ¥} wellfounded relation},

(see theorem 2.13 of [6] for a proof of this fact). Next suppose not and let f : v — J}
a cofinal map with v < §1. Let < be a Al prewellordering of length 7. Let ¢ be the
norm associated to the prewellordering <. Then let R be the relation defined by R(x,w) <>
w is a code of a X! wellfounded relation of length ¢(w). By the coding lemma let R’ be a
¥l choice subrelation of R. Now let U be a X! universal set and define the following

n

prewellordering;:

(-TO;yOa 20) = (xlayla Zl) <~ (xO =1 A Yo =1 A R/@?OaZ/O) A UyO(ZOa Zl))

Then < is a wellfounded 3! relation. Now for any £ < 7, if x is such that ¢(z) = ¢ then
for any y such that R'(z,y) then the map z — (z,y,2) embeds U, into <. So we have
U, =& <| <], and so | < | = ¢}. Contradiction! By Kunen, Martin and Solovay, the
4§}, are all measurable cardinals (see theorem 5.2 of [11] for a proof) and by Jackson &3,

satisfy the strong partition property (see [6] for the underlying theory needed to prove this).

We define the Suslin cardinals of cofinality w:
Kni1 =dey the least v s.t for every A € X} ., there exists T C w x v s.t A = p[T]

Below we put these cardinal in context and briefly explain why they are defined.
Recall the following useful theorem of Martin. We refer the reader to theorem 2.15

of [6] for a proof.

THEOREM 3.8 (ZF+AD). Let L be a nonselfdual pointclass closed under V¥, A and V. Then
A =T N7 is closed under unions and intersections of length strictly less than (L), where
(L) =gep sup{& : € is the length of a A prewellordering of R}.

By the scale property on IT},, . ; and the Kunen-Martin theorem it follows that (x3,,,,)" =

03,.1- Too see this suppose that A € X} ., is a universal set and let B € II}, such that

A(z) + JyB(x,y). Since the pointclass of k-Suslin sets, S(x) is closed under I® then if
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B is k-Suslin, the set A is also x-Suslin. Since the pointclass 11}, ., has the scale property
then the set B has a Aj, ., scale whose norms go onto some k < d3,,; since by definition
03,1 1s the supremum of the A} ., norms. Let s}, the least k < §3,,, as above. So
B is K}, ,;-Suslin and this A is s}, ,,-Suslin. Hence the pointclass X3, , is contained in
S(K3,41)- By the Kunen=Martin theorem we must then have that §3,,, = (k3,,4)". From
Wadge’s lemma and the closure of A}, ., under unions of length less than d3,,; we have that
cf(K3,1) = w. To see this, suppose that cof(k3,,,) > w. Then every set A € X} ., can
be written as a j,,; union of sets A, which are < s}, ,;-Suslin. Since A is closed under
unions of length strictly less than 83, then A € A} .|, but A was an arbitrary 33, , set.
Using this analysis and the coding lemma, it follows that X, ., sets are exactly the 3, 4
sets, see [6]. By the prewellordering property for II3 41 and since every x 4o wellfounded
relation is d3,,,, we have that (3,.,)" = d3,.,. We also have the following values for the

projective ordinals and the Suslin cardinals of cofinality w:
(1) ki = Ng,d} = ¥y and thus J5 = Ry,

N
(2) k3 =N, 0% =N,y and thus §] = N, 5 (Martin and Solovay).

1
(3) In general (Jackson), we have k3, ., =R« 83 . = w”“w B and thus
2n+1 tower 2n-+1 tower
O3io =N w
995149
nr W 42
2n+1 tower

To carry out the construction of the trees T5,, we need to introduce natural families
of measures which arise in the context of weak and strong partition properties. We start out
by recalling the notion of uniform cofinality. The notion has its roots in Martin’s proof of
the strong partition property of w;. Analyzing such functions is central in Jackson’s theory
of descriptions for proofs of the strong partition property and in the analysis of the trees of
uniform cofinality which codes homogeneity measures. We also recall, below, the definitions
of trees of uniform cofinality and of the measures coded by the trees of uniform cofinality.
These definitions are used extensively in Jackson’s analysis of measure in L(R). We won’t
be working with these trees directly but we need them since they are used in the definitions

of level-n complexes which appear in the proof of the generalization of the Kechris-Martin
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theorem. The reader won’t lose much if she/he does not know how the full descriptions are
used to analyze the cardinal structure at the projective level in L(R). We will introduce a
representative case for the definition of the trees of uniform cofinalities, the reader can see
[5] for the general cases.

Recall that under AC, there are no infinite exponent partition relations. Assume AC
and suppose that for some infinite cardinal x, we have that k — (w)¥. Let A, B € [k]* and
put A ~ B if and only if the set of places where A and B disagree is finite. Then ~ is easily
an equivalence relation. By AC pick representatives in each class and define the partition
F by F(A) = 0 if and only if A disagrees with the representative of its equivalence class
an even number of times and F(A) = 1 otherwise. But then, there cannot be any H C &
homogeneous set of order-type w for the partition F' since for any such H, at cofinally many
place below w, we can find A, B € [H]“ such that one disagrees with its representatives an
even number of times and the other an odd number of times.

Let k < d be two regular cardinals. We let 1’ denote the filter on & generated by

r-closed c.u.b sets, i.e puo concentrates on points of cofinality x. u° is defined as follows:

1’ = {X C §: there exists a cubset C Cdst X N{y<d:cf(y)=r} C X}

It is a basic result of Kleinberg that if ¢ has the strong partition property, or just the weak
partition property for that matter, it turns out that po is a normal measure on 6. In addition,

for each regular cardinal k < ¢ there is a unique normal measure on 4, see [7] for a proof.

DEFINITION 3.9. A function f : k — ORD is said to have uniform cofinality w if there
is a function f’ : kK X w — ORD which is increasing in the second argument such that
for all o < &, f(o) = sup,,,, f'(a,n). We say f is of the correct type if f is increasing,
everywhere discontinuous, i.e f(a) > sups, f(f) and of uniform cofinality w. Letting
g : kK — ORD, we say f : Kk — ORD is of uniform cofinality ¢ if there is a function f
with domain {(a,f) : @ < k,8 < g(a)} which is increasing in the second argument and
which is such that f(a) = supg.y) f'(@, B). If g has constant value 7 then we say f has

uniform cofinality v. We say f has type g if f is increasing, everywhere discontinuous and
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has uniform cofinality g.

Next we need the definition of the ST measures which come from the strong partition

property on wy:

DEFINITION 3.10. Let n € w and let (wy)"™ be the set of increasing n-tuples from w;. We

define the wellordering <,, on (w;)™ by:

(ala"'aoén) <n (517 7571) <~ (Oénaala"'vanfl) <lex (ﬁrmﬁla'“aﬁnfl)

We then let dom(<,,) = (w;)™. Letting m be a permutation of n+1 such that 7 = (n, iy, .., i),
we say f: (w1)" — ORD is ordered by 7 if f(aq,....,an) < f(B1, .., Bn) Mff (i, i) <iew
(57;17 75171)

DEFINITION 3.11 (Level-2 tree of uniform cofinalities). Let S, be the set of all permutations
of natural numbers. A level-2 tree of uniform cofinalities is a function R : T' C w<¥ — S

such that:

(1) R(D) = (1), where (1) is just the trivial permutation of one element.
(2) (base case)
For each (i1) € dom(R) either:
(a) R(iy) = the uniform cofinality w, in which case (i;) is a terminal node in
dom(R), or
(b) R(i1) = (2,1), where (2,1) is the unique permutation of length 2 extending
R(0).
(3) (inductive case)
For each (i1, ...,4,) € dom(R), R(i1, ..., in—1) is a permutation of length n begin-
ning with n and either:
(a) R(i1,...,1,) = the uniform cofinality w in which case (i1, ...,7,) is a terminal
node in dom(R), or
(b) R(i1, ..., 4,) is a permutation of length n+ 1 beginning with n+ 1 which extends
R(i1, yin_1)
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DEFINITION 3.12. Let R be a tree of uniform cofinalities. Then <z is the lexicographic
ordering on tuples of the form (aq,i1, a2, s, ..., ayp, 1y,) such that (iy,...,1,) € dom(R) and

(e, ..., ) is order isomorphic to R(iq, ..., ip).

DEFINITION 3.13. A function f : dom(<g) — wy is of type R is the following holds:

(1) f:dom(<gr) — wy is order preserving,

(2) If (iy,...,1,) is not a terminal node of dom(R), then f((cv,i1, ..., 0p)) =
sup{ f((aq,i1, .., Qn, in, 5,0)) : (a1, ..., an, B) is order isomorphic to R(iy,...,i,)}
(3) If (i1, ...,7,) is a terminal node of dom(R), then f((a1,iy, ..., an,1,)) is greater than

sup{f((a1, i1, s Qnyin, 5,7)) : B < e, (i1, oy in, j) € dom(R)}

(4) The uniform cofinality of f((ai,i1, ..., an,iy,)) is determined by R(iy, ...,4,) as fol-
lows:
(a) If R(i1,...,1,) = w, then f((aq,i1, ..., apn,i,)) has uniform cofinality w.
(b) If R(i1, ..., n) # w, then f((aq,iy, ..., an,1,)) has uniform cofinality
o0.t({B : (aq, ..., ap, B) is order isomorphic to R(i1, ...,7,)}).

Now we can define the measures M7 coded by R. These measures are necessary for

the definition of the level-2 complexes. But first we start with the definition of the measures

s

DEFINITION 3.14. ST is the measure on N, ;; induced by the strong partition property on

wy and functions h : dom(<,) — w; of the correct type:

ST(A) =1 ¢ 3C C wy such that [flwn € A for all f : dom(<,) — C of the correct type .

DEFINITION 3.15. We define the measure M™ (this is essentially a measure which appears

in the homogeneous tree construction for II3 sets) by

X € M® < Jacubset C Cw s.t for every f: dom(<g) — C of type R, flwp € X
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We now move towards defining WO, the set of codes of ordinals up to Ky = Nyue.
Once this is done the definition of the set of codes up to ¥, will be very similar.

Recall that by the weak partition property on ¢} there are exactly three normal
measure which correspond to the three regular cardinals w, wy and w,. Call them gy, s and
w3 respectively. Since 3 satisfies the strong partition property, the w cofinal measure is such
that j,, (03) = d;. The wi-cofinal measure s is such that j,,(d3) = R, 241 and the wy-cofinal
measure p3 is such that j,,(83) = Ryeq1 (see [6] for a proof that the cardinals §}, R, 241 and
N w11 and the only regular cardinals below 4}, in particular this uses a theorem of Martin
stating that if 41 is a measure on x and « has the strong partition property then j,(x) is also
cardinal). W3 is the measure on d3 induced by the weak partition relation on ¢3, functions
f 1 N,11 — 03 of the correct type (i.e they have uniform cofinality w) and the S} induced on

N,,.1 by the strong partition relation on w;. Let for X C 4§i:
X € W3 «» 3C C §5 such that Vf : R, — C of the correct type [f]sp € X

W3 is a measure on J3 since there exists a A} coding of subsets of XN, that is a map
m:R — P(R,) and a A} norm ¢ : R — R, such that p(x) € n(y) is a Al relation, by
Jackson, Kunen and Solovay. We use this to see that for a < N, the ultrapower js» ()
is Al. Then since the relation on the equivalence classes of functions f : R, .1 — C of the
correct type is wellfounded, we have that it has length less than §3. Let then C' C g} be a
cu.bset and let f:N,,; — C and g : N,,;; — C be two functions of the correct type. Then
we have [f]sn < [g]sn <> 3 a ST measure one set A such that Va € A, f(a) < g(a). This
is then equivalent to 3C' C wy, where C' is a c.u.b set such that Vh : dom(<,) — C of the
correct type, [hlwn € AN f([h]wr) < g([R]wy). Since c.u.b sets of w; can be coded via the
Kunen tree T as above, and since the functions f and g can be coded in a A} way then this
statement is at most Al. Therefore since the relation on the equivalence classes of function
f N,y — C of the correct type is wellfounded it must have length less than 43.

Recall also that sup,, j,(03) = ki, where p is a measures appearing in the homogeneous

tree construction for II} sets. This is shown using a computation involving level 2 and level
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3 descriptions. In fact it can be seen that ngL(égl,) < N wn 1. Essentially one needs to use
the lowering operator defined on the set of descriptions, then a computation of the rank of
the lowering operator yields the result. This is how Jackson computed §¢ and we refer to [4]
for the detail of the computation.

We now outline the plan to construct lightface scales on II}, ., sets of reals. We
first need to define the Jackson tree Jy,y1. The tree Jo,,1 will be a homogeneous tree
on w X ¢3,., which projects to a complete I3, . set. This tree analyzes the homogeneity
measures appearing in the type 2 trees of uniform cofinality R, i.e the homogeneity measures
appearing in a the construction of trees projecting to I3 sets. Next from Jo,,; one obtains
the more general Martin tree 7' which analyzes functions f : 83, — 05,,; with respect to
the normal measures on 93, ,. We show that the Martin tree construction can be modified
so as to obtain another Martin tree 7' which is A}, in the codes. Once this is done,
the generalization of the main technical lemma, shown in section 3.2, applied to this context
shows that there is a c.u.b set C' C 483, ,, whichis A} |, in the codes and which stabilizes this
modified Martin tree T'. Finally the Martin-Solovay construction applied to this modified
Martin tree will yield a canonical tree Th, 2. This will allow the construction of Al 43 scales
on the appropriate sets of reals. Finally an argument from Martin will show that the norms

of the scales are 02" (wn — I13).

THEOREM 3.16 (Jackson, [6]). There is a 11} complete set P, a I1i-norm o such that o(x) =
|z| < 8% from P onto 8% and a homogeneous tree Js on w X 83 for P satisfying the following.
There is a c.u.b set C C §% such that for all a € C, there is a v € P with ¢(z) = a and
with Js, | (sup, j.(«)) illfounded, where the supremum ranges over measures appearing in
MEs the tree of uniform cofinalities, coding measures which appear on a homogeneous tree
projecting to WQOs.

Next consider functions f : §3 — J3 and the Martin tree 7' on w x Ji. The Martin
tree is the appropriate generalization of the Kunen tree. The Kunen tree on w x w; is used
to analyze functions f : w; — wy. The additional difficulty is to consider all measures below

§% which arise from the different cofinalities corresponding the the regular cardinals below
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THEOREM 3.17 (Martin,[6]). There is a tree T on w x §% such that for all f : §3 — 0%, there
is an x € R with T, is wellfounded and a c.u.b set C C §3 such that for all o € C, f(a) <
T | sup, j,(a)|, where if cof(a) = w then we use |T, | «| and if cof(a) = wy, the
supremum ranges over the n-fold products, W{*, of the normal measure on wy (these occur in
the homogeneous tree construction projecting to a I} set) and if cof () = we, the supremum
ranges over the measures occurring in the homogeneous tree construction projecting to a II3
set.

Notice that the Martin tree T is Al in the codes. That is we can find two relations
S and T which are 3} and I} respectively such that

We are now in a position to define the codes of ordinals less than ki:

DEFINITION 3.18 (The set of codes of ordinals less than «}). Let then T on w x §i be the

Martin tree and define
WO, = {(z, 21, ..., 1) : 2 € WO, AT}, is wellfounded Vi}
For y = (z,21,..., ) € WO,y, let |y| = [f,Jwy where f, : (33)" — 03 is defined by:
Fy(Bs ey Bn) = (T, T 51D o (Bn)(n )], where ,

Op—1 = |(T$n71 rstuu(ﬁn—l)((Sn—2)’v

01 = ‘(Tazl rsupjl/(ﬁ1>(50)‘7 and 0p = |Z’W0w

In the above we use the appropriate measure v according to which cofinality the
ordinal ; has, for 1 < j < n, in view of Martin’s theorem. So for every a < k3, Jy € WO,
such that o = [f,]wy for some n € w. Notice that WO, is [I}. Also notice that we could
have defined WONwwn for each n € w and then taken the unions of all these sets of codes to
obtain WO,1.

In general we define WO,y in a similar manner. Let W3, ., the cof(y)-cofinal

measure on 3, . |, where v is the largest regular cardinal strictly less than 4¢3, ;. The Martin
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tree T' in this case will be a tree on w x 3, ; and we’ll consider functions f : 83,1 — 93,1,
except this time there will be a lot more normal measures, all corresponding to the regular
cardinals below g} +1-For each cofinality the appropriate measure has to be plugged in the

Martin tree construction to analyze functions f : 83, — 93,

DEFINITION 3.19 (The set of codes of ordinals less than 3, ).

WO,y . ={{z21,...,2m) 1 2€ WO, AT, is wellfounded Vi}

Kon+3

For y = (2,21, ...,xm) € WOﬁén%, let |y| = [fy]WzrgLH, for some m € w, where, letting T" on

w X 83,1 be the Martin tree, fy : (03,,1)™ — 03, is defined by:
fy(Br, s B) = |(Th,, 18U Ju(Bin) (Om—1)|, where ,

5m—1 = |(Tmm71 TSUPju(ﬁm—Q((;m—z)L

51 - |(Trl rstuu(ﬁl)(fSO)L a‘nd 60 - |Z|WON% o

Again everything below s}, 4 is coded and VVOK%”+3 is a II},,, set of reals. The
coding can be generalized up to the first inaccessible cardinal in L(R).

Next, to apply the technical lemma proved above we first need to obtain a lightface
linear ordering version of the Martin tree mentioned above. More specifically we will show

the following:

LEMMA 3.20. There is a function s — T'(s) which assigns to each s € w<* a wellordering of
a subset of 83,1 with the following properties. If t extends s then T'(s) C T(s). For z € R,
let T(x) =, T(z [ n), so T(x) is a linear order. Then for any function f: 83,1 — 05,41
there is an © € R such that T'(x) is a wellordering and a c.u.b set C C 83,1 such that and
for all a € C, f(a) < |T(x) | sup, ju(a)|, where the supremum ranges over each normal
measures on 8y, generated by each regular cardinal v < 83,.,, depending on cof (o) = .
Moreover, the map s — T(s) is A}, in the codes. That is are X3, and I}, | relations

S and R such that for all z € WO, we have
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PROOF. Fix a bijection 7 : (83,,1)~“ — 483,41 such that for all ay, ..., < K3,,, we have
(@, ...y Ot) < Kby yq. For s € w<¥, let T be the Martin tree and let T'(s) be the wellordering

defined by:
aT(s)B < 7 ), 7 Y(B) € Ty A (m7 () <grr, ™ (B)

For z € R, let T(z) = |J,,T(x [ n). Then by the definition of the Brouwer-Kleene order,
T(x) is a linear ordering and T'(x) is a wellordering if and only if 7, is wellfounded. Let
f 08,0 = 03,00 let C C 43, be the c.u.b set of ordinals closed under . Then 3, ., € C.

For k3,1 < a, let [(«) be the greatest element of C' which is less than or equal to «. Define
() = sup{f(B) : I(B) = l(a)}. Let x € R be such that T, is wellfounded and for all

w<a, f'(a) <|T, | «|. We show the following claim:

Cramm 3.21. For every w < «, we have f(a) < |T(z) | «f.

PROOF. Notice that we have T}, [ I(a) C 7" T(z) | . Hence f(a) < f'(l(a)) < |Tp|l(a)] <

|T'(z) | @]. We can choose 7 so that it is A}, in the codes.

The above claim finishes the proof of the lemma.

O

Using the Martin tree T3 on w x w x §%, we now define T on w x x} for IT} complete sets
of reals using the Martin-Solovay construction. Let C' C §3 be a A} c.u.b set of §3 stabilizing
the tree T3, by the main technical lemma (see below for the statement). Let A C R be a

complete IT} set. Then for some B € II} we have that:
A(x) & =3yB(a,y) < ~3yAf(z,y, f) € [T3].
Then define T} as follows:
(s,d) € Ty <> 3f : T, — 63 such that @ = (au, ..., auu(s)) Where af = [fgi]wgi,w < lh(s)
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We then have that A = p[T}]. Also notice that T} is a tree on w X ;. In the general case, one
can construct the Jackson tree J under AD. For instance the following theorem of Jackson

when combined with a result of Martin and Steel gives the general construction:

THEOREM 3.22 (Jackson, [6]). Let A < k be regular cardinals and L be a pointclass closed

under VR, A\, V. Assume that:

(1) There is a A coding of the ordinals less than X, that is there is a A set C C R and
a map ¢ : C — v < X\ such that the relations (x1,22 € C A p(x1) < p(x9)) and
(x1,29 € C N p(x1) < p(2)) are both in A,

(2) There is a homogeneous tree U which projects to C' and such that for all z €
C,o(z) < ¥(x) < X where 1, is the semi-scale from U,

(3) There is a map F: z — A, C XX Kk for z € R, satisfying:

(a) For every f: A\ — k3zA, = f,

(b) The relation P'(z,z) <» (x € C A 3IBA,(¢(x),B)) isin L,

(c) Forallao < X\, B < k,Pyp={z:Va <adf <pB(A(, B )NVE" (A, ") —
§ = §")} s in A.

(4) Every L set admits a homogeneous tree on w X k with k-complete measures,

(5) Every A set is a-Suslin for some o < k. Also, if A C P={z :Vx € CP'(x,2)} isin
IRA, then sup{p(2) : z € A} < K, where for z € P, z is the supremum of the range

of the function A, : A — K.

Then there is a tree J on w X k such that p[J] = P and a c.u.b set D C k such that for
all « € D with cf(a) = A, there is a z € P with p(z) = « and J, | (sup, j,(«)) illfounded,
where the supremum ranges over measures v for the tree U.

Recall that is I is the Steel pointclass then Sep(L'), so Red (T), so there are disjoint
[ sets U,V which code disjoint [ sets A = U, and B = V,. A is said to be uniformly closed

under I® of the relations:
R(x,z) > Vz,w(Uy(z,w) V Vi(z,w)) A JwU,(z,w)
S(z,z) < Vz,w(Uy(z,w) V Vi(z,w)) ANVwlU,(z,w)
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are in [

THEOREM 3.23 (Martin-Steel,see [6]). Let I be a nonselfdual pointclass and let A be a T’
complete set of reals. Assume that both A and A® are Suslin. Let B = {0 : Yyo(y) € A}.
Then B is YR -complete and B admits a scale @ whose corresponding tree T coming from
the scale is homogeneous. If @ is a L very good scale on A and either T is closed under I®
or A is uniformly closed under I¥, then @ is a VR scale. If T is closed under V¢, U,, and N,
then the measures in T are k complete, where Kk = §(4).

Therefore the above theorem of Jackson can be extended using the Martin-Steel
theorem for any xk < §? which is a regular Suslin cardinal. In particular we’ll need the

following in the projective hierarchy:.

THEOREM 3.24 (Jackson). There is a 113, complete set P, a 11}, ., norm ¢ such that

o(x) = |z| < 83,1 from P onto §3,., and a homogeneous tree Joni1 on w X 8y, for P

satisfying the following. There is a c.u.b set C' 83, .| such that for alla € C, there is ax € P

with ¢(z) = a and with Ja,i1, | (sup, ju(«)) dllfounded, where the supremum ranges over

measures appearing in MPs, the tree of uniform cofinalities, coding measures which appear
1

on a homogeneous tree projecting to WO,1 —, where ks, is the Suslin cardinal of cofinality

w such that (ky, )" =03, 1 and (k3,_)t" =43,

PROOF. see [6]

O

Now let A C R be a complete IT},, ., set and let T5,11 be the Martin tree on w x w x
03peq- Let C C 85,01 be a A}, 5 in the codes c.u.b set stabilizing the Martin tree Th,41

Then for some B € II}, . 5 we have that:
A(I) A _E]yB(l‘7 y) A —EIyEIf(x, Y, f) S [TQTH—I]‘
Using the tree Th,,1 on w X 3 41, define the tree 75,45 on w x K, L3 as follows:

(s, 070) € Topio <> Ifs T2C;1+15 — 83,41 such that al = (af, ..., alch(s)) where a¢ = [fgi]wénﬂ,i < lh(s)
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Then Ty, is a tree on w X K3, 5 and we have that A = p[Ty, o]

LEMMA 3.25. Let T' be a tree on w X w X 8y, 1 which is homogeneous with measures W+,
i.e., the n-fold products of the normal measure on 63, ,,. Assume also that T is A}, in the
codes. Then there is a c.u.b. C' C b5, which stabilizes T and such that C' is A}, 5 in the

codes.

PROOF. Just as the corresponding lemma in the case of w; above, with the necessary mod-
ifications to make the proof work.

O

We outline the construction of lightface scales on IT} sets. The same method, using
the appropriate generalization of the technical lemma, will yield scales on I1}, ., sets of reals.

Let A be a II} complete set of reals, for z,y € A we let

Pu(@) < @uly) < famlwy < [fymlws,

where C' C 4} is a Al in the codes c.u.b set stabilizing the Martin tree. Without stabilizing
the Martin tree, this is a semi-scale but the stability argument will show that this actually is a
scale. By the technical lemma above, the definability of ¢ comes out at A} and Vn € w, ¢, €
0% (wn — II}) since the prewellordering of jyy(d3) is ©*(wn — II}). In general A, 5 scales @
on IT} sets such that ¢, is ©*"*!(wn — II}), since by Martin’s argument the prewellordering

of the equivalence classes of jwp  (03,,,) is 9% (wn — II7) in the codes.

LEMMA 3.26. Let A be a universal 1T} set of reals. Let fomn @ (T3) g — d% be the canonical

ranking function, for everyn € w. For x,y € A, let ¢,(x) = [ff}n]wg and let

Pn(®) < @aly)  [faalwy < [fynlwy

where C' C §3 be A in the codes c.u.b set which stabilizes the tree Ts. Then @ is a A} scale

and ¥n € w, @, € O*(wn —1I1})
PROOF. (Sketch)
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This follows by modifying a generalization of an argument of Martin as in [20]. We
sketch the argument. Let player I and player II play the game G where I plays reals €, 23, 20,
where ¢ codes a c.u.b subset C' C 8} and x5 code ordinals less than 43}, for
f < w.(n+1). Player II plays out reals yz, 21, for § < w.(n + 1), which also code ordinals
less than §% using the coding defined above of ordinals. 2g,2z; will be codes for functions
[ (83)™ — &% via the "nesting” construction using the Martin tree as above. If a player

fails to code an ordinal, then player I wins. Define then

Vi = Sup{maX{|$w.z‘+j|a |yw.i+j|} 1j € w}

Player I wins if and only if
v e Cn, £O(a) < 1 (@)
Then the game G is O(w.n)—I1 = 03(w.n)II} and we are done. Therefore the prewellordering

of equivalence classes in the ultrapower jyy(d3) is ©*(w.n)II}.

O

We next show that the trees defined above Ty, are homogeneous. Let z € R such
that « € p[Ty,] and let A, be a sequence of measure one sets with respect to Wj!,_;. Let
C; be clubs of ¢}, | defining WJ | measure one sets such that C; C A;. We let C' =
N C,. Then (Jo,_1), is wellfounded since Jp,_1 projects to the complement of a ¥} . Let
I <BK(Jsn_1).)— C be an order preserving function from the Brouwer-Kleene order on

(Jon—1)z to C such that for every n € w, f :<pr((sp_1)e,— C is of the correct type. Let

al
[ f]sz-%1 = ;. Then the sequence (ay,...,ay) is in A, by the strong partition property on
Oon1-

We now outline a more general version of the canonical trees 75, which are which
can directly be shown to be homogeneous with respect to the measures coded by the trees
of uniform cofinality. The construction is outlined in [6] and we generalize it to all trees Tb,,.
The construction also rests on the Martin-Solovay construction.

Let Q be a type 2n — 1 trees of uniform cofinalities. Define (s,d) € Ty, if and

only if there is a function f : dom(<%) — 83, of type Q, such that [f] | lh(s) = d.
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Letting (iy, ..., ix) € w<* the k™ element of w<* in an enumeration of w<* and letting p; =
Ts1j,(ir..i;) be the permutation associated to (s | 7, (i1, ..., 4;)), we set q; = [ f#1it-Piix] kL
for every i < [h(s), where fPLit--Prir) means fPrivPeie)(qy . ) = f{ag, i1, ..., O, in))
and

fllay, iy, ..., anyin)) = sup{ f(3) : § =22 (a1, i1, ..., n, in) }. As above, by the strong partition

property on Q%n 41, the trees T5, are homogeneous.

3.4. Closure of 11}, ; under Existential Ordinal Quantification up to k3, 4

In this section the aim is to show Jackson’s theorem which says that the pointclasses
I}, .5 is closed under existential ordinal quantification up to k3,, ;. Again we assume AD
throughout this section. In the proof that the pointclass IT3 43 1s closed under existential
quantification up to k3, 5 we need a coding of ordinals up to k3,,5. This is done via the
Martin tree and canonical measures below. We will follow Jackson’s proof of the Kechris-

Martin theorem in the case II} case.
DEFINITION 3.27. A relation R C R x VVO,_C%W+3 is invariant in the codes if
Va, wi, wa(wy, wa € WO,y A |wi| = |wa| A R(z,w1) — R(z,ws))
We can just then write R(xz, @) for o < k3, 4 instead of

Jw € WO,1  (|lw| =a A R(z,w))

+3

THEOREM 3.28 (Jackson, Kechris, Martin). Let R C R x WO, be 1,5 and invariant
in the codes. Then
P(z) < Jwe WO,  R(z,w)

- 1
is also 113, 5

PRrROOF. We first show that the pointclass IT3,, 43 18 closed under quantification up to N; by

the usual Solovay boundedness argument:

LEMMA 3.29. Let S C WO be £}, 5 in the codes and assume that S is bounded in WO, i.e

sup{|w| : w € S} = ap <wy. Then Jw* € A}, 53N WO(lw*| > ay).

7



PRroor. Let

S(w) <> 3zB(w, 2),

where B is II},,,. Consider the game where I plays the reals wy, z and II plays w,. The
payoff condition if given by player II wins iff wy € WO and (B(wy, z) — |ws| > |wy|). Notice
that this is a 23, 4o game for player II and IT wins the game, so let 7 be a winning strategy
for IT. By the third periodicity theorem, 7 is A}, ;. But now notice that 7(R) = A € WO

is $1(7), so there is a Al(7) real w* such that w* € WO with
|w*| > sup{|w| : w € A} > sup{|w|: w € S}.

Since 7 € A}, 4 then w* € A} .

O

LEMMA 3.30. Let S C WOs,41 be Z%n+3 i the codes and assume that S is bounded in

WOz 41, i.e sup{|w| : w € S} = ag < wy. Then Jw* € A} 3N WOs 1 (Jw*] > ap).
PROOF. see [2] O

Just as in [6], as a consequence of Solovay’s boundedness argument and Harrington
and Kechris results, we have the following lemma which follows from the closure of I3, 4

under existential quantification up to k3,

LEMMA 3.31. Let R C R x V[/O,,C%n+1 be X3, .5 and invariant in the codes. Then

is also X3, 4
PROOF. see [2] and [6], in particular one uses Harringto-Kechris boundedness properties. [

Recall that <™ denotes the ordering on n-tuples of ordinals (ay, ..., a,) where

o < ... < oy, We can define the ordering <%, on (93,,1)": <5, is defined by

(ala "'7an) <;Ln+1 (517 7571) iff (anaa1~-'7an—1) <lex (/B’ruﬁlv "'7ﬁn—1)a

where <, is the lexicographic ordering.
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DEFINITION 3.32. W, ., is the measure on g}, induced by the weak partition relation on
3bi1, function f: dom(S3,~1™) — 83,1 of the correct type and the measure Sy, 1™". Sy,
is the measure induced by the strong partition relation on 43, , functions

g : dom(<%, 1) — 93, of the correct type and the n-fold product of the w-cofinal normal
measure on §3, ;. For | > 2, Séﬂl is the measure induced by the strong partition relation
on g3, ,, function g : §3,,, — 83,1 of the correct type and the measure p on 83, ;. f is
the measure induced by the weak partition relation on d3,., , functions

[ dom(v™) — &3, of the correct type and the measures v™. v™ is the (I — 1)st measure

in the list W™, S7", W3", ---75222:%’771

Also need level-n complexes. In particular we will use the level-2n + 2-complexes, but

we introduce the definition for every n € w.

DEFINITION 3.33 (Level-n pre-descriptions and level-n descriptions). Let W™ be a measure
and let K, ..., Kj be a sequence of measures, where each K; = S, or K; = W,”,. Then
a level-n pre-description defined relative to the sequence K7, ..., K} is an expression of the
form (d) or (d)*, where d € D™ (K7, ..., K}) is a level-n — 1 description. Then we denote the
set of level-n pre-description defined with respect to the sequence of measures K, ..., K; by

(W™ Ky, ..., K)

(1) (Condition D, wellfoundedness and well-definiteness requirement) We say a level-
n pre-description (d) € D' (W], K, ..., K}) satisfies condition D if for almost all
hi,....hi, (d: h) is the equivalence class of a function f : (8 _,)™ — 81, of the
correct type. We also say (d)® satisfies condition D if for almost all hy, ..., hg, (d; ﬁ)
is a supremum of ordinals represented by f of the correct type.

(2) A level-n description is a level-n pre-description which satisfies condition D. We let

D(Wr, Ky, ..., Kj) denoted the set of level-n descriptions.
DEFINITION 3.34. A level-n complex is a sequence of the form
C= <S7 Ly ey Tk do, ceey dk; Kl, . Kk>
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where § is a level-n tree of uniform cofinalities, z; € R are such that the sections of the higher
level Martin tree T,, are wellfounded, dy,...,d; are extended level-n descriptions with d;
defined relative to the tree of uniform cofinalities S and the sequences of measures K1, .., K},

. . . —1 .
where K7, .., K} are canonical measures in the list W™ S7* Wi .. S;— " with [ <n — 1.

Recall Jackson’s A}, coding of functions = — F, C §3, ., and the general measures
Wi, on 83,.,. Recall that each z codes countably many z,, each of which codes reals

0n, W, w? and a partial level-n complex. Need the following properties of the coding:
LEMMA 3.35. Consider the relation Ry, R1, Ro, R3 defined by:

Ro(z) <> VOIVFL(B,7)
Ri(z,y) <y € WO AIvF(lyl,7)
Ro(z,y) <>y € WO, AVB < |y|FyF.(8,7)
Ry(z,2,y) <> 2,y € WO AVB <|z|Fy < |y|FL(B,7)

Then Ry is 113, 5 and Ry, Ry are 113, . Rs is A}, in the codes for x,y, that is there are
two relations C € X2 | and D € 11} | such that for all z and z,y € WO,
R3(Z’ z, y) A O(Za z, y) A D(Z7 z, y)

PRrROOF. For example using the level-n complex C and the Martin tree and the coding of

c.u.b sets using the Martin tree 1" one computes that:

Ri(z,y)
—
y € WO, Adnfwy,wy € WO,y Alwy|, [wi| < [yIAFBr—1 < ... < Bo < [y1Fh-1, 011 <[]
3041 ooy 01 < |yl (Broy > max(|wp], [w2]) AViB; € Co [(Tay, | Brr) (Jwh])] = 1
ATy 1 Bi—2)(=1)] = Y2 A e AM(Tig 1 Bo) (1) = [yl A (T 1 Br—1) (lwi )] = Sk
ATy 1 0k-2)(0k-1)] = 2w ATy | Bo)(01)] = [yIAVR' € w(wy, wyy € WOy Alwy|, [wy| <y

A1 < oo < By < NyPv 1y < 1Yl
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3051,y 01 < [yl (Bro—y > max(lwy ], [wi]) AViB; € Co [Ty, 1 Bio—y) (Jwm DI = a1
ATy, , 1 Br—2) (-] = w2 A ATy T B) (D] = [yl ATy, 1 Brr—1) (Jwme )] = 6y

N(Tar, , 10k 2) O = O oA ATy T81)(85)] = 01)] = ([(Tey T B5) (1) = (T T o)(62)1)))
O

F, is a function will abbreviate Ry(z) and F,(|y|) will abbreviate R;(z,y)
LEMMA 3.36. The relation
Q(z,y) <> (z € WO NF, is a function A\ | = [Fylwy, )
is A}, 4.

PROOF. Let T' C w x §},,, 5 be the Martin tree. For o € R we define a basis for c.u.b subsets
of 83,.5. Let C, = {a : ais a limit ordinal ,V3 < «,T, | § is wellfounded of rank <
a}. Since the Martin tree T C w X §3,, 4 analyzes functions f : d3,.4 — 03,5, and in
particular analyzes the function p : C, — C, defined by p(a) = the least v € C' s.t v > «,
where C' is a c.u.b subset of 83,4, then for every C' C §3,.4 c.ub, there is a 0 € R such
that C, is a c.u.b subset of C. Now the computation can be finished as follows: we have
Q(z,y) < Jo(T, is wellfounded AVw € WO,y (jw| € C; — 3z € WO,y (fo(lw]) =
|z A Fy(Jwl|, |2]))). But now by Solovay’s boundedness argument and Harrington/Kechris
(see above), we have that @ € X3, 5. Similarly Q° € X3, 5.

O

Next we show a presentation theorem for IT3, . , subsets of R? in terms of wellfounded
tree. Let T be a tree on w x 3, Let <, denote the Brouwer-Kleene order on 7,. Recall
that 7, is wellfounded if and only if <, is a wellorder. Let av < ¢3,.;. Then « is represented
in the wellfounded part of 7, | 3 if there is a sequence s € T, | 38 such that <2 o, where

<18 is the initial segment of the Brouwer-Kleene order on 7, | 8 determined by s.

LEMMA 3.37. Let R C R? be 113, ,. Then there is a tree T on w x 83, 1 such that:

(1) T is A}, 4 in the codes,
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(2) For any =,y € R,
(R(2,y) <> Ty is w.f <> Ya < 35, (a is represented in the w.f.p of Tz | @),
(3) The relation S(x,y,z) <+ (z € WO,y | A |z| is represented in the w.f.p of Ty |

|2|) is A,y in the WOayiq codes for z.

PRrROOF. This is proved just as in [6], except instead of using the Schoenfield tree construction,

one uses the Martin-Solovay tree construction to carry out the proof. O

Next need to show the following main lemma which is central for the result. It shows
the boundedness result which goes in establishing that the pointclass IT},, 5 is closed under

existential quantification up k3, .

LEMMA 3.38. Let W C WO,Q%H+1 be ¥3,,.1, invariant in the codes, and code a bounded initial
segment of k3, 1. Then there is a A}, function F C WO, X WO,y  which is invariant
in the codes, and defines a total function F : 85, 1 — 83, such that [Fly; > |z| for all

xe .
PROOF. Define the following relation W':

W' (z) +» 32 € WO,1 . [W(z)A(x codes a function Fy, : 35 — 83, ) A(|z] = [Fulwy )

Ran+1

Then by the above lemma, W’ € ¥} . In addition W’ is invariant in the codes in the sense
that if w,w’ code functions F,, Iy such that [F,lya = [Fur]yy  and W/ (w) holds then
W' (w') holds. Let W/ (w) <+ JyR(w,y) where R € T13,. As in above we let T be a tree on
w X 83,1, so that R(w,y) <> Tiw.,y is wellfounded .

Say a real w is a-good if Fi,(a) is defined and say w is < a-good and « is represented
in the wellfounded part of Ty, [ a.

Consider the integer game G where I plays out reals wq, y and II plays out wy and 11

wins the run iff there exists an 79 < 83, ; such that either:

(1) VY < no(wy,y), ws are n-good, (w1, y) is not ny-good and ws is ny-good, or

(2) Vn < no(wi, y), wy are n-good and Fy, (1) < Fu, (10)-
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Using the above lemmas the game G is 33 for player II. II easily wins the game
by playing any w* coding a function F,« : 83, ; such that [Fy]yy > sup{|z| : 2 € W}.
Notice here that the coding of functions is the full descriptions coding given by the complex
C. Thus, by the third periodicity theorem, IT has a Aj,,, winning strategy 7.

Define the function b : §3 | — 82 | inductively as follows. Let b(ny) be the maxi-

mum of (sup, ., b(n)) + 1 and

SUp{ Fr(wy ) (10) = V1 < mo[(w1,y) is n -good A Fy, () = b(n)]}
The following is now shown by induction on 7y:

LEMMA 3.39. (1) b(no) is well-defined and b(no) < 83,

(2) If (wy,y) is < mo-good and ¥n < noly, (1) = b(n), then Vn < noFu,(n) < Fu,(0),

where wy = (w1, Y).

PROOF. Suppose the claim holds for all n < ng. If (wy,y) is n-good for all n < 1y and Vn <
noFw, (n) = b(n), then by (b) and by induction then F,, (o) is defined where wy = 7(wy,y)

since otherwise II would lose the run of the game G. Define the set

By, = {(w1,y) : Vn < nol(wi,y) is n -good A Fy, (1) = b(n)]},

then B, is A3, ; since it is A} _; in any real in the appropriate coding set coding 7o and
b | no by boundedness. Since the coding z — F, is reasonable, i.e it satisfies Martin’s
condition for proving partition relations, this gives that b(n) is well-defined. The second

item now follows from the definition of b(ny). O

Next need to show that [b]y; > |z[Vz € W. If not, then by the invariance and
initial segment properties of W’  there is a w; € W’ such that F,, = b. Let y be such
that R(ws,y holds and let I play (wy,y) against 7, producing a real wy = 7(wy,y). Since
Vno < 83,_1(w1,y) is ny -good , then by induction using (b) in the lemma above, it is true
that Vng < 83, 1 Fu,(no) is defined and F,, (1) < F,, (n0), a contradiction to IT winning the

game G.
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Finally, a computation just like in [6] shows that the relation
F(z1,29) <> 21,20 € WO, Ab(|21]) = |22]
is A}, ,; and then we can compute that F' € X} (7) so F € A}, ;. O

We now show that I}, ., pointclasses are closed under existential quantification up
t0 03, - This is can regarded as the base case of the generalization of the Kechris-Martin on
our way to k3, 5, extending the results of Harrington and Kechris. So let R(x,v) C Rxd3,.,

be I3, 5 and invariant in he codes. Define

R(z,7) ¢ 7 < 83s0 A F0(0 <7 A R(z, 7))

Then R’ is invariant in the codes and we claim that R’ is II3,, 5. But notice that we can
write R as follows:
R(z,w) <> w = (g,e1) € WOz AT € WO5  (Va < 03 |(Tey T @)(lE*])] < (T, |
a)(fe))| AVz € WOs (2| = [(¢",e1)] = R(z,2))). So by Harrington and Kechris and
closure of II}, , ; under measure quantification, we have that R’ € I3, ;. So assume w.l.o.g
that R is closed upwards in the codes.

Next we use a standard coding of Aj, (x) subsets of R x R, uniformly in z. Let
Q C R? be I3, , and such that for every IT}, ., (z) set A C R? there is a real y, y € 29(x)
such that A = Q,. Let Qy(z,y,2) < Q(z1,y,2). Let Qo, Q1 in II5,.; reduce Qf, Q).
Say x codes a A}, set if Yy, 2(Qo(z,y,2) V Q1(x,y, 2)), so that z codes the AJ ,(z) set
Dy = {(y,2) : Qo(w,y,2)}.

Now let P(z) ¢» Jw € WO,y  R(z,w) where R € I}, is invariant and closed

upwards in the codes. By the boundedness lemma one can compute that:

P(z) ¢ Jy € A, () ((y codes a A, relation D, CR*) AD, CWO,;  x WO,; A

-1

D, is invariant in the codes ) A (D, defines a total function from 3, ; to 43, ;) AVw €

WO“%nH(V;Van_la < 3n-1(a fu(@)) € Dy) = R(z,w)))
Notice that the statement

¢ = D, defines a total function from &3, 41 to 85 41
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is a IT3,,, 4 statement since
Va, 21,22 € WOy (Dy(x,21) ADy(x, 22) = |21 = [22[) A (Vo € WOy Fz € WOy (V2 €
W051

2n+1

(|2'| = |z| = Dy(z,7"))) is 11}, 5. This completes the base case.

Now for the general case, let y =N« < J3 .4 Then let
w4

m tower

P(z) <> Jw € WO, R(z,w),

where R is 113, 4 is invariant in the code w. recall that for a code w € WO,, we have the

2]
corresponding coded function fy, : (05,,1)" — 93,1 defined W3, ., almost everywhere and
the function represents the ordinal |w|. By the main theorem of the theory of descriptions at

g 3 .51 1 * =
the level n, there is a function g : §5,,1 — d5,,,1 such that ‘V’W;nﬂ(ozl, ey ) fuo (8) < gl ).

can let g be f, where y € WOz . Then we have, for { =N« < 03,44 that
Qon+2 w +1

m-1 tower

P(z) > Jy = (e,61) € WOg(V%};,ﬁlal, vy U1 fy(A) 21 |e|AVw € WOV(V}“,V;nﬂal, ooy O fro () =
(T, T an)(fy(@))]) = R(z,w))). By induction on the heights of towers of w appearing in
the images of 83,5 by ultrapowers of the appropriate measures, this shows the result. So

PeTll, 0

COROLLARY 3.40. For every n € w, the pointclasses 11}, , 5 are closed under unions of length
strictly less 83, 5. Similarly, the pointclasses 33, . are closed under intersections of length

strictly less than 33, . .

PROOF. We show the corollary for the pointclasses 113, 5. Then the result for X3, 5 will be
immediate. So let {A¢}eo, for v < 43,5 be a sequence of I}, sets. Recall by Solovay we
have that 93,5 = ug, . then we may assume that = ry, 5 since (K3,,3)" = d3,,5. Define
[ k33 = P(R) by

f(a) ={z:zis all},, s-code of A¢}.
By the coding lemma, let g : k3,,5 — P(R) be a nonempty choice subfunction for f, i.e

VE < K3pig:9() C f(€) and the relation

Py, z) <y € WO, Nz e€g(lyl)
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is X3,,3. Let B, be the II}, , 5 set coded by z. Then we have

w E U A¢ < Jy e WO, Vz(P(y,2) > w € B)
£<Fi%n+3

and this is I3, 5.

O

3.5. Companion Theorems, Generalized Kleene Theorems for I}, 5 and Theory of Descrip-

tions

In this section we record theorems which follow from the above structural analysis of
the pointclasses IT},,, , and 113, 5. The proofs are generalizations of the theory at the level of
the pointclass IT5. We first gather all basic notions needed for the theorems of this section,
see [32] for a use of these notions in the more general context of ordinal definability. We
restate for the reader’s convenience the notions as defined in [32]. The notion of a companion
structure originated in Moschovakis work on elementary induction on abstract structures,
see [?].

A structure (M, €, Ry, ..., R,), where Ry, ..., R, are relations on M is said to be ad-
missible if nonempty, transitive, closed under pairing and union, and satisfies Ag-separation

and Ag-collection axiom schemas.

DEFINITION 3.41. (The companion structure) For every n € w, we define the companion of

I}, .5 to be a structure M = (M, €, Ry, ..., By) which satisfies the following:

1) M is a transitive set and there is some A C R such that A € M

2) M is admissible

(1)

(2)

(3) M is projectible on A: there is a A{V‘ partial surjection A — M

(4) M is resolvable: there is a AM-sequence (M, : o < ORDM) such that M = U, M,
(5)

5) 113, is the pointclass of all ¥4 relations.

Moschovakis has shown that companions to the pointclasses I13, 43, for every n € w

are unique. The following provides a characterization II}, 5 in terms of definability over
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T5,.2. The characterization of pointclasses in terms of constructible models has its roots in

the following theorem of Spector-Gandy:
THEOREM 3.42 (Spector-Gandy). A set of reals is I1} if and only if it is Xy over L, ox [2].

THEOREM 3.43 (Companion theorem for II}, . ;). Assume ADM® and let k be the least
admissible above Ky, . 5. Then a set A C R s 11}, o if and only if A(x) <> Ly[Tony2, z] E @(x),

where ¢ € ¥.

REMARK 3.44. Notice that every I}, 4 set is of the form L, [Ty, 42, 2] E ¢(z), where ¢ € X;.
This is because T5,42 projects to a universal IT},, , set of reals. The converse holds by the

generalization of the Kechris-Martin theorem.

By Moschovakis, notice that the least k > k3,.,, as in the above, is the same as
kETent2l j e the closure ordinal of positive elementary induction on M or the supremum of
the hyperelementary in L[T5, 2] prewellorderings of L[T5,2].

We make the following conjecture. We refer to section 4 for the meaning of the terms
involved in the conjecture. The conjecture shares similarities with the mouse set conjecture.
Sargsyan informed us that it is possible the conjecture below should follow from the mouse

set conjecture

CONJECTURE 3.45 (ADg). Assume there is no (w,w;)-iterable mouse with a superstrong
cardinal. Let I' C P(R) be a IIj-like pointclass (possibly closed under real quantifiers).
Then a set of reals A is in I' if and only for z € A, there a mouse M such that A is 3, over

As usual, one can show that under determinacy, the structure L,[T5,.2,z] has only
countably many reals. However we show the result directly by characterizing the set of reals

in L,[Toni0,x]. This set of reals will be Q2,13 and it is countable. The set (2,41 is defined

by

Qan+1 = {7 : 2 is A}, ; in a countable ordinal}
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By O-theory, recall that Q2,41 is a countable set of reals and it is the largest I}, ,-bounded
set of reals and largest countable II}, ; set of reals. This means that for every P(z,y) €
I}, ,, where y can be taken to range over an arbitrary perfect product space ) in general,

the set

R(y) «— dz € Qop11P(x,y)

is also I3, ., and there are no sets C' such that Q & C and
R(y) «— Jx € CP(x,y)

is still 113, 4, for P € II},,,. This trivially implies that Qa,41 is a II},,; set of reals. A
less obvious fact is that Q1 is contained in Cs, ; the largest thin 31 41 set of reals. It
should also be noted, and we come back to this aspect on the next section, that Q2,13 is the
set of reals of M, 41, the unique w-sound, w;-iterable premouse such that po(ME 1) =W
with 2n+ 1 Woodin cardinals and which is active (this is due to Steel and Woodin, see [24]).
Using this result, it can be seen that Q2,13 contains no non-trivial IT3,, 4 singletons and from
this one can see that ./\/lfn .1 1s the least non-trivial II}, 4 singleton. We refer the reader to
[15] for more of these specific sets of reals.

We now prove the following characterization of the set of reals of L,[T5,.2] using the
generalization of the Kechris-Martin theorem above. Recall, as before, for a scale ¢ on a set

A C R we have the tree from the scale defined by
((no, ..., ni), (g, -y ) €T = Tz € AVE <i(ng = x(k) A or(z) = ag)
We also let Qa,43(x) be the relativization of Q9,13 to the real parameter .
THEOREM 3.46. Assume AD and let r be the least admissible above k3, . Let x € R. Then
Qan+3(z) = Li[Toni2, 2] NR.

In the next section we will actually show that the models L[T5,.2] are unique, that
is they are independent of the choice of universal I}, , set and of the choice of scale ¢ on

that universal set. We will show the above theorem in a sequence of lemmas.
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PROOF. We start by showing that Q2,.3 C L, [T2,12] "R. Recall that by Q-theory, assuming
A3, o-determinacy, there is a II}, ., set of reals P C R x R such that if P’ = {y : P(z,y)},
we have that Qa,13(y) = {z : Vo € P'(z is recursive in z)}. In addition Q3 is the largest
Y3nsg-hull, ie we can find a T3, ., set of reals P such that Qony3 = Hully,3(P). To see

this let S = {y : V& € Qany3(x is recursive in y)}. Then S is a X}, 5 set and we have
Qonts C {z : Yy € S(x is recursive in y) } C Hully,3(S).

But then let P € I, , be such that S(y) <> JeP(y,¢). Then we obtain
Qonis C {z :Vz € P(x is recursive in z)} C Hully,,3(P)

and we're done since Qa3 is the largest I3, ;-bounded set of reals. In what follows, we
may as well assume we have no real parameter, so we let y = 0.
Let z € Qany3. Let pa,i3 = wlL(CQ"”). Let ¢ : C5,13 — pans3 be the norm associated

to the A} +3 good wellordering < of Cy,13, by which we mean that for every x € Cy,3, the

set {y : y < x} is countable and there are relations S and T in ¥, ; and 113, 5 such that
2 € Coyys o ({(e)n:newr={y:y<a}+ S,x) < T ).
Then if p(z) = a then we have for all w € WO such that |w| = a,
z(m) =n <> Ve € Qani3(p(e) = |w| = e(m) = n).

This last clause is equivalent to JuP(m, n,u,w), where P € 113, .5, as Qany3 = Hullyy5(P).
Now fix wy € WO such that |wg| = o and for each m,n such that z(m) = n let u,,,, be the
witness to P(m,n,u, z). Since II3, ., sets are s}, s-Suslin, then one can find a 3; formula

— . . . 1
E, involving ordinal parameters < g, 5 such that
z(m) =n <> Z(m, n, Up, p, &, Wo).

Since Ly [Ty, 2] is an admissible structure then z € L, [Ty,42].
Next we show that L[Th,12] "R C Qa,43. It is enough to show that Ly[T5,12) NR is
a 113, 5 set and then by determinacy and maximality of Qa,13, we have that L,[Th,42] NR

is countable and thus L,[To, 2] "R = Qopnys
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LEMMA 3.47. Let k be the least admissible ordinal above K3, 5, then Ly[To, o] "R is 113, .

PROOF. We compute the complexity of the statement © € L, [T5, 2], where 2z € R. We may
assume without loss of generality that Th,42 C K3, 4, since we can use a coding function to

identify ordinals. We then have
z € Ly[Tonya) ¢+ 36 < Kipis, Iy < E st @ € Le[Tonia N .

This is now equivalent to asserting: IM, E, o, 8 < K35 st M C k3 s AEC M x MA
a,f € MAME “V = L[]+ ZFC™” AN(M, E) is wellfounded A (M, E) E “a € ORDAS C
o’ A if 7 is the transitive collapse of (M, E) then 7n(8) = Topio N Ax € 7 M. By the
coding lemma subsets of k3,4 are A} 4, so we can transform quantification over subsets of
K3n.3 into quantification over reals (by coding these subsets by Aj, 5 sets of reals). By the

generalization of Kechris-Martin and bounded quantification, this is IT},, .

In terms of representation theorems, we have the following:

THEOREM 3.48. A set A C R is 113, 5 if and only if it is absolutely inductive over the
structure (K3, 5, <, R). Furthermore Qi3 = HYP(/%,;,))

We explain what R is in the above statement. Define an embedding j¢ as follows for
§ < 83,.5 . Consider the uniform indiscernibles ug for £ < 83, 5. Recall by Solovay that
9l = ugy for every n € w. We consider the shift map:

Se(uy) = uy if v < € and s¢(uy) = uyqq if v > €. Then we extend s¢ to an embedding

Je T Knys — Kb,ys by letting:

j{(fx(u’yu "'7u’7n)> = fx(‘Sf(u’Yl)’ ...,55(u7)),

where f, is f, : 03,.1 — 05,4, coded by z as in the coding above. Now let R be the following

relation:

R(€7a75) < 5 < é%n-i-?) /\jﬁ(a) = B
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Then the structure 3,4 is defined as (k. 4, <, R).

THEOREM 3.49. A set of reals is 11}, 5 if and only if it is II} over Qany3 where Qonig =
<K%n+3’ < {uf : 5 < K%n-{-fﬂ})'
Now considering the canonical trees T5,, defined earlier using the theory of descriptions

we obtain the following:

THEOREM 3.50 (Kleene theorem for IIj,. ). A set of reals is I}, 4 if and only if it is
absolutely inductive over the structure Q3, .4, where Q3 s = (Qanis, Ton).

The results of section 4 suggest that the structure of the projective hierarchy can be
analyzed using directed system of mice instead of using the lightface theory. The intuition
is that the theory of II} sets for example, needs to existence of a Woodin cardinal, whereas
the theory of II} sets only requires to look at L. In general, the theory of I}, ., sets
requires looking at mice M with 2n 4+ 1 Woodin cardinals. We will look at this relationship
between mice with Woodin cardinals and the projective hierarchy in section 4. The hope is
to obtain clues on how to prove Kechris-Martin like theorems using inner model theory by
characterizing the models L[T5,| using inner model theory. Neeman has shown the Kechris-
Martin theorem using inner model theoretic tools however his proof is hard to generalize,
see [23]. Instead of approximating the L[T5,] in mice with Woodin cardinals, we would like

to obtain a direct characterization of the L[T5,] using mice with Woodin cardinals.
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CHAPTER 4

THE UNIQUENESS OF THE L[TQN] MODELS AND INNER MODEL THEORETIC
ANALYSIS

4.1. Analysis of the Model L[T5,]

Next we consider constructibility over the trees Ts,. The models L[T5,] are not known
to be independent from the universal sets and the scales the tree T5, may depend on. The
only result in this direction is due to Hjorth who shows in [3] that L[75] is unique. In [1],

Becker and Kechris have shown that the following:

THEOREM 4.1. Assume projective determinacy and let P be a 11}, ., complete set of reals
P. Let @ be a reqular 113, scale on P. Let Ty,y1(P, @) be the tree constructed from the
scale @, then the model L[Ty, 1 (P, )] is independent of the choice of P and @ on P.

What Becker and Kechris actually show is a bit more: given the same assumptions
as above, every X3 ., (in the codes provided by the 0" norm of the scale) subset of d3, . is

in the model L[T5,1]. We state the theorem below.

THEOREM 4.2 (Becker, Kechris, see [1]). Let I' be an w-parametrized pointclass such that
AY C T, closed under recursive substitutions and under A. Let A be a T'-complete set of reals,
let 3= (p, :n € w) be a regular IXT scale on A and consider the 0™ norm ¢y : A — k.
Then for any X C k which is IXT in the codes given by o then X € L[T(A, @)]

Since every tree Th,;1 coming from a universal IT3, | set P and a regular 1T}, ; scale
@ on P can be computed to be ¥} ., in the codes by the Coding lemma, this establishes
that L[T5,.1] is unique. Steel has shown that the L[T5,.1] = Hs,y1 are extender models.

Recall that Ha,y1 is the model L[Pj;s] where Py is a subset of w x 3, defined by
Pﬁﬁ(”? Oé) A HJI(ZL’ S P2n+1 A p(x) =aN G(TL, l’)),

where G is a good universal set for I*II}, ., = 33,.,. g a I}, ., scale on P. In particular

they’re constructible models over a specific direct limit of a directed system of mice, see [30].
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Here, we aim at generalizing Hjorth proof that L[T5] is unique. The main difference
is that we are not using the theory of sharps as in Hjorth’s proof but Jackson’s theory of
descriptions. We first briefly recall the set up from Becker and Kechris and some previous

partial results on the problem of the independence of L[T5,].

DEFINITION 4.3. Let k3, be the Suslin cardinal of cofinality w under AD, i.e (k3,, )" =

1
éZn-‘rl

Let P be a complete II}, set of reals and let ¢ a regular A}, scale on P. Let
¢n : P — K, and let k = sup, k,,. Then @ is nice if K = k3,,, and the norms ¢, satisfy the

following bounded ordinal quantification condition:

If A(z,y) is 35, then the following is also X3, ,

R(n,z,z) <> z € U AYw € U(p,(w) < ¢n(z) = A(z,9))

Notice that for n = 1 this is essentially the Kechris-Martin theorem. For n > 1 the existence
of nice scales relies on Jackson’s generalization of the Kechris-Martin theorem. With the
following theorem of Becker and Kechris, the L[T5,] models are independent of the choice of

any 113 complete set A C R and any nice scale @

THEOREM 4.4 (Becker and Kechris). Assume AD. Let A be a complete 11}, set of reals and
let @ be a nice A}, scale on A. Then the model L|T4 g] is independent of the choice of A
and @

Let P be a complete II}, complete set of reals and let ¢ be a regular A}, scale on
P. Let k, be such that ¢, : P — k,. Let then k = sup{k, : n € w}. Then we have that

K3ni1 < K. Using the scale @, one can define the following coding of ordinals less than x: let
P*={(n,xz):ne€wAhxe P},

where (n, x) denotes the new real (n,z(0), z(1), z(2), ...). For (n,z) € P*, define p*((n,z)) =

on(z). We will abuse the notation and drop the parenthesis around the real (n,z) when we
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plug in inside the norm ¢*. For k some ordinal, we say that X C x is I' in the codes provided
by (P*,¢*) if {(n,z) € P*: ¢*(n,x) € X} is in the pointclass I

The above theorem then relies on the following result of Becker and Kechris:

THEOREM 4.5 (Becker, Kechris). Assume AD. Let X C ky,.; and X is X3, ., in the codes
provided by (P*,¢*). Then X € L[T(P,d)|, where P is a complete 11} set of reals and @ is
a A}, reqular scale on P.

To see this, let P be a complete II3, set of reals and let ¢ be a regular A}, scale
on P. Consider P* as above and let i) be the scale defined by ¢y(n,xz) = p,(z) and
Vrer1(n, z) = p(x). Then we have that X € L[T(P*,1)]. We then need to see that the tree

-, -,

T(P*,¢) € L[T(P,F)]. But we can compute membership in T'(P*, 1) as follows:

—,

(ag, ..., an), (0, ..y ) € T(P*, 1) <> 3(bo, ..., bk), (Boy o, Bk) € T(P, @) (a0 <IANn+1<
INay =bog Ao Nay =bpg ANy = By ANVj(k < j<n—a;=0_1)).
Throughout the proof, we will then use the 0" norm v, associated to any scale @ as
defined above and we will denote it by v 5. The goal is to show that the models L[T5,] are
independent of the choice of an arbitrary scale not just a nice scale. We will follow Hjorth
proof to show that an arbitrary scale can be analyzed in the model L[T5,] by a nice scale.
The problem is to use generalizations of the Kechris-Martin theorem for the ap-
propriate pointclasses in the proof. The Kechris-Martin theorem, and its generalizations,
significantly simplify the descriptive set theoretical complexity of certain computations in-
volved in the proof, which allows certain sets to be computed in the models L[T5,]. For
example we now have that Vi < k3, X3, is still X3 ;.

We recall what it means to be a regular scale:

DEFINITION 4.6. Let ' € P(R) be a pointclass and let A € . Then a regular [-scale is a
sequence @ = (p, : n € w) of onto maps ¢, : A — k,, for k, € ORD, satisfying the following

properties:

(1) Whenever {z;} C A is a sequence of reals such that z; — = and ¢, (x;) — 7, for

every n as ¢ — w, then z € A and we have the lower semi continuity property:
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on(2) < Yo

(2) The following norm relations, <¥ ~and <, are in L, for every n:

<, yoreAN(YEAV(ye ANpa(z) < pn(y)))
r<, Yy r€AN(Y¢E AV (y € ANpu(r) < pnly)))

Also recall that starting from a regular scale g, we have the tree T' derived from the

scale which is defined as follows
(s,0) € Tz < Fx(x [ 1h(s), po(x) = Q0, -, Pin(s)-1(T) = Qun(s)-1)

It is then straightforward to show that A = p[T;;] where A C R is the set on which the scale
¢ is. For example, if x € p[T5] then use the properties of the scale to obtain = € A. Notice
that the tree T'is on w X k where kK = sup{k,, : n € w} and thus x has to be a Suslin cardinal
of cofinality w.

Next we recall the definition of our Aj, ., scales, @ on II}, ., sets which we defined
in the previous sections using the appropriate measures and using stability arguments. For

z,y € Aand A €1II3,,,, we let

where C' is a c.u.b subset of §}, , , stabilizing the Martin tree at the level of 11}, , 5 which is
A}, 5 in the codes.

Below we state the generalized version of the Kechris-Martin theorem that we need
here. Although we assume AD in the statements of the following theorems, it should be

noted that their proofs only require local determinacy hypothesis.

THEOREM 4.7. Assume AD+V = L(R). Let X be aI1},, | (x) subset of R x w. Suppose that
Y < Ky such that for all v € R, for all m € w, whenever [folwy | =7 then (z,m) € X,
for f:(83,_1)™ — 83,_1. Then there exists a xo € A}, 1(y) and an ny € w such that for all

z € R and all m € w, whenever [filwy = [fxo]W;?H then (x,m) € X.
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THEOREM 4.8. Assume AD. Let X be a 33, subset of R x R x w. Then the set
{r €R:Vy < kg Ty €RIL € w((fylwy =7 A (2,9, k) € X}
is also X3, 1.

DEFINITION 4.9. Let I' be a pointclass such that Z(l) CTI. Let z € R. We define the

relativization I'(z) of I by: P C R is in I'(z) if there exists a set @ C R? in I" such that,
P(z) «+— Q(z,x).
In particular X{(z) is the pointclass of semirecursive in z sets.

DEFINITION 4.10. Let ¢ be a norm on R. We say P is invariant in z if for all z, 2" € R and

for all y € R,

p(z) = o(@') — [P(z,y) < Pz’ y)]

DEFINITION 4.11. Let ¢ be a regular scale on a set A C R such that ¢, : A — k,. We say
that a set X C R is relatively II}, invariant in the codes given by the 0" norm ty if there

exists a set Y C R? in I1}, 5 such that
r € X Vo, ...,z, € AVEVi < n(¢o(k,z;) = api N ({21, ...sxn), ) €Y)

Similarly a set X C R is relatively ¥} . invariant in the codes given by the 07 norm

1o if there exists a set Y C R? in 33, such that
r € X «— Vay,...,z, € AVEVi < n(¢o(k,z;) = ap; A ((x1, ..., xn),x) €Y)
One can of course also let X C R™ and Y C R™*! in the above definitions.
We have the following result of Solovay, see [9],

THEOREM 4.12 (Solovay). Assume AD. Let G be a reqular A}, .4 scale on a a 113, , set
ACR. Fiz xy,...,x, € A. Let A be the pointclass of sets of reals which are relatively 113, 4

invariant in the codes given by 1. Then, PWO(A).
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Recall that a pointclass I' is w-parametrized if there exists a U C w x R which is

universal for I' subsets of R.

LEMMA 4.13 (Kechris). Assume AD. Let @ be a reqular A}, 5 scale on a a 11}, , set A C R.
Fiz xy,...,x, € A. Let A be the pointclass of sets of reals which are relatively 11}, 5 invariant
in the codes given by 1g. Then A is w-parametrized.

Also we will repeatedly use in the proof the fact due to Kechris that, under Det(T"),
every prewellordering in 3*I" does not have a perfect set of inequivalent element. (since
there is no IXI" wellordering of R under Det(I") and since by a result of Kechris, every set
in OI" has the property of Baire, see [10]). This only requires local determinacy hypothesis,
although we just work under AD.

We will also use the following nice determinacy transfer result due to Kechris and

Solovay, see [16]:

THEOREM 4.14 (Kechris, Solovay). Assume ZF+DC. LetT be a pointclass such that A3 C T’

and I' is a Spector pointclass. Then we have that
Det(A) — Det(I")
PROOF. See [16] O

COROLLARY 4.15. Assume ZF+DC. Let I' be a pointclass such that Ag CTland Tl is a

Spector pointclass. Then we have that
Det(HYP) — Det(IND)

COROLLARY 4.16. Suppose V £ Det(I1} ). Let M be an inner model of ZF such that
ORD C M and such that M <51, V. Then,

M E Det(I13,)

Notice that assuming Det(Al,), M is an inner model of ZF such that ORD C M

and such that 75,1 € M, where 15,1 is a tree on w X Q%n +1 Which projects to a universal
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set U and which comes from a regular II},, | scale @ on U, we have that

M ‘<21 V

2n—+1

LEMMA 4.17 (Woodin). Suppose V E Det(I13 ). Let x be a Cohen generic real over V.
Then,

V ‘<21

2n+2 v[x]
PROOF. Let Ty,42 be the tree coming from the Kechris-Martin scale on w X w X K3, 5 such

that for some 33, 5 set A, pp[T] = A and for some II}, , set B, p[T| = B and
A={z:3x eR((z,y) € B)}.

Let 7 be a term in the forcing language for Cohen forcing. Let k3,5 < £ be least such that
L.|Ty, 10, 7] is admissible (i.e satisfies KP ).

If x is Cohen generic over V', then L[T5,9, T, 2] is still admissible. But then by
absoluteness of wellfoundedness Vx| E p[Ty, 2] C B. Since L[To,42, T, x] is admissible, if
V{z] E Yy((y,7¢(z)) ¢ B) then for all z € B such that (z,7¢(z)) € p[Toniz], the fact that
(Toni2), is wellfounded will be witnessed in Ly [To,42, T, x].

But since there are only countably many reals in the model L,[Ty,42,7,x], since
Li[Toni2, 7, 2] "R = Qo,13(x, 2), which is countable by Q-theory, with 7 coded by a real z,
we can let 2’ such that 2/ € V' and such that 2 is Cohen generic over L [T, 9, 7]. Pick 2’

below a condition p which is such that
p IF the tree of attempts to build y with (y, 7[z]) € p[Tonio] is wellfounded
Then we have that
L [Ton+2, 7] E pl the tree of attempts to build y with (y, 7[x]) € p[Tan+2] is wellfounded
and so

V' E the tree of attempts to build y with (y, 7[z]) € p[Tani2] is wellfounded

IKP is Kripke-Platek set theory. It is weaker than ZFC, has no power set axiom with separation and
collection are limited to Xo(= Ay = Ilp) formulae
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O

THEOREM 4.18. Assume AD. Lety € R and let p be a 113, 4(y) norm on some set of reals.
Let A be a complete 11}, ., (y) set of reals and let @ be a reqular A}, , 5(y) scale. Suppose that
for all B € 33, 4(y), the following set

{r eR: V1, ...,z € A Ty, .., unVEVE < ok, yi) = Yo(k, ), (Y1, ..., yn), ) € B)}

is also X3, 5(y).

Then for every x € R, there ezists a sequence {xy} C A such that for ¥o(k,z;) = oy,
for every i < n and there exists a set D C R which is relatively A}, , 4(y) invariant in the
codes given by the 0" norm 1) satisfying the following properties:

(1) x € D,

(2) DC {z € R: pl2) = pla)}.
Proor. We let y = 0 since the case with a real parameter y is exactly the same. We will
establish the theorem with a series of claims.

First we show the following claim which follows from the separation property of the

pointclass of sets which are relatively 33, ; invariant in the codes given by the 0*"-norm 1.

CLAIM 4.19. Suppose B is relatively X3, . 5 invariant in the codes given by the 0" -norm 1.
Suppose that
Yw, z € B we have that p(w) = p(z)

Then there exists a set B*, such that B C B*, B* is relatively A}, , 5 invariant in the codes

given by the 0" -norm vy and

Vw, z € B* we have that p(w) = p(z)
PRrROOF. Consider the set

C={weR:3z€ B(p(w) # p(2))}

Then the set C is relatively 33, invariant in the codes given by ¢ since B is also in

that pointclass. Also C' N B = (). Recall that, under ZF for a nonselfdual pointclass the
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prewellordering property of a pointclass implies the separation property of the dual point-
class. So choose a set B* which is relatively A} 5 invariant in the codes given by v such

that B C B* and such that C' N B* = (.

We define the set Ay as follows:
Ap is the set of all € R such that Vay,...,z, € A, Yoy, if ¥o(k, x;) = ax;, where
i < n, then for every D which are relatively Al 43 10 ¢y the codes given by we have either
(1) z ¢ D, or
(2) 3w, z € D(p(w) # p(2))
Assume that Ay is nonempty. Then notice that Ay € X3, 4, since &, and hence 217 is
a A}, 5 scale on A, and since we can obtain, uniformly in the codes give by the 0" norm
1y a code for the set D, say from a universal relatively II) . ; invariant in the codes given by

1o set and since this pointclass also has the prewellordering property uniformly in the codes

given by ).

CrLamM 4.20. If Ay C Ay and Ay # 0 is relatively X3, in the codes given by vy, then
Jw, z € Ay such that p(w) # p(z).

PROOF. Suppose that Vw, z € Ay, we have that p(w) = p(z), then let A; C A, such that A,
is relatively A}, .4 in the codes given by 1 and Yw, z € Ay, we have p(w) = p(z). But now
notice that A, N Ay = 0, by definition of Ay and then we must have A; = (). Contradiction!

O

Now we define the following partial order P:
P={BCR:B#0,BC Ay, H{z:}icn C Atho(k, ;) = a; and B is rel. 33, 4 inv. in o}

For By, By € P, we let

By <p By <— By C B;.

Notice that by assumption P # ().
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Let V) a large enough rank initial segment of V' such that V) F ZFC™. Let X < V),
be a countable elementary substructure of V), and let M be the transitive collapse of X. Let
Q=PNM and let <g=<p NQ x Q.

If G is Q-generic over V', we let g be the real introduced by forcing with Q. We also

let G be a name for the Q generic G.
CrLAM 4.21. (Ag, Ag) IF p(g,) # plag,)-
PROOF. Suppose that there are conditions By C Ag and By C Ag such that
(Bo, B1) I p(z¢,) = plae,)
Let
By = By x ByN{(w,2) : p(w) # p(2)}

Then since Q is countable, we have by elementarity of M that By € M. Also B # () by the

above claim. Let
Q ={BCR*:B€M,B+#0,Bisrel. ), 5 inv. in the codes ay; given by v (k, z;)}
Let (K, G) be Q' x Q generic over V such that K C B AG C By. Let
G'={By CR:{(w,2) € B}:2€ By} € H}

and let

G'={B CR:{(w,2) € Bj:2€ By} € H}

Notice that (G°, G) and (G, G) are both P x P generic over V 2. Also since By € GY,
By € G' and B; € G we have that

p(xeo) = p(zc) and p(zer) = p(zc)

Since A is a complete II;, set, any II3, set X C R? which projects to (<%)¢ is
such that X <y A. Let € be a real coding the function Wadge reducing X to A. Then
this fact continues to hold in V[H,G] with ¢ € V[H,G]. In addition, by absoluteness of

20ne can use a genericity argument to show this
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wellfoundedness we have that V[H, G] F p[Ty,42) € A. Let £ = 7 !(¢), so that £ codes the
Wadge reduction inside M. Since 7 naturally lifts to generic extensions. By genericity of

G°, G', we then have reals z¢o and z¢: such that

p(rgo) # p(rar).

But then p(zgo) = ¥(z¢) and p(zagr) = p(za) yet p(xgo) # p(xgr) in V[H, G]. Since Q x P
is countable then V[H, G] is equivalent to V[z] for  a Cohen real. Contradiction!

U

To finish the proof of the theorem, we use the following basic lemma from forcing

theory:

LEMMA 4.22. Let z be a Cohen real. Then there is a perfect set F' in V]x] such that for

every F' C F, F' = {z, ..., z;} finite, we have z; is generic over V|z, ..., zj_1].
Proor. Consider the following poset:
P={(T,k): T C2° ht(T) =k}

We also let

(T, k) < (S,1) «— SCTAL< k.

Any P-generic/V adds a perfect tree U. Let G be P-generic over V. Let z,...,z; € U be
in V[G]. Let (T,k) € V such that for branches fy,..., f; € [I] we have fy C zp,..., f; C
z;. Notice that there are densely many conditions (5,l) < (T, k) for which there exists a
conditions (R,m) such that for branches fJ, ..., f{ € [R] we have fo C f¢,..., f] € f; and
Ny x ... x N N X = 0 for some nowhere dense set X. But since G is generic, it has one
such condition. So (zo,...,2;) ¢ X,and it is a sequence of Cohen reals, so z; is generic over
Vizo, ..oy 2j—1)-

O

So let z be a Cohen real and let F' be a perfect set, in V[z], of R-many Cohen reals

xy, [ € 2% such that if f # g there exists Gy and G, satisfying the following:
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(1) (Gy,G,) are mutually V-generic below (A, Ag) for P x P
(2) za, = f,xa, = g and p(zy) # p(z,).
But F is in V, since the second clause above is ¥}, ., and since V <s1,., V[2]. But

p was supposed to be a II}, , ; norm. Contradiction!

U

COROLLARY 4.23. Assume AD. Let p be a I}, 4(y) norm on some set of reals. Then
Vo € R, Hag} C (Kb,13)<Y, 3D which is relatively A}, 5 in the codes given by some scale ¢

such that
(1) xe D

(2) DC{zeR:p(z) = p(x)}.

PROOF. Since we don’t have the assumption on the norms of the scale ¢ as in the above
theorem, we use the Kechris-Martin theorem. Then the set Ay defined in the above claims
is 23,5 by the Kechris-Martin theorem. If f, : (83,,1)" — 83,41 and f, @ (83,.1)7 —
93,1 are two functions coded by the "nesting” defined for generalized Martin tree, and if

kL, = [fy]WQj » and if o4, () = ok, Yo, (z) = Bo; then the pointclass of relatively

A}, .5 invariant in the codes given by 1y ,, for some {z;};<x and the pointclass of relatively
A}, .5 invariant in the codes given by 1o o, for some {x;};<; are the same. So one can always

find new codes in vy for some sequence of real such that the corollary holds.

O

COROLLARY 4.24. Assume AD. Let p be a 11}, 4(y) norm on some set of reals. Then

Ve € R,3j € w,3a < Ky,.4 such that there exists a D C R such that

(1) 3y €R([fylyy =)

(2) Vy € R([fylyy, , = @ — D is invariantly AL s(y)
(3) ze€ D

(4) DC{z €R: p(z) = pla)}.

So basically D is A, 5 in the equivalence classes functions f : (83,,1)<“ — 35,1
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4.2. The Main Theorem on the Uniqueness of L[T5,]

We assume AD again throughout this section. We start with the following basic

lemma from Q-theory:

LEMMA 4.25 ([15]). Assume AD. Then there exists a non trivial 11}, 4 singleton, i.e a

Yonts € R such that {yans+s} € Uy, 5 and Yonis & A, 5.

Next, we aim to see that any II}, 4 subset of &3, 4 is uniformly A} . 4(yan+3).

LEMMA 4.26. Assume AD. Let A C R be a universal 11}, , 4 set (recall that 113, 5 is w-
parametrized). Suppose that {ysn13} = A;, for some t € w, and yopis ¢ A}, 5. Suppose 1
is a 113, 4 norm on the set A.

Then Vo < k3,4, Yk, € w, we have

Vw € R([fulny,,, = o — Alk,w)) 3z € R Fj €wllfdyy = anv((dlk,4,1),2)) < b(t, yansa).
where d : (w)> — w is a recursive function such that for all z € R and for all k, j,l € w,

A(d(k, j, 1)), 2)) < Vw € R([fu]w

2n+1

= (fdwy . = Alk,w))
PRroOF. Notice that our hypothesis on d immediately gives that
JdzeR,dje w[[fz]wgn+l = aNY((d(k, 7,1),2)) < ®(t,yans3) — Yw € R([fw]wén+1 =a— A(k,w))

Suppose the conclusion of the lemma fails. Then there must be | € w and o < k3,5 such

that for all z € R, Vj € w, whenever we have that [fz]Wg LT then

A(d(ka ja l)7 Z)) A d}(ty y2n+3) S ¢((d(k>]7 l)a 2))
But now this implies that
{Yan13} € Dg45(2),
by assumption. This then gives that
Yoni3 € A§n+3(z)
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and
VzeR,Vj € cu([fZ]WanJrl =a — Jy € A}, 5(2)(Alt,y))
By notice that by restricted quantification, we have that
B(z) +— Jy € Ay, 15(2) (At y))
is also I3, . 5 and by Kechris-Martin we have

Jz € Ay, 5 such that Jy € Ay, +(2)(A(t,y))

and hence
Jy € Ay, 5(A(t,y))
Contradiction!

O

LEMMA 4.27. Assume AD. Let A be a unwersal 113, 4 set of reals and let d be as above.
Let M <51, V' be a transitive inner model of ZF+DC' such that ORD C M. Then 3y €

M NR,3t € w such that A(t,y) and for all & < K}, 4, for all k,l € w, we have that

Yw € R([fw]wzan =a— Alk,w)) < Jz€eR,Jj € cu[fz]%jn+1 = aNY((d(k, j,1),2)) < (t, Yonss)
PROOF. By assumption, M satisfies II}, , ,-determinacy. So

M EYw € R([fw]WzlnH =a— Alk,w)) < 3z e R,3Jj € w[j‘“z]WZjn+1 = aNY((d(k,7,1), 2)) < ¥(t, yants)

Also by assumption and since M E “A(k,w) holds” then we have that A(k,w) really
holds. So have that

EIZ € R? Elj S w[fZ]Wgn+l =aN ¢<(d(k7J7 l)7 Z)) < w(ta y2n+3)
implies that
Vo € R([fuluy,., = o~ Alk,w)

Now suppose that thereis an ! € w, 3o < k3, 5 such that Vz € RVj € w whenever [fZ]WQj o=

o then we have that ¢(¢, yant3) < ¥((d(k,j,1),2)). Since this is a IT}, , s(y2n43) statement

about «, by Kechris-Martin 3z € A}, 5(y2n+3) and ¢ € w such that [felws,,, = a. But then
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x is definable in M thus x € M. Since M F ¢ (d(k,t,j),z) < ¥ (k,w) by assumption. But

we have M =<5 V. Contradiction!

U

Finally in the next last two lemmas we use the fact that every II},, ; subset of k3,4

is uniformly A}, 5(yon+3) to compute any A}, 4 scale ¢'in a nice scale .

LEMMA 4.28. Assume AD. Let P and Q be two uniwersal 113, 5 (Yon+3) sets of reals. Let G
be a A}, 3(yants) scale on P and p a A}, 4(yanys) scale on Q. Consider the trees from the
scales Tonto( P, @) and Toni2(Q, p). Suppose that for every B € X3, 5(Yony3), the following

set
{ZL' ER: Vl‘l, vy T € P07E|y17 )yn(¢0,¢(k7yz) - @Z)[)@‘(k,l‘i),\V/k < n, (<y17 "'ayn>7x) € B)}

is also X3, 5(Yant3). Then Tonya(Q, P) € L[T(F), Yan+s)-

PROOF. Since we're assuming AD, all relevant pointclass are w-parametrized, in particular,
the pointclass of sets which are relatively X3, . invariantly in the codes is w-parametrized
uniformly in the codes given by 1y . So we can find a set U C wxRxR which is 113, 5(y2n+3)

and such that

(1) Yy, ..., 2y, YWy, ..., w, € P,VYk € w,VIVi <n
(Yog(l, ;) = Yog(l,w;)) — {z e R: (z,(x;),k) e U} ={x e R: (x,(w;), k) € U}
(2) Va1, ...,z, € P whenever 9 (], z;) = ry; and W is relatively II}, 5 invariant in the

codes Ko, .., ki, then Ik € w such that W = {z € R : (z, (z;), k) € U}

Let K denote the sequence of ordinals kg, ..., ki;. Now let Uy denote projection of

U onto the first coordinate, i.e the set
{z eR: (z,(x;),k) € U}.
Next consider the set
U, ={(R k) : Uz isrel A} 5 inv. ,Uzy # 0,V2,y € Uz i (vo 51, 20) = o 51, 10), VI < n)}
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This is basically the set of codes of sections of relatively A} .. in the codes sets of reals
but we just require that they’re invariant in the norm being analyzed by the Kechris-Martin
norm. Also we have that U,.; C U,,. For any (K, k) and (7, 7), we define (R, k) <, (7,7)
if and only if for every x € Uiy and for every y € Uy, vos(n,x) < o z(n,y). But by
Becker and Kechris, we have that (U, <,) is in L[T(&), yan+3] since the prewellordering <,
is 33, 3(Y2nt3) in the codes and since that sets U, are also X3, 5(y2n43) in the codes. By
5.18, we can also find a code (R, k) € U,, for every n € w, for every = € Q, x € Uz, since
these are exactly the codes of relatively A}, . 5 in the codes sets of reals. Next for each n € w,

let 0, : U, — (, be the norm associated to the prewellordering <,, defined above:
for any codes (K, k) and (7, j) in U, 0,((F, k)) < 0,((7, 7)) Hf (K, k) <p (7,7)

Notice that for every n € w, ¢, < k3 +3- By Becker and Kechris, the sequence of norms ¢'is

in L[T(F), yants]. Since T'(p) is the set

{& € ORD<* : In € w, Ih(d)

n, (R, k) € U, such that VI <n,0,((R, k)) = u(n)}

then T'(p) € L[T($), yan+s) and we are done.
U

We finally conclude with the last lemma which finishes the proof that the models

L[T5,,, 2] are unique.

LEMMA 4.29. Assume AD. Let P and Q be two universal 113, ., set of reals. Let @ be a

A}, .5 scale on P and p be a A}, 4 scale on Q. Consider the trees from the scales T(g) =

Tonio(P, @) and T(p) = Toni2(Q, p) as usual. Then L[T(F)] = L[T(p)]

PROOF. By the previous lemma, we just have to show that T'(p) € L[T(5)]. By lemma 4.28,
we only need to see that if y € R is such that for L[T(@)] <51 .V, y € L[T(¢)]NR and

satisfies the conclusion of lemma 4.27, then for all sets B which are X}, 4(y), then

{$ eR: vxl) 7$n(xz epr— 3917 7yn(¢0,<ﬁ(kay2) = w0,¢<k7$i)7Vi S naVk7 (<y17 7yn>7$) € B)}
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is also X3,.4(y). By the proof we give in the next section of the fact that L[Th,o] =
LIME, +1.00)» ¥ can be considered to be ¥y, , 4, the least non-trivial II;, | 5 singleton.
Next we define a IT3,,, ; norm ® for which the above lemma applies, by setting ®(z) =

®(y) if and only if either

(1) 2 = (x;),y = (yi), Vi < n, for somen € w, and Vi < n,z; € PAy; € PAoa(k, x;) =
1/10755‘(]{?, y:)» or
(2) = # (x;) and either for every i < n, x; ¢ P or there exists an ¢ € w such that x; ¢ P

and y # (y;) and either i < n, y; ¢ P or there exists an ¢ € w such that y; ¢ P
Next we fix a set U C R x R x w such that

(1) For all j,l € w for all w,z € R and for all t € w

Fwe = Uiy = £z A= 5w )} = {2 A2, 57 0)),

2n+1

(2) U € H%n—i—i’n

(3) For every o < K3, 5, whenever W = {z : Va([f,] = a — V(z,2)} where

l
W2n+1

V €I}, 3, then there is t € w, y € R and j € w such that W = {2 : U(2,j7y,t)}.

For t € w, @ < k3,5 and [f,]y: = a we consider as in lemma 4.27, the projection

2n+1

of U onto the first coordinate:
Ust ={z€R:U(z,1"x,t)}.
By lemma 4.27, the assumption on y3, , 5 implies that for B € II},, 5, we have that

{(z, 1) : V(y,j) € R x w({felwy

2n—+1

= Wlwg ., = B:7))}

2n+1

is 23,4 4(Y9,43). We now fix a set B € X3 5(y9,,5)-

Let X be the set of all z € R such that for all & < k3,4 and for all #;:

(1) Either for all t5 € w, Uy, #o Uay,, OF
(2) there are x,y € U,y, which are not ®-equivalent, or

(3) UOé7t2 = @, or

108



(4) There exists an x € Uy, such that z = (z;),Vi < w,x; € P A Jy = (y;) such that
&(z) = B(y) and B(y,2), or
(5) There is an « € U,4, such that either x # (x;) for all z; or x = (x;) and for some

i€w, x; ¢ P.

Cram 4.30. X is 33, 5(y5,.3)

PROOF. We check that the clauses (1) through (5) are at most 33, 5(¢9,,4). Clause (1)
is 33, 5(Y9,13) since the pointclass II}, . has the prewellordering property. Taking the
existential quantifier in clause (2) outside the conjunction of clauses (1) and (2), shows that
(1) v (2) is also X3, 5(¥9,,3). The same holds for (1) V (3),(1) V (4) and (1) V (5). By the

generalization of the Kechris-Martin theorem, X is now 3, 4(49,.4)-

This last claim now finishes the proof of the lemma:

CLAIM 4.31. We have that

X = {Z eR: vxl) ey Tp € POa Elyla 7yn(1/)0,¢(k7yz) = @/JO’@(IC,IEZ),VI{?\V/@ < n, (<y1a 7yn>’x) € B}

PROOF. Let 1, ...,x, € Py and let ¢ 3(k, x;) = ay,; for all k € w and ¢ < n then by corollary

4.24, there exists o < k3, ; and ¢, € w such that

(1) Uay, is A}, 5 in any code w which codes a function f : (d3,,,)<% — 483, via the
“nesting” of the Martin tree and which equivalence class gives o and

(2) z = (x;) € Uyy, and

(3) For every y € U,y,, we have y = (y;) with ¢ g(k,y;) = ai;, and so we have
B(y) = 0(z).

Hence if the defining condition of the set

{z €R:Vry, ...,z € Po, 31, ..., Yn(Vo.5(k, yi) = Yo.5(k, 2,)), Yk < n, ((y1, ..., yn), z) € B}
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fails, then U, ., witnesses that z € R ¢ X. Conversely, if z ¢ X then clause (4) above must

fail and thus

z¢ {z€R:Vay, ...,z € Po, 31, ..., Yn(Vo,5(k, yi) = Yok, i), Yk <n, ({y1, ..., yn), ) € B}.
]
[

This completes the proof of the main theorem. In the next two section, we show that
the models L[T3,] are constructible models over direct limits associated to directed systems of
mice and that L,[T5,], where £ is the least admissible above k3, is a mouse. This provides
a counterpart to Steel’s result which says that the Hr = L[Tt] = L[M], where M, is the
HOD limit of all T" correct and I'-properly small iterates My, are extender models for I" a
ITj-like pointclass, see [30]. In the special case where I' = IT3 then Hyy = L[T3] = ML |x,
where k is the least strong to the bottom Woodin cardinal dg o, and MZ is the HOD limit of
all iterates of M5, the minimal proper class inner model containing two Woodin cardinals.

It turns out that k = ¢} and
L[T3) E §3 is the least < &y oostrong cardinal in HOD.

These results hold at all IT classes which are scaled. At the level of II classes where we do
not have the scale property the situation is a bit different as we show below. We will define

all the notions below before showing the results.

4.3. L[Ty,] and Direct Limit Associated to Mice

In this section the goal is to show that L[Th,ys] = LM, +1.00)- It should be true
that directed system of mice provide a complete structural analysis of L(R) and we try to
illustrate this point of view in this section, We’ll use ideas of Sargsyan and Steel to show the
main theorem below. We are grateful to Sargsyan for showing us and explaining to us the
proof below.

The following theorem is a central theorem in descriptive inner model theory. It

jumpstarted the analysis of HOD’s of models of determinacy.
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THEOREM 4.32 (Steel [28])). AD*® implies that HOD*™ is a core model below ©. In L(R)
every reqular cardinal below © is measurable.

The following very useful theorem is due to Woodin. It characterizes the Suslin

cardinals of cofinality w of L(R) in HOD:

THEOREM 4.33 (Woodin). Assume V = L(R) = AD. For every n € w, K}, is the least
cardinal 6 of HOD such that

M, (HODIS) E “§ is a Woodin cardinal ”

In general, Woodin has characterized all the Suslin cardinals of L(R) as exactly the

cardinal cutpoints of HODX®),

THEOREM 4.34 (Main Theorem). [A., Sargsyan/
Assume AD*™®)  Then the LTy, 5] are the models L[./\/lfnﬂm].

We need to record all the notions involved in the computation. Given a set of reals

A, OA is defined as follows:
x € DA < IngVYniIngVng...(x,{(i,n;) i € w}) € A
Notice that this is the same as saying :
DA = {x : | has a winning strategy in G4, }

Let M be a premouse. For a < o(M), we let M|la be M cutoff at « and the
last predicate indexed at « is kept. M|« is M|l without its last predicate. We say
that « is a cutpoint if there are no extenders on the extender sequence of M such that

€ (ep(E),lh(E)]. We say « is a strong cutpoint is there are np extender on the extender
sequence of M such that « € [cp(E), h(E)].

If M is an n-sound premouse then a (n,#)-iteration strategy for M is a winning
strategy for player II in the iteration game G,,(M,#) and a n-normal iteration tree on M is
a play of the iteration game in which II has not yet lost, i.e all the models are wellfounded.

Let for n be a limit ordinal. If b is a branch of an iteration tree 7 such that b drop only finitely
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often then M is the direct limit along the branch b. We also let §(7) = sup,., lh(E,. We
let M(T) = UpcnMq [ IM(E,). If a <7  and (o, f]r N D = 0 then the iteration embedding

exists, i.e we have

Z'a,g : ./\/la — ./\/l/g

DEFINITION 4.35. Let 7 be an n-normal iteration tree of limit length on an n-sound pre-
mouse M and let b be a cofinal branch of 7. Then Q(b, T) is the shortest initial segment Q
of M, if one exists, such that Q projects strictly across §(7) or defines a function witnessing

d(T) if not Woodin via extenders on the sequence of M(T).

Next we need the Dodd-Jensen property which is implicit, especially in reference to
showing below that we have scale instead of just semi-scale. The property says that iteration
maps are minimal. The main use of the Dodd-Jensen property is in showing that HOD limits

exist.

DEFINITION 4.36. Suppose M is a mouse and ¥ is a (wy, w; + 1)-iteration strategy for M. ¥
has the Dodd-Jensen property of whenever N is an iterate of M via ¥ and 7 : M — S<IN

is a fine-structural embedding then

(1) The iteration fro M to N doesn’t drop,
(2) S =N and,

(3) if i : M — N is the iteration embedding given by X then for every a, i(a) < 7(«).
DEFINITION 4.37. (Cr) For a a countable transitive set we let
Cr(a)={bCa:bcOD(a)} =P(a) N Lp"(a)

where Lp'(a) is the union of all @ premice projecting to a having an w; iteration strategy in

r.
let I',, be such that Cr, (z) = RM»®) So we’ll let T, be (22)L5),

DEFINITION 4.38. Let I',, be as above. N is called I',,-suitable if there is a § such that
N = Lpt~ (N | 6) and
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(1) N E 4§ is Woodin
(2) For every n <9,
(a) If n is a cutpoint of A then Lp'™(N | n) <N
(b) Lp™ (N | ) E 1 is not Woodin, and
(¢) If  is a strong cutpoint of N, then Lp™ (N | n) = N | ()M

We write 6V for the unique such 6.

Given an iteration tree 7 on a suitable mouse A, T is correctly guided if for every
limit o« < 1h(7T), if b if the branch of 7 | « chosen by 7 and Q(b,T | «) exists then
Q, T | a) I Lp(N(T | a). T is said to be short if either T has a last model or there is
a wellfounded branch b such that 7~{N} } is correctly guided. 7 is maximal if T is not
short. Notice that maximal trees can’t be normally continued since every initial segment of

a normal tree is short.
DEFINITION 4.39. Let N be suitable. then A is short tree iterable iff whenever T is a short
tree on N then:

(1) If 7 has a last model then it can be freely extended by one more ultrapower, that
is every putative normal tree U extending 7 and having length 1h(7) 4+ 1 has a
wellfounded last model, and

(2) If T has limit length and 7 is short , then 7 has a cofinal wellfounded branch.

DEFINITION 4.40. Let k < w and let A/ be suitable. We say ((7; : i < k), (N;:i < k))isa
finite full stack on N\ if

(1) Mo =N,

(2) Vi < k,N;;1 is a pseudo normal iterate of N; as witnessed by T;.
As usual for a suitable mouse N we let
AN = sup(HullN (s7) N oY),
Th) = {(p,1) : t € (" Us7)= A LIV max(s)] F o(t)},
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and

HY = HultN (M U V)

We say N is n-iterable if whenever T is a normal tree on A there is a correct branch
b of T such that iy(s,) = s,, where s, is the sequence of the first n uniform indiscernibles,
then i, | H Q{ is independent of the branch b. We let i} 5 be the iteration embedding which
fixes the s, and call it the n-iterability embedding.

Next we recall the notion of IT} iterability for mice with n Woodin cardinals. This
notion is a strengthening of the notion of II} iterability and the basic theory can be found
in [24]. TI} iterability will be sufficient for comparison of mice with the appropriate number
of Woodin cardinals which can be embedded in the background. However the definition of
I} iterability is asymetrical in the case where n is even or odd, reflecting the periodicity
phenomenon from descriptive set theory. The definition is slightly easier in the case n is

odd. Fortunately, we only need the definition in the case n is odd (Notice that this is the

same as II,-iterability, where n is even, following Steel’s notation, since IT#¢ =11} , )

DEFINITION 4.41. A premouse M is n-small if and only if whenever « is the critical point

of an extender of the extender sequence of M then JM }¢ there are n Woodin cardinals .

Now let C be the sequence of models (N : £ < Q) built using a full background
extender construction as in [30]. Suppose there is a & which is least such that N is not
n-small. Then N; has a top extender witnessed the existence of n Woodin cardinals so N
is active. We then define M# = C,(N;). Then M,, is defined by iterating the top extender
of M# (i.e the top extender) out of the ordinals and letting M,, = M]. Both M# and M,,
are w-sound and M,, and all its levels are n-small. We also have that p,(M#) = w so that
M# is a real.

Let M be a countable premouse. We define a weak iteration game as in [24], G(M, n).
The game G(M,n) has n rounds. At the first round, we consider M. At round k, the game
starts with M}, and it is played as follows. Player I plays an w-maximal, countable, putative

iteration tree 7 on M. Player II either accept the tree T or plays a maximal wellfounded
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branch b of T such that b € A}, (T, My). Player I cannot accept the tree 7 is T has
a last illfounded model because then he just loses G(M,n). Then M, 1 = M] is the last
model of 7. The players then go to round k + 1. The first one to break the rules loses and

if no one breaks the rules then player II wins.

DEFINITION 4.42. We say that M is I, ., iterable if player II has a winning strategy in
the game G(M, n).

Using the Spector-gandy theorem, it is then immediate that the set
{M: M is 11}, , iterable}

is a I}, ,, set. Steel then shows in [24] that I}, iterability is sufficient for comparison of
mice with 2n+1 Woodin cardinals which are realizable into the background. We will assume
this now until the end of the paper. The reader can consult [24] for a full proof of this fact.

We now state and prove the main theorem of this section.

THEOREM 4.43 (A., Sargsyan). Assume AD*® . Let Ty, .o be the canonical tree which

projects to a universal H%nﬁ set. Then
L[TQ +2] = L[MZ ]
n n+1,00

PROOF. Define Steel’s tree Sa,o for I3, ,. This will be a tree on w X w X w X K}, 4. Let
L be the language of premice and let £* = LU {d; : ¢ < w} where the a; are constants.
Let (¢, : n < w) be a recursive enumeration of the sentence of £*. We say = € R codes a

premouse if
T, ={¢, : z(n) =0}

is a complete Henkinized theory of a premouse. If x codes a premouse, we let
R, = {af D < w}

be the premouse whose theory is T},. Define G~ to be the set of triples such that:

(1) y codes a Cyyyo guided tree T, on M, 41
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(2) z codes a premouse R, such that M(T,) <R, <ILIM(T,)] and R, E ZFC™ +76(7T,)
is the largest cardinal”

(3) w codes a branch b of T, such that R, <M,

The set G~ is a A}, set. We let
G ={(y,z,w) € G~ : either R, F §(T,) is not Woodin or M(T,)" <R},

where M(T,)* = Coy42(M(T,)) is the unique suitable premouse extending M (7,) such that
d(T,) is its largest Woodin cardinal. So in G we basically have two cases: the case where 7,
is a short tree and the case where 7y is a maximal tree. Then the set G is a II3,. ,(x) set
of reals where z codes M3, +1- Define a scale on G as follows. Fix a X3, scale ¢ on G~
Extend £* to £** by introducing new constant symbols {0} U {7; : i < w}. The intended
meaning of the symbols is that if z codes a premouse R, which is suitable then we interpret
52 as the Woodin cardinal of R, and 77 as the theories TZRZ, where ¢ means we only look at
the first ¢ indiscernibles. Let R™ be the £** structure obtained from R,. Let (0; : i < w) be

a recursive enumeration of the X sentences of £**. Then let

Now let
¢ (y, z,w) = 0if §; € T and ¢°(y, z, w) = 1 otherwise.

If 0, = 3v < oY (v) and 6, € T.', then we let
é:(y, z,w) = least k such that v (a) € T."
and otherwise we let ¢} (y, z,w) = 0. Also if (ax < 7*) € T then let
Groe(Ys 2, W) = iR, 00(a7,)

so basically we code the embedding into the norms. Notice, just as in Steel, that the first-
order theory of R is coded into the norms. The norms also code the elementary embedding

TR.oo | 0(72). Now we code the whole thing as follows: let
¢n7m(y7 Z’ w) = <,¢}n(y7 27 w)7 ¢?1<y7 Z’ w)’ ¢}l(y7 27 w)7 ¢$1,m<y7 Z’ w))
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Using arguments from Steel one can show that this is a scale ®, see [25]. We actually go

ahead and show the following claim:

CrAIM 4.44. g;mm s a scale on G.

PROOF. The lower semi-continuity property follows from the Dodd-Jensen property. We re-
fer to Steel [25] for the details. Next we verify the convergence property. So let (v, 2n, wy) —
(y, z, w) with respect to Qﬁn_:m. We then must see that (y, z,w) € G. Since v, is a scale, then
(y,z,w) € G~. This then implies that T, is Co, 2-guided and that we have R, < M(T,)*.
Since (Yn, 2n, wn) — (y, 2, w) with respect to Y0 then we can define T} — T*, and T
is exists and codes the first-order theory of some unique P*. Since (y,, z,, w,) converges
to (y, z,w) with respect to gz;l, then R, = P. Next we justify that P is wellfounded and

suitable. For this we use the fact that (52 is a scale. Let

Yo = sup({€ < 67" : (¢ is definable over P from 77" })

n

and let

Y = Sup Yn-

n<oco
Since v < 67" = 6(7,) then 7 is in the wellfounded part of P*. Let P; = HP(yU{77"}) be a
331 Skolem hull which is collapsed on its wellfounded part. Let o : P; — P be the canonical
embedding Then we must have crit(c) = « by elementarity, so that o [ v = id. Let
Tp @ Pay — Mopi1 o and define 7 : Ply = Mayt1.00 by ﬂ(dj) = eventual value of Wn(a;?")
as n — 0o. Notice that this eventual value must exist since if dj < 7, then there is p € TF
such that (dj < 7) <+ ¢ and ¢ € T} for all sufficiently large n. So there exists a k < oo

.n Pzn
such that a;" < 7,

. We now extend 7 : P|ly = Mopi1.00 to ™1 Pr — Mapi1 0. Notice
that this extension need not be an iteration embedding. We also let W(Tf ") = r1o°.
Let ¢ € P;. Then there exists a k < oo and a >, formula ¢ of the language of premice,

and parameters afo, o a;:zn < 7 such that

¢ = the unique v s.t P|y F ¢|v, a'fo’ L a? 7_7'>+]

“ey in’ n

3The key is to show that we have fullness and to use the Dodd-Jensen property
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We can do this since gb_b is a scale and since the T converge to T". Then we set
7(c) = the unique v s.t Mons100|7° F @lv, 7(aZ), ..., w(a3, ), 72°)

As usual the map 7 : P; — Mo,i1.00 is 2y elementary and welldefined. Now, since by a
result of Woodin there exists suitable mice and by [25] we can apply the condensation lemma,
then v = 0(7,) as T}, is Cy,42 guided. So P; = P and o = id. The other alternative is that
P E 6(7,) is not Woodin because the truth of this statement is kept by all theories 77 then
we have that either R, = M(7,) or R, E §(7,) is not Woodin so that G(y, z, w) holds.

O

As in Steel, one can show that the norms of the above scale are all in /\/l#nﬂm. In
different work with Sargsyan and Woodin, we show that one can actually obtain parameter-
free scales using a similar set up. The norms of the above scale ¢; can be computed to be
in for every i in 0?""w(i + 1) — II} where we use only the first ¢ indiscernibles, since the
theories in ¢ indiscernibles have same complexity 02" ™w(i + 1) — I i.e the types of the first
i indiscernibles are exactly 0*""w(i + 1) — II}. Thus each ¢, is A3, (z). Let Sanio be the
tree from this scale. By the proof of the uniqueness of the L[T3, ] models we have that
LTy, 2] = L[So+2]. We'll be done if can show that L[Mfﬁlﬂm] = L[Sop12].

First because Moy 100 is X3, 5(M3Z . 1), then we have that Moy,11 00 € L[Sania] =
L[Ty,42], since by Q-theory, /\/l;#nJrl € L[Top40]. Letting i = gy, 00 | M2+ then i €
L[S2,+2] because the iteration embedding i is also Z%n%(./\/lfnﬂ). Thus we have My, 11 00,7 €
L[So,+2]. Hence M’fnﬂm € L[Sapna].

We next show that we have that L[S,.o] € LM, +1,00]- Following an idea of Steel
(as in [31] or [29] for instance), we build the direct limit tree S. It will be the case that
S e L[M#nﬂ,oo] and that Steel’s tree Sa,i2 (and also Th,42, whichever way we decide to
define it) belongs to L[S] by the uniqueness of the L[T5,2] models. We then define S to be

the tree on w X w X W X My, 41,00 of all attempts to build (z,7) € (R* x M3, ., ) such that

(1) z codes the complete theory with parameters of a structure P, for the language of

premice with universe w \ {0},
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(2) m(0) is a successor cardinal Woodin cutpoint of P,, and,

(3) m | (w\ {0}) is an elementary embedding from P, into Ma,11,00|7(0).

Notice that Sy,12 C S. It then follows that Ss, o € L[S], by Hjorth and since
S e L[Miﬂm], we are done.

O

We record the following which now follows from the generalization of the Kechris-
Martin theorem, the uniqueness of the L[T3,] models and the above characterization of the

L[T5,] in terms of HOD limits of directed systems of mice.

THEOREM 4.45 (Inner model characterization of I}, ,). Assume ADM® gnd let k be the

least admissible above Ky, .5 = 0p00. Then a set A C R is 113, 4 if and only if
A) ¢ LM, 1 00, 2] F (@),
where p € Y.

4.4. L[Ty,], CH and GCH: A Proof of a Conjecture of Woodin

In this section we give a positive solution to the following problem posed by Woodin:
CONJECTURE 4.46 (Woodin). L[T5, 2] satisfies the GCH for every n € w.

The problem of showing that HOD F GCH is a central problem in inner model theory.
A solution to this problem would increase our understanding of HOD. Recall that the models
L|[T5,] are analogs of HOD which lie somewhere between first order logic and second order
logic, that is they are the equivalents of HOD at lower levels of definability. Therefore our
task here is to show that the GCH holds for the HOD up to §2. In previous work, Steel
has shown that assuming AD and I-mouse capturing holds, L[TT| is an extender model and
satisfies the GCH, where I'" is a scaled inductive like pointclass. Howver recall that in our
case I' is now a non scaled pointclass (i.e I} in the case of the projective hierarchy). We
would like to thank Sargsyan and Woodin for introducing us to the above conjecture and for

discussions on the problem.
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We first recall some background of Q-theory. Recall that Q9,43 is a subset of Cy, 3,
where Cy,15 is the largest thin II3, 5 set of reals. Also there is a Aj,, 5-good wellorder on
Csp 13 of length Ny,

As a warm up and context, we reproduce the proofs of the following two theorem of
[15]. Both proofs here are just as in [15]. The proof below should be compared to the proof

of the same fact but using inner model theoretic methods, see [24].

THEOREM 4.47 (Martin). There is a real w such that if w € L[Tony1, x] then ROHODPen+1el —
Q2n+3-

PROOF. Let x1 € Qo453 and let ¢ : Cs, 13 — pa,s3 be the norm associated with a A%m?,—good
wellordering < on CY, 3 and where py,. 3 is the order type of the increasing enumeration of

the A}, 5 degree in Cy,15. Then if p(z1) = « then for all z € WO, |z| = a we have that
z1(n) =m < Ve € Qunis(p(e) = |z] = e(n) = m) < yP(n,m,y, 2),

where P C w X w x R? is a I, ., relation. Fix a zp € WO such that |z9| = « and for
each n,m € w with z1(n) = m pick a witness y,,, such that P(n,m, Y, m,2) holds. Let

w = (Wo, M, N, Yp.m). Then if w € L[To, 41, 2], we have
z1(n) =m < L[Topyq, 2] E 323y(z € WO A |z] = a A P(n,m,y, z))
so that x; € HOD 2r+17] - Gince (213 is countable, then there is a 2y such that

20 € L[Ton41, 7] = Qanys C HODZL2n+1.2]

For each x € R and for each w < o < w; let <,, be a canonical wellordering
of R which are QD%en+12] - Tt H, be the set of all reals which are ODkelTont1a] g
some « and define <, a canonical well ordering on H,, for w < a < wy by if 9,61 € H,
then gy <, &1 <> ( the least « s.t g is ODHPrt12] « the least a s.t & is ODL[TQ”“””]) V
(€0,€1 are constructed at the same level ap and €y <4, €1). Let ©(x) be the order type of

<».Then we have that O(z) < w7 < Also RN L[Ty,+1,2] C H, and <, depends
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only on the Turing degree of z. For a@ < O(x), let €% be the a'® real in <,. So % only

depends on the Turing degree of x. Now if a < wq, then the set
P.(x) < a < O(x)

is X3, 5. So by Det(33,,,,), for each a, either P, or its complement contains a cone of Turing

degrees. Let
A ={a: gV > xg, Py(2)} = {a : JzoVa > zo(a < O(x))}
Then A C wy. If @ € A we claim that for all x in a Turing cone we have that
£n = €4 1s fixed ,

where

ea(n) =m « IV > xo(el(n) = m)
To see this, notice that for each « the relation

Ro(z,n,m) <> a <O(x)Aei(n)=m

is X3, ., and so for each fixed a, n,m either {z : Ry(x,n,m)} or its complement contains a
Turing cone of degrees, and thus for some x( for sufficiently high Turing degree and for all

n,m € w if rog <7 xr we have

er(n)=m <+ e(n)=m

and we are done.
Since the relation

w € WO Agjp,(n) =m

i8 23,4 0,it follows from
ea(n) =m < Vg <r z(eZ(n) = m < Yy3z >7 y(et(n) =m
that each e, is A}, 5 in a countable ordinal, thus
{ea:a € A} C Qopys.
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But the map a — ¢, defined on A is 1 — 1, since if o # [ and z is of enough large Turing
degree so that a, 3 < O(xg) and x >7 79 — €, = €4, = €5 we clearly have &, # 5. So A
is countable. Let oy = sup{a : @ € A}. Since oy ¢ A we have that VzIy > 2(0(y) < ap),
thus JzoVe >1 20(0(x) < ap). So pick a z € R such that Vo >7 2,0(x) < oy and so for

a < O(z) we have e = ¢,. Then for all x >7 z,
HODMzesl AR € H, = {2 : a0 < O(2)} C {e4: a € A} C Qony

and we are done.

O

The next theorem of Woodin shows that relativizing to a real is the same as adjoining

a real to HOD.

THEOREM 4.48 (Woodin). For every real w there is a real z such that if w,z € L{Ty,41, 7]

then R N HODE 2+1:] [w]=RN HODH" = Qonts

Ton+1 Ton+1,w

PROOF. The proof is in [15] in the case of the HODX™ and can be generalized. It uses the

Vopenka algebra. We omit it since we already included the proof of theorem 4.38.
O

The above two theorem first led us to incorrectly think that it may be possible
that HOD 2121 is [Ty o], but Woodin noticed that this cannot be true. What will
help in correctly identifying L[T5,o] from the point of view of inner model theory is a

characterization of the reals of L[T,2]. We show the following theorem:

THEOREM 4.49. (The reals of L{To,12])

Let Qopts be the largest bounded 113, 5 set of reals and let yany3 be the least nontrivial
I1, .5 singleton and let yoni3(x) be the least nontrivial I}, 4(x) singleton. Let Vony3 =
Qonis U {yanis} U {yonis(z) : © € Qanaz}. Therefore L[To, o] is yoni1-closed and R N
L[Ton 2] = Vonys.

Notice that we can’t have that the set of reals of L[T,,2] be Ca,13, where Cy, 13 is

the largest thin TI3 13 set of reals, since this would imply that the set of reals of L[T%, o]
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is Cop14, since again by Q-theory, L(Cyy,13) = L(Ca,14), but this would contradict the fact
that L{Th40] = LM, 1 o], as ROME ) = Cona.

PROOF. L[T5,45] can compute left most branch of a A}, 4 scale on a A} 4 set of reals and
it is a result of Harrington that the real from the left most branch of the tree from this
scale, provided the set A € Aj, 5 on which we put the scale, does not contain any Aj, 4
real, is AL, (M . |) and vice-versa. So the least non trivial I}, , , singleton is in L[Th,o].
Next, notice that by section 3, Q2,13 C L[To,12], 80 L[Ta,.12] can also compute the left most
real of the tree of a A}, 4(x) scale on a A} ,4(x) set of reals, for every z € Qau43. So

Yonis(x) € L[To,yo] for every z € Qapys.

As mentioned above, recall that for a = ¢3,., then we have that L[Ty,41] N Ve .
is an iterate of a Ms, cut a the least strong cardinal to its least Woodin cardinal and the
height of that iterate is exactly d3,,,, since 83, is the least strong to the bottom Woodin
0so in the direct limit of all iterates of My,,. We recall how this computation takes place.
The set up below is from [31]. Let I" be a pointclass closed under V® and which has the scale

property. Let U C w X R be a good universal for I' sets and fix ¢ a I'-norm on U onto some

ordinal 0. Define the set P, C w X 0 by
P,s(n,a) <> Jx(x e UNp(z) =aAU(n,a))
Then if AD holds we let Hr = L[P, ]

DEFINITION 4.50. A premouse P is ['-properly small iff P is countable, has a largest cardinal

which is a cutpoint of P and for every n < o(P),

(1) Lp"(Pln) <P,
(2) Lp"(P|n) E n is not a Woodin cardinal,
(3) If 7 is a cutpoint of P, then Lp"(P|n) = P|(n*)”.

Next we define a notion of iterability for I'-properly small mice.
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DEFINITION 4.51. Let P be a I'-properly small mouse. We say P is I'-correctly iterable if
whenever 7 is a countable stack of Lp" guided normal trees of successor lengths on P with

last model Q, then

(1) Q is wellfounded and if the branch from P to Q of T does not drop, then Q if
[-properly small and
(2) If U is an Lp" guided normal tree on Q then
(a) U is a short tree and
(b) If U has a last model then it can be freely extended by one more ultrapower
that is every putative normal iteration tree 7 extending U and having length
[h(U) + 1 has a wellfounded last model and moreover this last model is I'-
properly small if the leading branch does not drop, and
(c) If U has limit length then U has a cofinal wellfounded branch b such that
Q(b,U) = Q(U) and MY is T properly small if the branch from P to Q to MY

does not drop.

If ¥ is the (w,w;,w;) strategy of P given by the above then we say that it is Lp"
guided and the non-dropping iterates of P via ¥ are I' properly small. ¥ is unique and has
by the Dodd-Jensen property. This allows defining the direct limit of all non-dropping Lp"
guided iterates of P. So let Z = {P : P is I-properly small and T'-correctly iterable}. For
P,Q eI, welet

P < Q <> In s.t nis a strong cutpoint of Q, Q|n is a -correct iterate of P

It is then shown in [31] using a comparison argument that the system (Z, <) is a directed
system of mice, and thus by the Dodd-Jensen property, the direct limit of this system, M
is well-defined, wellfounded and that M., = L[Tt]. One first shows that M., C Hr by
providing a Suslin representation for I' sets from M, and then the Becker-Kechris theorem
implies that Hr C L{M]. Since dr = 0(M,), then Jr is the least < d-strong cardinal in
HOD, where 44 is the least Woodin cardinal of M,. To take a concrete example, suppose

[ is a ITj-like pointclass, say II3. Then the model Hy = L[T3] is the direct limit of all iterates
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of My cut off at the least cardinal strong to the least Woodin cardinal.

We now turn to the proof of the GCH in the models L[T5,]. We are grateful to Hugh
Woodin for guiding us to show the main theorem of this section. Following an idea of Hugh
Woodin, we first show that the GCH holds in L[To42] NV, . Then the GCH will hold in
L[T5,, 2] using a usual Godel/Silver condensation argument for relative constructibility. The
goal is then to show that L[T5,,2] N Vi, ., 1s a direct limit of fully sound structures. As in
the theorem in the previous section, we will then show that L[Th, ] = L[M?#] for some M
which is a direct limit of fully sound structures and such that LIM#] N Vidooy = M. So we

3

will require that o(M) = k3, 5. We start with the following definition:

DEFINITION 4.52 (M#nﬂ-closed mouse). Let M be a premouse. Then we say that M
is a M}, -closed premouse if for every A € M, we have M3, (A) € M. Also, M is a
M#nﬂ—closed mouse if it is a M is a M;%Hl—closed premouse and has an (w, wy, wy )-iteration

strategy .

Next we need to define the Woodin mice which will constitute our directed system

below.

DEFINITION 4.53. We say N is a n-Woodin mouse if the following conditions are satisfied:
(1) N = L(N)# N Vs, where § = o(N),
(2) L(N) E 0 is a Woodin cardinal .
(3) N has n Woodin cardinals.

We next define the iteration strategy of an n-Woodin mouse in the case n is odd.

DEFINITION 4.54 (Iterability for n-Woodin mice). Let N be an n-Woodin mouse. We say
N is correctly iterable if whenever 7T is a countable stack of Cop40 guided normal trees of
successor lengths on A/ with last model Q, then
(1) Q is wellfounded and if the branch from N to Q of 7 does not drop, then Q is an
n-Woodin mouse and

(2) If U is a Cyp42 guided normal tree on Q then
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(a) U is a short tree and

(b) If U has a last model then it can be freely extended by one more ultrapower
that is every putative normal iteration tree 7 extending U and having length
[h(U) + 1 has a wellfounded last model and moreover this last model is an
n-Woodin mouse if the leading branch does not drop, and

(c¢) If U has limit length then U has a cofinal wellfounded branch b such that
Q(b,U) = Q) and MY is an n-Woodin mouse if the branch from N to Q to

MY does not drop.

By Steel, see [24], the above notion of iterability for n-Woodin mice is equivalent to
IT},,, 5 iterability. Let A" be the least 2n + 1-Woodin mouse, that is if S <N then S fails one

of the conditions above. Let ¥y be the iteration strategy of N. Define
Z ={P:Pisa X-iterate of N'}
and for P, Q € Z, we let
P <* Q <> In(n is a Woodin cardinal cutpoint of Q and Q|n is a countable -iterate of P)

Then notice that (Z, <*) is a partial order.

LEMMA 4.55. (Z, <*) is countably directed.

The proof of the above is as usual and we chose to omit it. One can read the proof
in [30].

Let now NV, be the direct limit of the system (Z, <*). Then since (Z, <*) is countably
directed, N is wellfounded. N is the direct limit of all countable iterates of the least N
satisfying the above two conditions, and we can define this direct limit by the Dodd-Jensen
property of the ¥,. Notice that N is itself a countable iterate of A via Y. It then follows

by the proof in the above section that
L[Tont2] = LINZ],
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since the iteration strategy X of N is I3, 5. Notice that

Noo = L[Ni] m%oo = L[N(ﬁ] OVH%nJr = L[T2n+2] DVH% 43

3 n+3

Therefore L[T5, ] NV, ., is adirect limit of all ¥ iterates of N. Since N is fully sound then
LTy, 2] N VK%n-}—S F GCH. Then by a condensation argument as in Godel/Silver, L[Ty,,2| F
GCH.

It then remains to show that NV, is ./\/lfé—closed and we finish by showing the following
lemma. So N is the least active mouse closed under Mf& which projects to w. It is

sometimes referred to in the litterature as Mfﬁ#.

LEMMA 4.56. N, is M#-closed. Therefore N, does not project at or below 0o, N is fully
sound and

pu(Noe) > 0(No) = e

PROOF. Suppose not and let A € Ny, such that M7 (A) ¢ N. Let P € Z be a countable
iterate of A/ such that 7p o, : P — N is the iteration embedding. Let 7 : L(P) — L(N)
be elementary such that m|P = 7p ., and such that do, No, P and A € ran(n). Let A € P
such that m(A) = A. Notice that M¥ (A) has same size as A. It then follows it is a bounded
subset of 67. Since the M7 operator condenses well then we have that M¥ (77 1(A)) =
7Y MF(A)). So M¥(771(A)) ¢ P. But then L(P) ¥ 6" is Woodin . Contradiction.

U

The above can be generalized in the obvious way to all /\/lfn 41+ It then follows that
L[T5,] E GCH. From the above it should now be possible to adapt the standard proofs that
O for K > Ny a cardinal to show that if V' = L[T5,] then for any cardinal £ > Ny, O,
holds. Then using failure of [J,,, one could possibly derive how much boldface determinacy
the L[T5,] satisfy. Using purely inner model theoretic tools, the analysis could possibly be
pushed to pointclasses higher than those of the projective hierarchy. Or it may as well be

possible that the very fine analysis of L(R) is necessary to carry this analysis further.
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