An abstract formalism for strategical Ramsey theory

Noé de Rancourt

Université Paris VII, IMJ-PRG

Workshop “Unifying Themes in Ramsey Theory”
BIRS, November 23, 2018
Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.
Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.

Theorem (Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N}. Then there exists $M \subseteq \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.
Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.

Theorem (Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N}. Then there exists $M \subseteq \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.

Here, the set M is generally viewed as a element of a forcing poset, whereas the set A is viewed as an increasing sequence of integers.
Fix k an at most countable field. Let $E = k^{(\mathbb{N})}$ be the countably infinite-dimensional vector space over k, with canonical basis $(e_i)_{i \in \mathbb{N}}$. Recall that a block-sequence of E is a sequence $(x_n)_{n \in \mathbb{N}}$ of nonzero successive vectors of E, i.e. such that $\text{supp}(x_0) < \text{supp}(x_1) < \ldots$ (where $\text{supp}(\sum_{i \in \mathbb{N}} a_i e_i) = \{ i \in \mathbb{N} \mid a_i \neq 0 \}$).
Fix k an at most countable field. Let $E = k^{(\mathbb{N})}$ be the countably infinite-dimensional vector space over k, with canonical basis $(e_i)_{i \in \mathbb{N}}$. Recall that a block-sequence of E is a sequence $(x_n)_{n \in \mathbb{N}}$ of nonzero successive vectors of E, i.e. such that $\text{supp}(x_0) < \text{supp}(x_1) < \ldots$ (where $\text{supp}(\sum_{i \in \mathbb{N}} a_i e_i) = \{i \in \mathbb{N} \mid a_i \neq 0\}$).

Theorem (Milliken)

Suppose $k = \mathbb{F}_2$. Let \mathcal{X} be an analytic set of block-sequences of E. Then there exists an infinite-dimensional subspace F of E such that:

- either every block-sequence of F belongs to \mathcal{X};
- or every block-sequence of F belongs to \mathcal{X}^c.
A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects.
A **pigeonhole principle** is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.
A **pigeonhole principle** is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Silver’s theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.
A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Silver’s theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken’s theorem is:

Theorem (Hindman)

Suppose $k = \mathbb{F}_2$. For every $A \subseteq E \setminus \{0\}$, there exists an infinite-dimensional subspace F of E such that either $F \setminus \{0\} \subseteq A$, or $F \setminus \{0\} \subseteq A^c$.
A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Silver’s theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken’s theorem is:

Theorem (Hindman)

\[\text{Suppose } k = \mathbb{F}_2. \text{ For every } A \subseteq E \setminus \{0\}, \text{ there exists an infinite-dimensional subspace } F \text{ of } E \text{ such that either } F \setminus \{0\} \subseteq A, \text{ or } F \setminus \{0\} \subseteq A^c. \]

Can we still get something interesting without pigeonhole principle?
The formalism of Gowers spaces

Let \(P \) be a set (the set of subspaces) and \(\leq \) and \(\leq^* \) be two quasi-orderings on \(P \), satisfying:

1. for every \(p, q \in P \), if \(p \leq q \), then \(p \leq^* q \);
2. for every \(p, q \in P \), if \(p \leq^* q \), then there exists \(r \in P \) such that \(r \leq p \), \(r \leq q \) and \(p \leq^* r \);
3. for every \(\leq \)-decreasing sequence \((p_i)_{i \in \mathbb{N}} \) of elements of \(P \), there exists \(p^* \in P \) such that for all \(i \in \mathbb{N} \), we have \(p^* \leq^* p_i \);

Write \(p \preceq q \) for \(p \leq q \) and \(q \leq^* p \).
The formalism of Gowers spaces

Let P be a set (the set of subspaces) and \leq and \leq^* be two quasi-orderings on P, satisfying:

1. for every $p, q \in P$, if $p \leq q$, then $p \leq^* q$;
2. for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
3. for every \leq-decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq^* p_i$;

Write $p \preceq q$ for $p \leq q$ and $q \leq^* p$.

Let X be an at most countable set (the set of points) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

4. for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
5. for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leq q$, then $x \triangleleft q$.
The formalism of Gowers spaces

Let P be a set (the set of subspaces) and \leq and \leq^* be two quasi-orderings on P, satisfying:

1. for every $p, q \in P$, if $p \leq q$, then $p \leq^* q$;
2. for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
3. for every \leq-decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq^* p_i$;

Write $p \preceq q$ for $p \leq q$ and $q \leq^* p$.

Let X be an at most countable set (the set of points) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

4. for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
5. for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leq q$, then $x \triangleleft q$.

The quintuple $G = (P, X, \leq, \leq^*, \triangleleft)$ is called a Gowers space.
The formalism of Gowers spaces

Two examples

The Silver space:

- $X = \mathbb{N}$;
- P is the set of infinite subsets of \mathbb{N};
- \leq is the inclusion;
- \leq^* is the inclusion-by-finite;
- \triangleleft the membership relation.
The formalism of Gowers spaces
Two examples

1. The Silver space:
 - $X = \mathbb{N}$;
 - P is the set of infinite subsets of \mathbb{N};
 - \leq is the inclusion;
 - \leq^* is the inclusion-by-finite;
 - \leq the membership relation.

2. The Rosendal space over an at most countable field k:
 - $X = E$ is a countably-infinite-dimensional vector space over k;
 - P is the set of infinite-dimensional subspaces of E;
 - \leq is the inclusion;
 - \leq^* is the inclusion up to finite dimension ($F \leq^* G$ iff $F \cap G$ has finite codimension in F);
 - \leq is the membership relation.
The formalism of Gowers spaces

The pigeonhole principle

Definition

The space \mathcal{G} is said to satisfy the **pigeonhole principle** if for every $A \subseteq X$ and every $p \in P$, there exists $q \leq p$ such that either for all $x \leq q$, we have $x \in A$, or for all $x > q$, we have $x \in A^c$.
Asymptotic games

Definition

Let $p \in P$. The asymptotic game below p, denoted by F_p, is the following two-players game:

$\begin{align*}
\text{I} & & p_0 \preceq p & & p_1 \preceq p & & \ldots \\
\text{II} & & x_0 \lhd p_0 & & x_1 \lhd p_1 & & \ldots,
\end{align*}$

The outcome of the game is the sequence $(x_i)_{i \in \mathbb{N}} \in X^\mathbb{N}$.
Asymptotic games

Definition

Let $p \in P$. The asymptotic game below p, denoted by F_p, is the following two-players game:

I

\[
\begin{align*}
p_0 & \lesssim p \\
p_1 & \lesssim p \\
& \vdots
\end{align*}
\]

II

\[
\begin{align*}
x_0 & \triangleleft p_0 \\
x_1 & \triangleleft p_1 \\
& \vdots
\end{align*}
\]

The outcome of the game is the sequence $(x_i)_{i \in \mathbb{N}} \in X^\mathbb{N}$.

Saying that I has a strategy to reach $\mathcal{X} \subseteq X^\mathbb{N}$ in F_p means that “almost every” sequence below p belongs to \mathcal{X}.
Asymptotic games

Definition

Let \(p \in P \). The asymptotic game below \(p \), denoted by \(F_p \), is the following two-players game:

<table>
<thead>
<tr>
<th>I</th>
<th>(p_0 \not\preceq p)</th>
<th>(p_1 \not\preceq p)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(x_0 \prec p_0)</td>
<td>(x_1 \prec p_1)</td>
<td>...</td>
</tr>
</tbody>
</table>

The outcome of the game is the sequence \((x_i)_{i \in \mathbb{N}} \in X^\mathbb{N}\).

Saying that I has a strategy to reach \(X \subseteq X^\mathbb{N} \) in \(F_p \) means that “almost every” sequence below \(p \) belongs to \(X \).

In the Silver space, we have the following:

Proposition

If \(X \subseteq \mathbb{N}^\mathbb{N} \) is such that I has a strategy to reach \(X \) in \(F_M \), then there exists \(N \subseteq M \) infinite such that every increasing sequence of elements of \(N \) belongs to \(X \).
The abstract Silver’s theorem

So this is an equivalent formulation of Silver’s theorem:

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every analytic $\mathcal{X} \subseteq \mathbb{N}^\mathbb{N}$, there exists $M \subseteq \mathbb{N}$ infinite such that:</td>
</tr>
<tr>
<td>- either I has a strategy in F_M to reach \mathcal{X}^c;</td>
</tr>
<tr>
<td>- or I has a strategy in F_M to reach \mathcal{X}.</td>
</tr>
</tbody>
</table>
So this is an equivalent formulation of Silver’s theorem:

Theorem

For every analytic $\mathcal{X} \subseteq \mathbb{N}^\mathbb{N}$, there exists $M \subseteq \mathbb{N}$ infinite such that:

- either I has a strategy in F_M to reach \mathcal{X}^c;
- or I has a strategy in F_M to reach \mathcal{X}.

In general, we have:

Theorem (Abstract Silver’s)

Suppose that the space G satisfies the pigeonhole principle. Let $p \in P$ and $\mathcal{X} \subseteq X^\mathbb{N}$ be analytic. Then there exists $q \leq p$ such that:

- either I has a strategy in F_q to reach \mathcal{X}^c;
- or I has a strategy in F_q to reach \mathcal{X}.
Definition

Let \(p \in P \). Gowers’ game below \(p \), denoted by \(G_p \), is the following two-players game:

I \[p_0 \preceq p \quad p_1 \preceq p \quad \ldots \]

II \[x_0 \preceq p_0 \quad x_1 \preceq p_1 \quad \ldots \]

The outcome of the game is the sequence \((x_i)_{i \in \mathbb{N}} \in X^\mathbb{N} \).
Definition

Let $p \in P$. Gowers’ game below p, denoted by G_p, is the following two-players game:

I
\begin{align*}
p_0 &\leq p \\
p_1 &\leq p \\
&\quad \ldots
\end{align*}

II
\begin{align*}
x_0 &\not\leq p_0 \\
x_1 &\not\leq p_1 \\
&\quad \ldots,
\end{align*}

The outcome of the game is the sequence $(x_i)_{i \in \mathbb{N}} \in X^\mathbb{N}$.

We have the following implication: if I has a strategy to reach X in F_p, then II has a strategy to reach X in G_p.
Gowers’ games and the abstract Rosendal’s theorem

Definition

Let \(p \in P \). Gowers’ game below \(p \), denoted by \(G_p \), is the following two-players game:

- \(I \) \(p_0 \leq p \), \(p_1 \leq p \), \(\ldots \)
- \(II \) \(x_0 \ll p_0 \), \(x_1 \ll p_1 \), \(\ldots \),

The outcome of the game is the sequence \((x_i)_{i \in \mathbb{N}} \in X^\mathbb{N} \).

We have the following implication: if \(I \) has a strategy to reach \(X \) in \(F_p \), then \(II \) has a strategy to reach \(X' \) in \(G_p \). Under the pigeonhole principle, the converse is true up to taking a subspace.
Gowers’ games and the abstract Rosendal’s theorem

Definition

Let $p \in P$. Gowers’ game below p, denoted by G_p, is the following two-players game:

I \quad p_0 \leq p \quad p_1 \leq p \quad \ldots$

II \quad x_0 \ll p_0 \quad x_1 \ll p_1 \quad \ldots$

The outcome of the game is the sequence $(x_i)_{i \in \mathbb{N}} \in X^\mathbb{N}$.

We have the following implication: if I has a strategy to reach \mathcal{X} in F_p, then II has a strategy to reach \mathcal{X} in G_p. Under the pigeonhole principle, the converse is true up to taking a subspace.

Theorem (Abstract Rosendal’s)

Let $p \in P$ and $\mathcal{X} \subseteq X^\mathbb{N}$ be analytic. Then there exists $q \leq p$ such that:

- either I has a strategy in F_q to reach \mathcal{X}^c;
- or II has a strategy in G_q to reach \mathcal{X}.
Local Ramsey theory in Gowers spaces

Gowers spaces are great for doing local Ramsey theory. If X is an (algebraic) structure with a natural notion of subspaces, then you can define a Gowers space by taking for P more or less any subfamily of the family of subspaces provided we can diagonalize among this subfamily.
Gowers spaces are great for doing local Ramsey theory. If X is an (algebraic) structure with a natural notion of subspaces, then you can define a Gowers space by taking for P more or less any subfamily of the family of subspaces provided we can diagonalize among this subfamily.

Definition

Let \mathcal{F} be a nonempty family of infinite subsets of \mathbb{N}. We say that:

- \mathcal{F} is a *p-family* if it is E_0-invariant and if for every decreasing sequence $(A_n)_{n \in \mathbb{N}}$ of elements of \mathcal{F}, there exists $A^* \in \mathcal{F}$ such that for every $n \in \mathbb{N}$, $A^* \subseteq^* A_n$;

- \mathcal{F} is *selective* if it is a p-family and if moreover, the set A^* can be choosen in such a way that for every $n \in A^*$, $A^*/n \subseteq A_n$ (where $A^*/n = \{ k \in A^* \mid k > n \}$).
Fix \mathcal{F} a p-family of subsets of \mathbb{N}. Then $(\mathcal{F}, \mathbb{N}, \subseteq, \subseteq^*, \varepsilon)$ is a Gowers space.

Corollary Let $X \subseteq \mathbb{N}$ be analytic. Then there exists $M \in P \mathcal{F}$ such that:

either I has a strategy in F_M to reach X^c;

or II has a strategy in G_M to reach X.

Moreover, if F is selective, then the first possible conclusion can be replaced by "$r_Ms_8 X^c$".

Beware, here in G_M, player I can only play elements of F!

Corollary (Mathias) Let H be a selective coideal on \mathbb{N}, and $X \subseteq r\mathbb{N}s_8$ be analytic. Then there exists $M \in P H$ such that either $r_Ms_8 X^c$, or $r_Ms_8 X$.
Fix \mathcal{F} a p-family of subsets of \mathbb{N}. Then $(\mathcal{F}, \mathbb{N}, \subseteq, \subseteq^*, \in)$ is a Gowers space.

Corollary

Let $\mathcal{X} \subseteq \mathbb{N}^\mathbb{N}$ be analytic. Then there exists $M \in \mathcal{F}$ such that:

- either I has a strategy in F_M to reach \mathcal{X}^c;
- or II has a strategy in G_M to reach \mathcal{X}.

Moreover, if \mathcal{F} is selective, then the first possible conclusion can be replaced by “$[M]^{\infty} \subseteq \mathcal{X}^c$”.

Beware, here in G_M, player I can only play elements of \mathcal{F}!
Local Ramsey theory in Gowers spaces

Fix \mathcal{F} a p-family of subsets of \mathbb{N}. Then $(\mathcal{F}, \mathbb{N}, \subseteq, \subseteq^*, \in)$ is a Gowers space.

Corollary

Let $\mathcal{X} \subseteq \mathbb{N}^\mathbb{N}$ be analytic. Then there exists $M \in \mathcal{F}$ such that:

- either I has a strategy in F_M to reach \mathcal{X}^c;
- or II has a strategy in G_M to reach \mathcal{X}.

Moreover, if \mathcal{F} is selective, then the first possible conclusion can be replaced by “$[M]^\infty \subseteq \mathcal{X}^c$”.

Beware, here in G_M, player I can only play elements of \mathcal{F}!

Corollary (Mathias)

Let \mathcal{H} be a selective coideal on \mathbb{N}, and $\mathcal{X} \subseteq [\mathbb{N}]^\infty$ be analytic. Then there exists $M \in \mathcal{H}$ such that either $[M]^\infty \subseteq \mathcal{X}^c$, or $[M]^\infty \subseteq \mathcal{X}$.
What about Banach spaces?

What follows is part of a common work with W. Cuellar Carrera and V. Ferenczi.
What about Banach spaces?

What follows is part of a common work with W. Cuellar Carrera and V. Ferenczi.

On \mathbb{N}, F_σ ideals are p^+-ideals. The same phenomenon appears in Banach spaces.
What about Banach spaces?

What follows is part of a common work with W. Cuellar Carrera and V. Ferenczi.

On \mathbb{N}, F_σ ideals are p^+-ideals. The same phenomenon appears in Banach spaces.

Fix X a Banach space. We denote by $\text{Sub}(X)$ the set of closed infinite-dimensional subspaces of X. We endow $\text{Sub}(X)$ with the slice topology, i.e. the topology such that (Y_λ) converges to Y iff for every equivalent norm $\| \cdot \|$ and for every $x \in X$, the norm of x in the quotient $(X, \| \cdot \|)/Y_\lambda$ converges to the norm of x in the quotient $(X, \| \cdot \|)/Y$.

Theorem

Let P "SubpXq be a slice-G_δ subset, invariant under finite-dimensional modifications. Then P is an (uncountable) Gowers space.
What about Banach spaces?

What follows is part of a common work with W. Cuellar Carrera and V. Ferenczi.

On \(\mathbb{N} \), \(F_\sigma \) ideals are \(p^+ \)-ideals. The same phenomenon appears in Banach spaces.

Fix \(X \) a Banach space. We denote by \(\text{Sub}(X) \) the set of closed infinite-dimensional subspaces of \(X \). We endow \(\text{Sub}(X) \) with the \textit{slice topology}, i.e. the topology such that \((Y_\lambda) \) converges to \(Y \) iff for every equivalent norm \(\| \cdot \| \) and for every \(x \in X \), the norm of \(x \) in the quotient \((X, \| \cdot \|)/Y_\lambda \) converges to the norm of \(x \) in the quotient \((X, \| \cdot \|)/Y \).

Theorem

Let \(P \subseteq \text{Sub}(X) \) be a \textit{slice-\(G_\delta \) subset}, invariant under finite-dimensional modifications. Then \((P, S_X, \subseteq, \subseteq^*, \in)\) is an \textit{(uncountable) Gowers space}.
What about Banach spaces?

Definition

A **finite-dimensional decomposition (FDD)** of a Banach space Y is a sequence $(F_i)_{i \in \mathbb{N}}$ of finite-dimensional subspaces of Y such that every $x \in Y$ can be written in a unique way as a sum $x = \sum_{i=0}^{\infty} x_i$, where for every i, $x_i \in F_i$.

A **block-sequence** of the FDD (F_i) is a sequence $(x_n)_{n \in \mathbb{N}}$ of normalized successive vectors for this FDD (i.e. there exists $A_0 < A_1 < A_2 < \ldots$ sets of integers such that for every n, $x_n \in \bigoplus_{i \in A_n} F_i$).
What about Banach spaces?

Definition

A finite-dimensional decomposition (FDD) of a Banach space Y is a sequence $(F_i)_{i \in \mathbb{N}}$ of finite-dimensional subspaces of Y such that every $x \in Y$ can be written in a unique way as a sum $x = \sum_{i=0}^{\infty} x_i$, where for every i, $x_i \in F_i$.

A block-sequence of the FDD (F_i) is a sequence $(x_n)_{n \in \mathbb{N}}$ of normalized successive vectors for this FDD (i.e. there exists $A_0 < A_1 < A_2 < \ldots$ sets of integers such that for every n, $x_n \in \bigoplus_{i \in A_n} F_i$).

Definition

Given $\mathcal{X} \subseteq (S_X)_{\mathbb{N}}$ and $\Delta = (\Delta_n)_{n \in \mathbb{N}}$ a sequence of positive real numbers, we let $(\mathcal{X})_\Delta = \{ (y_n) \in (S_X)_{\mathbb{N}} \mid \exists (x_n) \in \mathcal{X} \forall n \| x_n - y_n \| \leq \Delta_n \}$.
Corollary

Let $P \subseteq \text{Sub}(X)$ be a slice-G_δ subset, invariant under finite-dimensional modifications. Let $\mathcal{X} \subseteq (S_X)^\mathbb{N}$ be analytic, and let Δ be a sequence of positive real numbers. Then there exists $Y \in P$ such that:

- either Y has a FDD (F_n) such that every subsequence of (F_n) generates an element of P, and such that every block-sequence of (F_n) is in \mathcal{X}^c;
- or II has a strategy in G_Y to reach $(\mathcal{X})_\Delta$ (where in G_Y, player I is only allowed to play elements of P).
The condition of being slice-G_δ is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.
The condition of being slice-G_δ is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space.
The condition of being slice-G_δ is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space. In particular, the family of non-Hilbertian spaces is slice-G_δ.

Noé de Rancourt

An abstract formalism for strategical Ramsey theory
The condition of being slice-G_δ is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space. In particular, the family of non-Hilbertian spaces is slice-G_δ.

Question

Does there exist similar examples in other areas of mathematics?
Thank you for your attention!