Very Large Cardinals and Combinatorics

Vincenzo Dimonte TU Wien

15 April 2014

ZFC leaves a lot of freedom for our understanding of the universe

ZFC leaves a lot of freedom for our understanding of the universe.

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)

ZFC leaves a lot of freedom for our understanding of the universe.

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)

ZFC leaves a lot of freedom for our understanding of the universe.

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?

ZFC leaves a lot of freedom for our understanding of the universe.

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?
- Is every Borelian measure on $\mathcal{B}([0,1])$ extendible to $\mathcal{P}([0,1])$?

ZFC leaves a lot of freedom for our understanding of the universe.

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?
- Is every Borelian measure on $\mathcal{B}([0,1])$ extendible to $\mathcal{P}([0,1])$?

These are all question non-answerable in ZFC.

A-philosophical Remark:
In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on.

A-philosophical Remark:
In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on.
The right point of view for this seminar is "set theory as a mathematical branch" and not "set theory as foundation of mathematics".

A-philosophical Remark:
In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on.
The right point of view for this seminar is "set theory as a mathematical branch" and not "set theory as foundation of mathematics".
A good mental image is the multiverse, a collection of universes that satisfy ZFC. We want to know what can happen in those universes, and what cannot.

Guidelines:

Guidelines:

- Forcing constructions permit to pass from one universe to another;

Guidelines:

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)

Guidelines:

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- $V=L$ has very nice structural properties;

Guidelines:

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- $V=L$ has very nice structural properties;
- it is also interesting to go the other way, and investigating properties opposed to thoes in $V=L$;

Guidelines:

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- $V=L$ has very nice structural properties;
- it is also interesting to go the other way, and investigating properties opposed to thoes in $V=L$;
- combinatorial properties can be local (regarding one cardinal) or global (regarding all cardinals, or at least a class).

Loosely speaking, combinatorics is the study of the structural properties of sets.

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:
Definition
The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:
Definition
The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?
Global: given a function f : Ord \rightarrow Ord, is it possible $2^{\kappa}=f(\kappa)$? On regular cardinals? Or on singulars?

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?
Global: given a function f : Ord \rightarrow Ord, is it possible $2^{\kappa}=f(\kappa)$?
On regular cardinals? Or on singulars?
Weakening: for every λ singular, 2^{λ} is at least as possible (SCH)

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?
Global: given a function f : Ord \rightarrow Ord, is it possible $2^{\kappa}=f(\kappa)$?
On regular cardinals? Or on singulars?
Weakening: for every λ singular, 2^{λ} is at least as possible (SCH).
$V=L \rightarrow$ for all $\kappa, 2^{\kappa}=\kappa=+(G C H)$.

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?
Global: given a function f : Ord \rightarrow Ord, is it possible $2^{\kappa}=f(\kappa)$?
On regular cardinals? Or on singulars?
Weakening: for every λ singular, 2^{λ} is at least as possible (SCH). $V=L \rightarrow$ for all $\kappa, 2^{\kappa}=\kappa=+(G C H)$.

Definition (Gödel, 1965)

Global: $V=$ HOD iff every set is definable from some ordinal.

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?
Global: given a function f : Ord \rightarrow Ord, is it possible $2^{\kappa}=f(\kappa)$?
On regular cardinals? Or on singulars?
Weakening: for every λ singular, 2^{λ} is at least as possible (SCH).
$V=L \rightarrow$ for all $\kappa, 2^{\kappa}=\kappa=+(G C H)$.

Definition (Gödel, 1965)

Global: $V=$ HOD iff every set is definable from some ordinal.

$$
V=L \rightarrow V=\mathrm{HOD} .
$$

Other properties that will appear in the talk:

Other properties that will appear in the talk:

- \diamond_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);

Other properties that will appear in the talk:

- ∇_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- \square_{κ} is about the existence of a coherent collection of clubs (globally true in L);

Other properties that will appear in the talk:

- ∇_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- \square_{κ} is about the existence of a coherent collection of clubs (globally true in L);
- $A P_{\kappa}$ (Approachability Property) is a weakening of \square_{κ};

Other properties that will appear in the talk:

- \diamond_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- \square_{κ} is about the existence of a coherent collection of clubs (globally true in L);
- $A P_{\kappa}$ (Approachability Property) is a weakening of \square_{κ};
- \square is the global version of \square_{κ} (it is morally \square_{∞});

Other properties that will appear in the talk:

- ∇_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- \square_{κ} is about the existence of a coherent collection of clubs (globally true in L);
- $A P_{\kappa}$ (Approachability Property) is a weakening of \square_{κ};
- \square is the global version of \square_{κ} (it is morally \square_{∞});
- \square at small cofinalities is a weaker version of \square (ad hoc to avoid inconsistencies with large cardinals);

Other properties that will appear in the talk:

- ∇_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- \square_{κ} is about the existence of a coherent collection of clubs (globally true in L);
- $A P_{\kappa}$ (Approachability Property) is a weakening of \square_{κ};
- \square is the global version of \square_{κ} (it is morally \square_{∞});
- \square at small cofinalities is a weaker version of \square (ad hoc to avoid inconsistencies with large cardinals);
- $T P_{\kappa}$ (Tree Property) is König's Lemma for κ. $T P_{\kappa^{+}+}$is both a stronger failure of the local GCH and a failure of \square.

$$
2^{\kappa}=\kappa^{+}
$$

$$
2^{\kappa}=\kappa^{+} \quad 2^{\kappa}>\kappa^{+}
$$

$$
\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}
$$

$$
2^{\kappa}=\kappa^{+}
$$

$$
2^{\kappa}>\kappa^{+}
$$

$$
\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}
$$

$$
\diamond_{\kappa}
$$

$$
2^{\kappa}=\kappa^{+}
$$

$$
2^{\kappa}>\kappa^{+}
$$

$$
\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}
$$

$$
\nabla_{\kappa}
$$

$$
\neg \forall_{\kappa}
$$

$$
2^{\kappa}=\kappa^{+}
$$

$$
2^{\kappa}>\kappa^{+}
$$

$$
\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}
$$

$$
\diamond_{\kappa}
$$

$$
\neg\rangle_{K}
$$

$$
2^{\kappa}=\kappa^{+}
$$

$$
\diamond_{K}
$$

$$
2^{\kappa}>\kappa^{+}
$$

$$
\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}
$$

$$
\neg\rangle_{K}
$$

$$
\neg \square_{\kappa}+A P_{\kappa}
$$

$$
2^{\kappa}=\kappa^{+}
$$

$$
\diamond_{K}
$$

$2^{\kappa}>\kappa^{+}$
$\left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+}$
$\neg\rangle_{\kappa}$
$\neg \square_{\kappa}+A P_{\kappa}$
$\neg A P_{\kappa}$
$2^{\kappa}=\kappa^{+}$ \diamond_{κ}

\square_{K}
$\neg \square_{\kappa}+A P_{\kappa}$
$\neg A P_{\kappa}$

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \\
\diamond_{\kappa} & \neg \diamond_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} &
\end{array}
$$

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+} \\
\diamond_{\kappa} & \neg \diamond_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} & \neg \mathrm{SCH}
\end{array}
$$

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+} \\
\diamond_{\kappa} & \neg \diamond_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} & \neg \mathrm{SCH} \\
V=\text { HOD } & &
\end{array}
$$

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+} \\
\diamond_{\kappa} & \neg \diamond_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} & \neg \mathrm{SCH} \\
V=\mathrm{HOD} & V \neq \mathrm{HOD} &
\end{array}
$$

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+} \\
\diamond_{\kappa} & \neg \nabla_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} & \neg \mathrm{SCH} \\
V=\text { HOD } & V \neq \mathrm{HOD} &
\end{array}
$$

\square

$$
\begin{array}{ccc}
2^{\kappa}=\kappa^{+} & 2^{\kappa}>\kappa^{+} & \left(\forall \gamma<\kappa 2^{\gamma}=\gamma^{+}\right) \wedge 2^{\kappa}>\kappa^{+} \\
\diamond_{\kappa} & \neg \diamond_{\kappa} & \\
\square_{\kappa} & \neg \square_{\kappa}+A P_{\kappa} & \neg A P_{\kappa} \\
\text { GCH } & \neg \mathrm{GCH}+\mathrm{SCH} & \neg \mathrm{SCH} \\
V=\mathrm{HOD} & V \neq \mathrm{HOD} & \\
\square & \square \text { s.m. } &
\end{array}
$$

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition
Let M, N be sets or classes

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j: M \rightarrow N$ is an elementary embedding iff for any formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and for any $x_{0}, \ldots, x_{n} \in$ M,

$$
M \vDash \varphi\left(x_{0}, \ldots, x_{n}\right) \text { iff } N \vDash \varphi\left(j\left(x_{0}\right), \ldots, j\left(x_{n}\right)\right) .
$$

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j: M \rightarrow N$ is an elementary embedding iff for any formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and for any $x_{0}, \ldots, x_{n} \in$ M,

$$
M \vDash \varphi\left(x_{0}, \ldots, x_{n}\right) \text { iff } N \vDash \varphi\left(j\left(x_{0}\right), \ldots, j\left(x_{n}\right)\right) .
$$

Theorem (Keisler, 1962)
κ is measurable iff there exists $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta<\kappa \gamma^{\eta}<\kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j: M \rightarrow N$ is an elementary embedding iff for any formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and for any $x_{0}, \ldots, x_{n} \in$ M,

$$
M \vDash \varphi\left(x_{0}, \ldots, x_{n}\right) \text { iff } N \vDash \varphi\left(j\left(x_{0}\right), \ldots, j\left(x_{n}\right)\right) .
$$

Theorem (Keisler, 1962)
κ is measurable iff there exists $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. This implies ${ }^{<\kappa} M \subseteq M$.

Definition (late 60's)
 Let κ and γ be cardinals

Definition (late 60's)
Let κ and γ be cardinals. Then κ is γ-supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa, \gamma<j(\kappa)$ and ${ }^{\gamma} M \subseteq M$

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa, \gamma<j(\kappa)$ and ${ }^{\gamma} M \subseteq M$. If κ is γ-supercompact for any γ, then κ is supercompact.
Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{j(\kappa)} M \subseteq M$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa, \gamma<j(\kappa)$ and ${ }^{\gamma} M \subseteq M$. If κ is γ-supercompact for any γ, then κ is supercompact.
Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{j(\kappa)} M \subseteq M$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa, \gamma<j(\kappa)$ and ${ }^{\gamma} M \subseteq M$. If κ is γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{j(\kappa)} M \subseteq M$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Reinhardt, 1970)
Let κ be a cardinal. Then κ is Reinhardt iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa_{0},{ }^{\lambda} M \subseteq M$, with $\lambda=\sup _{n \in \omega} \kappa_{n}$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa, \gamma<j(\kappa)$ and ${ }^{\gamma} M \subseteq M$. If κ is γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{j(\kappa)} M \subseteq M$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Reinhardt, 1970)
Let κ be a cardinal. Then κ is Reinhardt iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa_{0},{ }^{\lambda} M \subseteq M$, with $\lambda=\sup _{n \in \omega} \kappa_{n}$. Equivalently, if there is a $j: V \prec V$, with $\kappa=\operatorname{crt}(j)$.

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
This leaves space for the following definitions:

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
This leaves space for the following definitions:
Definition
13 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
This leaves space for the following definitions:
Definition
I3 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
I2 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
This leaves space for the following definitions:

Definition

I3 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
I2 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;
I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.
This leaves space for the following definitions:

Definition

I3 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
I2 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;
I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
IO For some λ there exists a

$$
j: L\left(V_{\lambda+1}\right) \prec L\left(V_{\lambda+1}\right), \text { with } \operatorname{crt}(j)<\lambda
$$

All the large cardinals defined, other than the inaccessible, are incompatible with $V=L$.

All the large cardinals defined, other than the inaccessible, are incompatible with $V=L$.
It makes sense to ask the relationship between large cardinals and combinatorics:

All the large cardinals defined, other than the inaccessible, are incompatible with $V=L$.
It makes sense to ask the relationship between large cardinals and combinatorics:

- Are there consistency equivalences? (It needs another talk)

All the large cardinals defined, other than the inaccessible, are incompatible with $V=L$.
It makes sense to ask the relationship between large cardinals and combinatorics:

- Are there consistency equivalences? (It needs another talk)
- Which combinatorial properties (local or global) are possible in models with large cardinals?

All the large cardinals defined, other than the inaccessible, are incompatible with $V=L$.
It makes sense to ask the relationship between large cardinals and combinatorics:

- Are there consistency equivalences? (It needs another talk)
- Which combinatorial properties (local or global) are possible in models with large cardinals?
- Special case: local case exactly at the large cardinal.

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Then $\operatorname{Con}(Z F C) \rightarrow \operatorname{Con}\left(Z F C+\forall \kappa\right.$ regular $\left.2^{\kappa}=E(\kappa)\right)$.

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Then $\operatorname{Con}(Z F C) \rightarrow \operatorname{Con}\left(Z F C+\forall \kappa\right.$ regular $\left.2^{\kappa}=E(\kappa)\right)$.
Theorem (Silver, 1974)
Let λ be a singular cardinal of uncountable cofinality

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Then $\operatorname{Con}(Z F C) \rightarrow \operatorname{Con}\left(Z F C+\forall \kappa\right.$ regular $\left.2^{\kappa}=E(\kappa)\right)$.
Theorem (Silver, 1974)
Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa<\lambda$ $2^{\kappa}=\kappa^{+}$, then $2^{\lambda}=\lambda^{+}$.

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Then $\operatorname{Con}(Z F C) \rightarrow \operatorname{Con}\left(Z F C+\forall \kappa\right.$ regular $\left.2^{\kappa}=E(\kappa)\right)$.
Theorem (Silver, 1974)
Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa<\lambda$ $2^{\kappa}=\kappa^{+}$, then $2^{\lambda}=\lambda^{+}$.

Same thing for measurable (Scott, 1961).
Theorem (Solovay, 1974)
Let κ be supercompact.

Theorem (Easton, 1970)
We say that E is an Easton function if

- if $\kappa<\lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa))>\kappa$.

Then $\operatorname{Con}(Z F C) \rightarrow \operatorname{Con}\left(Z F C+\forall \kappa\right.$ regular $\left.2^{\kappa}=E(\kappa)\right)$.
Theorem (Silver, 1974)
Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa<\lambda$ $2^{\kappa}=\kappa^{+}$, then $2^{\lambda}=\lambda^{+}$.

Same thing for measurable (Scott, 1961).
Theorem (Solovay, 1974)
Let κ be supercompact.For all $\lambda>\kappa$ strong limit singular, $2^{\lambda}=\lambda^{+}$.

Theorem
Con(inaccessible) \rightarrow Con(inaccessible +GCH).

Theorem
Con(inaccessible) \rightarrow Con(inaccessible +GCH).
Con(supercompact) \rightarrow Con(supercompact $+G C H$).

Theorem
Con(inaccessible) \rightarrow Con(inaccessible +GCH).
Con(supercompact) \rightarrow Con(supercompact $+G C H$).
Theorem
If κ is λ^{+}-supercompact, then \square_{λ} fails

Theorem
Con(inaccessible) \rightarrow Con(inaccessible + GCH).
Con(supercompact) \rightarrow Con(supercompact $+G C H$).

Theorem

If κ is λ^{+}-supercompact, then \square_{λ} fails. If there exists a subcompact, then \square fails.

Theorem (D., Friedman, 2013)

Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

- GCH

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $\mathrm{V}=\mathrm{HOD}$

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $\mathrm{V}=\mathrm{HOD}$
- \diamond

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $\mathrm{V}=\mathrm{HOD}$
- \diamond
- \square at small cofinalities

Theorem (D., Friedman, 2013)
Suppose I* is I3, I2, I1 or IO. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $\mathrm{V}=\mathrm{HOD}$
- \diamond
- \square at small cofinalities
- etc...

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the first failure of SCH at λ

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the first failure of SCH at λ
- $T P\left(\lambda^{++}\right)$

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the first failure of SCH at λ
- $T P\left(\lambda^{++}\right)$
- $\neg S C H+\neg A P_{\lambda}$

Theorem (D., Wu, 2014)
Suppose IO. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the first failure of SCH at λ
- TP $\left(\lambda^{++}\right)$
- $\neg S C H+\neg A P_{\lambda}$
- etc...

Can we lower the hypotheses of the last Theorem to I1? Can we improve the Theorem to 10 ?

Is there a combinatorial property that is non-trivially inconsistent with I*?

Or some that is equiconsistent?

