Left distributive algebras beyond 10

Vincenzo Dimonte

25 September 2017

Forget about large cardinals.

Question

Let V_{κ} the cumulative hierarchy of sets. Is there a non-trivial elementary embedding $j: V_{\eta} \prec V_{\eta}$

Question

Let V_{κ} the cumulative hierarchy of sets. Is there a non-trivial elementary embedding $j: V_{\eta} \prec V_{\eta}$?

There are some limitations

Question

Let V_{κ} the cumulative hierarchy of sets. Is there a non-trivial elementary embedding $j: V_{\eta} \prec V_{\eta}$?

There are some limitations:
In these cases, if j is not trivial, then some ordinals are moved. We call critical point of j the least ordinal (cardinal) moved.

Let $\kappa_{0}=\operatorname{crt}(j)$

Let $\kappa_{0}=\operatorname{crt}(j)$. We can define $\kappa_{n+1}=j\left(\kappa_{n}\right)$

Let $\kappa_{0}=\operatorname{crt}(j)$. We can define $\kappa_{n+1}=j\left(\kappa_{n}\right)$, and $\lambda=\sup _{n \in \omega} \kappa_{n}$ (this is called the critical sequence

Let $\kappa_{0}=\operatorname{crt}(j)$. We can define $\kappa_{n+1}=j\left(\kappa_{n}\right)$, and $\lambda=\sup _{n \in \omega} \kappa_{n}$ (this is called the critical sequence.

Theorem (Kunen)
If $j: V_{\eta} \prec V_{\eta}$ and there is a well-ordering of $V_{\lambda+1}$ in V_{η}, then $1=0$

Let $\kappa_{0}=\operatorname{crt}(j)$. We can define $\kappa_{n+1}=j\left(\kappa_{n}\right)$, and $\lambda=\sup _{n \in \omega} \kappa_{n}$ (this is called the critical sequence.

Theorem (Kunen)
If $j: V_{\eta} \prec V_{\eta}$ and there is a well-ordering of $V_{\lambda+1}$ in V_{η}, then $1=0$.
So η can only be limit or successor of limit

Let $\kappa_{0}=\operatorname{crt}(j)$. We can define $\kappa_{n+1}=j\left(\kappa_{n}\right)$, and $\lambda=\sup _{n \in \omega} \kappa_{n}$ (this is called the critical sequence.

Theorem (Kunen)
If $j: V_{\eta} \prec V_{\eta}$ and there is a well-ordering of $V_{\lambda+1}$ in V_{η}, then $1=0$.
So η can only be limit or successor of limit.

Assumption

13: There are elementary embeddings $j: V_{\lambda} \prec V_{\lambda}, \lambda$ limit.

$6 / 1$

We can extend a little bit the scope of j

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.
Lemma
Let $j: M \prec N$

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.
Lemma
Let $j: M \prec N$. Let $X \subseteq M$

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.
Lemma
Let $j: M \prec N$. Let $X \subseteq M$. Suppose that:

- $M \cap$ Ord and $N \cap$ Ord are singular cardinals

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.
Lemma
Let $j: M \prec N$. Let $X \subseteq M$. Suppose that:

- $M \cap$ Ord and $N \cap$ Ord are singular cardinals;
- j is cofinal

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.
Lemma
Let $j: M \prec N$. Let $X \subseteq M$. Suppose that:

- $M \cap$ Ord and $N \cap$ Ord are singular cardinals;
- j is cofinal;
- X is amenable, i.e., rank-fragments of X are in M

We can extend a little bit the scope of j.
Picture: slicing a subset of V_{λ}.

Lemma

Let $j: M \prec N$. Let $X \subseteq M$. Suppose that:

- $M \cap$ Ord and $N \cap$ Ord are singular cardinals;
- j is cofinal;
- X is amenable, i.e., rank-fragments of X are in M.

Then $j^{+}:(M, X) \prec\left(N, j^{+}(X)\right)$.

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$!

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$:

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$: by elementarity $\operatorname{crt}(j(j))=j(\operatorname{crt}(j))$, so $\kappa_{1}, \kappa_{2}, \kappa_{3} \ldots$

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$: by elementarity $\operatorname{crt}(j(j))=j(\operatorname{crt}(j))$, so $\kappa_{1}, \kappa_{2}, \kappa_{3} \ldots$
This is an operation on the space $\mathcal{E}_{\lambda}=\left\{j: V_{\lambda} \prec V_{\lambda}\right\}$, called application

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$: by elementarity $\operatorname{crt}(j(j))=j(\operatorname{crt}(j))$, so $\kappa_{1}, \kappa_{2}, \kappa_{3} \ldots$
This is an operation on the space $\mathcal{E}_{\lambda}=\left\{j: V_{\lambda} \prec V_{\lambda}\right\}$, called application. What is its algebra? What are the rules?

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$: by elementarity $\operatorname{crt}(j(j))=j(\operatorname{crt}(j))$, so $\kappa_{1}, \kappa_{2}, \kappa_{3} \ldots$
This is an operation on the space $\mathcal{E}_{\lambda}=\left\{j: V_{\lambda} \prec V_{\lambda}\right\}$, called application. What is its algebra? What are the rules?

Keep in mind that $j(k)$ is difficult to calculate

Special case: $X=k: V_{\lambda} \prec V_{\lambda}$. Therefore $j^{+}(k): V_{\lambda} \prec V_{\lambda}$. We write $j \cdot k$.

This is not to be confused with $j \circ k$! For example:

- critical sequence of $j \circ j: \kappa_{0}, \kappa_{2}, \kappa_{4}, \ldots$
- critical sequence of $j \cdot j$: by elementarity $\operatorname{crt}(j(j))=j(\operatorname{crt}(j))$, so $\kappa_{1}, \kappa_{2}, \kappa_{3} \ldots$
This is an operation on the space $\mathcal{E}_{\lambda}=\left\{j: V_{\lambda} \prec V_{\lambda}\right\}$, called application. What is its algebra? What are the rules?

Keep in mind that $j(k)$ is difficult to calculate: while, for example, $j \circ k(x)$ is definable from j, k, x, this is not true for $j \cdot k(x)$, that is known only on $\operatorname{ran}(j)$.

One rule is left-distributivity

One rule is left-distributivity:

$$
j \cdot(k \cdot l)=(j \cdot k) \cdot(j \cdot l)
$$

One rule is left-distributivity:

$$
j \cdot(k \cdot l)=(j \cdot k) \cdot(j \cdot l)
$$

so $\left(\mathcal{E}_{\lambda}, \cdot\right)$ is a left distributive algebra. Are there other rules?
Let T_{n} be the sets of words constructed using generators x_{1}, \ldots, x_{n} and the binary operator .

One rule is left-distributivity:

$$
j \cdot(k \cdot l)=(j \cdot k) \cdot(j \cdot l)
$$

so $\left(\mathcal{E}_{\lambda}, \cdot\right)$ is a left distributive algebra. Are there other rules?

Let T_{n} be the sets of words constructed using generators x_{1}, \ldots, x_{n} and the binary operator .

Let $\equiv_{L D}$ the congruence on T_{n} generated by all pairs of the form $t_{1} \cdot\left(t_{2} \cdot t_{3}\right),\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{1} \cdot t_{3}\right)$

One rule is left-distributivity:

$$
j \cdot(k \cdot l)=(j \cdot k) \cdot(j \cdot l)
$$

so $\left(\mathcal{E}_{\lambda}, \cdot\right)$ is a left distributive algebra. Are there other rules?

Let T_{n} be the sets of words constructed using generators x_{1}, \ldots, x_{n} and the binary operator .

Let $\equiv_{L D}$ the congruence on T_{n} generated by all pairs of the form $t_{1} \cdot\left(t_{2} \cdot t_{3}\right),\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{1} \cdot t_{3}\right)$. Then $T_{n} / \equiv_{L D}$ is the universal free LD-algebra with n generators. We call it F_{n}.

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}. We say that A_{X} is free if it is an isomorphism

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}. We say that A_{X} is free if it is an isomorphism.

In other words, A_{X} is free iff if two elements of A_{X} are equal, it must be because of left-distributivity

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}. We say that A_{X} is free if it is an isomorphism.

In other words, A_{X} is free iff if two elements of A_{X} are equal, it must be because of left-distributivity.

Theorem (Laver)

Let $j ; V_{\lambda} \prec V_{\lambda}$

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}. We say that A_{X} is free if it is an isomorphism.

In other words, A_{X} is free iff if two elements of A_{X} are equal, it must be because of left-distributivity.

Theorem (Laver)

Let $j ; V_{\lambda} \prec V_{\lambda}$. Then $\mathcal{E}_{\{j\}}$ is free

Given an LD-algebra A, we can consider its subalgebra A_{X} generated by the elements in a finite subset X. There is always a surjective homomorphism from $F_{|X|}$ to A_{X}. We say that A_{X} is free if it is an isomorphism.

In other words, A_{X} is free iff if two elements of A_{X} are equal, it must be because of left-distributivity.

Theorem (Laver)
Let $j ; V_{\lambda} \prec V_{\lambda}$. Then $\mathcal{E}_{\{j\}}$ is free.
Open problem
What about $A_{\{j, k\}}$? Can it be free?

This is a hard problem

This is a hard problem. We have to prove many inequalities at the same time, and since an embedding can be represented by many words there is no clear order to use induction

This is a hard problem. We have to prove many inequalities at the same time, and since an embedding can be represented by many words there is no clear order to use induction.

For the one generator case this was useful, and still holds

This is a hard problem. We have to prove many inequalities at the same time, and since an embedding can be represented by many words there is no clear order to use induction.

For the one generator case this was useful, and still holds:
Theorem (Laver, Steel)
Let \leq_{L} be the left-division, i.e., $w<_{L} v$ iff there are $u_{1}, \ldots u_{n}$ such that $v=\left(\ldots\left(\left(w \cdot u_{1}\right) \cdot u_{2}\right) \cdots \cdot u_{n}\right)$

This is a hard problem. We have to prove many inequalities at the same time, and since an embedding can be represented by many words there is no clear order to use induction.

For the one generator case this was useful, and still holds:
Theorem (Laver, Steel)
Let \leq_{L} be the left-division, i.e., $w<_{L} v$ iff there are $u_{1}, \ldots u_{n}$ such that $v=\left(\ldots\left(\left(w \cdot u_{1}\right) \cdot u_{2}\right) \cdots u_{n}\right)$.
Then $<_{L}$ is irreflexive on \mathcal{E}_{λ}.

This proves, for example, that the associativity rule does not hold in \mathcal{E}_{λ} :
$j \cdot(j \cdot j)=(j \cdot j) \cdot(j \cdot j)=((j \cdot j) \cdot j) \cdot((j \cdot j) \cdot j)$
But then $(j \cdot j) \cdot j<_{L} j \cdot(j \cdot j)$, so $(j \cdot j) \cdot j \neq j \cdot(j \cdot j)$.

By Laver's Criterion, this is enough to prove freeness for one generator

By Laver's Criterion, this is enough to prove freeness for one generator. For the many-finite-generators case, there is the Dehornoy's Criterion, that wants irreflexivity that wants $\left.\left(\ldots\left(\left(\left(c_{1} \cdot \ldots\right) \cdot c_{r}\right) \cdot x\right) \cdot a_{1}\right) \ldots\right) \cdot a_{p} \neq$ $\left(\ldots\left(\left(\left(\left(c_{1} \cdot \ldots\right) \cdot c_{r}\right) \cdot y\right) \cdot b_{1}\right) \ldots\right) \cdot b_{q}$ for any c 's, a 's. b 's and x, y different generators

By Laver's Criterion, this is enough to prove freeness for one generator. For the many-finite-generators case, there is the Dehornoy's Criterion, that wants irreflexivity that wants $\left.\left(\ldots\left(\left(\left(c_{1} \cdot \ldots\right) \cdot c_{r}\right) \cdot x\right) \cdot a_{1}\right) \ldots\right) \cdot a_{p} \neq$ $\left(\ldots\left(\left(\left(\left(c_{1} \cdot \ldots\right) \cdot c_{r}\right) \cdot y\right) \cdot b_{1}\right) \ldots\right) \cdot b_{q}$ for any c 's, a 's. b 's and x, y different generators.

Some examples: with (DC) are indicated inequalities asked by Dehornoy's Criterion, with (LST) inequalities that come from Laver-Steel Theorem (therefore always true). With such small words the left distributive law does not appear, but if we continue it will come up.

Some examples: $j \neq k$ (DC) $j \cdot j \neq k$ (DC) $j \cdot k \neq j$ (LST)

$$
\begin{aligned}
& j \cdot k \neq k \text { (DC) } k \cdot j \neq j \text { (DC) } k \cdot j \neq k \text { (LST) } k \cdot k \neq j \text { (DC) } \\
& j \cdot j \neq j \cdot k \text { (DC) } j \cdot j \neq k \cdot j(\mathrm{DC}) j \cdot j \neq k \cdot k \text { (DC) } j \cdot k \neq k \cdot j \\
& \text { (DC) } j \cdot k \neq k \cdot k \text { (DC) } k \cdot j \neq k \cdot k(\mathrm{DC}) \ldots
\end{aligned}
$$

There is a whole hierarchy above I3, with larger and larger embeddings:

- I3: $j: V_{\lambda} \prec V_{\lambda}$
- I1: $j: V_{\lambda+1} \prec V_{\lambda+1}$
- IO (or E_{0}): $j: L\left(V_{\lambda+1}\right) \prec L\left(V_{\lambda+1}\right)$, where $L\left(V_{\lambda}\right)$ is the smallest ZF model that contains $V_{\lambda+1}$
- IO\# (ore $\left.E_{1}\right): j: L\left(V_{\lambda+1},\left(V_{\lambda+1}\right)^{\sharp}\right) \prec L\left(V_{\lambda+1},\left(V_{\lambda+1}\right)^{\sharp}\right)$, where $\left(V_{\lambda+1}\right)^{\sharp}$ is a description of the truth in $L\left(V_{\lambda+1}\right)$ coded as a subset of $V_{\lambda+1}$;
- $E_{2}: j: L\left(V_{\lambda+1},\left(V_{\lambda+1}\right)^{\text {\#\# }}\right) \prec L\left(V_{\lambda+1},\left(V_{\lambda+1}\right)^{\text {耼 }}\right)$
- ...
- $E_{\alpha}: j: L\left(E_{\alpha}\right) \prec L\left(E_{\alpha}\right)$
- ...

First question: can we define application on these embeddings? Laver did it for I1.

The problem from 10 and beyond is that j is not amenable in $L\left(V_{\lambda+1}\right)$ or $L\left(E_{\alpha}\right)$: there is a Θ such that $j \upharpoonright L_{\Theta}\left(V_{\lambda+1}\right) \notin L\left(V_{\lambda+1}\right)$.

The first step is to reduce us to embeddings that are ultrapowers, called weakly proper embeddings:

Theorem (Woodin)

Let $j: L\left(E_{\alpha}\right) \prec L\left(E_{\alpha}\right)$ with $\operatorname{crt}(j)<\lambda$. Then there are two embeddings $j_{u}, k_{U}: L\left(E_{\alpha}\right) \prec L\left(E_{\alpha}\right)$ such that $j=k_{U} \circ j_{u}$ and

- $\operatorname{crt}(j u)<\lambda$ and it comes from an ultrafilter, so its behaviour it's definable from $j u \upharpoonright E_{\alpha}$;
- $k_{U}(X)=X$ for any $X \in E_{\alpha}$

First question: can we define application on these embeddings? Laver did it for I1.

The problem from 10 and beyond is that j is not amenable in $L\left(V_{\lambda+1}\right)$ or $L\left(E_{\alpha}\right)$: there is a Θ such that $j \upharpoonright L_{\Theta}\left(V_{\lambda+1}\right) \notin L\left(V_{\lambda+1}\right)$.

The first step is to reduce us to embeddings that are ultrapowers, called weakly proper embeddings:

Theorem (Woodin)

Let $j: L\left(E_{\alpha}\right) \prec L\left(E_{\alpha}\right)$ with $\operatorname{crt}(j)<\lambda$. Then there are two embeddings $j_{u}, k_{U}: L\left(E_{\alpha}\right) \prec L\left(E_{\alpha}\right)$ such that $j=k_{U} \circ j_{u}$ and

- $\operatorname{crt}(j u)<\lambda$ and it comes from an ultrafilter, so its behaviour it's definable from $j u \upharpoonright E_{\alpha}$;
- $k_{U}(X)=X$ for any $X \in E_{\alpha}$.

The second step is to partition $L\left(E_{\alpha}\right)$ in fragments on which k is amenable, called Z_{s}, so that $j \cdot k=\bigcup_{s} j\left(k \upharpoonright Z_{s}\right)$. Is this an embedding?

Theorem (D.)

Suppose E_{α} and that $L\left(E_{\alpha}\right) \vDash V=\operatorname{HOD}_{V_{\lambda+1}}$. Let $\mathcal{E}\left(E_{\alpha}\right)$ be the "set" of weakly proper elementary embeddings from E_{α} to itself. Then we can define an operation • on $\mathcal{E}\left(E_{\alpha}\right)$ that is a left-distributive algebra and such that $\rho_{\alpha}: \mathcal{E}\left(E_{\alpha}\right) \rightarrow \mathcal{E}_{\lambda}, \rho_{\alpha}(j)=j \upharpoonright V_{\lambda}$, is a homeomorphism.

This means that the following diagram commutes:

$$
\begin{gathered}
F_{1} \xrightarrow{\pi_{1}} \mathcal{E}\left(E_{\alpha}\right)_{j} \\
\underset{\pi_{2 \downarrow} \downarrow}{ } \mathcal{E}_{\rho_{\alpha}(j)} \rho
\end{gathered}
$$

So ρ_{α} is an isomorphism on $\mathcal{E}\left(E_{\alpha}\right)_{j}$, and this is free.
Note: for any $j, k: L\left(V_{\lambda+1}\right) \prec L\left(V_{\lambda+1}\right)$ weakly proper, $j=k$ iff $\rho_{0}(j)=\rho_{0}(k)$. So ρ_{0} is an isomorphism from $\mathcal{E}\left(E_{\alpha}\right)_{j, k}$ to $\mathcal{E}_{\rho_{\alpha}(j), \rho_{0}(k)}$.

Second question: are there α and $j, k \in \mathcal{E}\left(E_{\alpha}\right)$ such that ρ_{α} is not an isomorphism on $\mathcal{E}\left(E_{\alpha}\right)_{j, k}$?

Answer negative for any α successor, or limit with cofinality $>\omega$.

Theorem (D., 2012)

If there is a ξ such that $L\left(E_{\xi}\right) \nVdash V=\mathrm{HOD}_{V_{\lambda+1}}$, then there is a $\alpha<\xi$ such that $L\left(E_{\alpha}\right) \vDash V=\operatorname{HOD}_{V_{\lambda+1}}$, and there are 2^{λ} different elements of $\mathcal{E}\left(E_{\alpha}\right)$ that coincide on V_{λ}.

There is a property that I am not going to define, it is called properness. Every weakly proper IO-embedding is proper, but the Theorem above says that we can find both proper and non-proper embeddings that coincide on V_{λ} This is it! This is finally a different algebra!

Theorem (D., 2012)

If there is a ξ such that $L\left(E_{\xi}\right) \nVdash V=\mathrm{HOD}_{V_{\lambda+1}}$, then there is a $\alpha<\xi$ such that $L\left(E_{\alpha}\right) \vDash V=\operatorname{HOD}_{V_{\lambda+1}}$, and there are 2^{λ} different elements of $\mathcal{E}\left(E_{\alpha}\right)$ that coincide on V_{λ}.

There is a property that I am not going to define, it is called properness. Every weakly proper IO-embedding is proper, but the Theorem above says that we can find both proper and non-proper embeddings that coincide on V_{λ}
This is it! This is finally a different algebra! Now ρ_{α} is still a homomorphism, but it is not an isomorphism

Theorem (D., 2012)

If there is a ξ such that $L\left(E_{\xi}\right) \nVdash V=\mathrm{HOD}_{V_{\lambda+1}}$, then there is a $\alpha<\xi$ such that $L\left(E_{\alpha}\right) \vDash V=\operatorname{HOD}_{V_{\lambda+1}}$, and there are 2^{λ} different elements of $\mathcal{E}\left(E_{\alpha}\right)$ that coincide on V_{λ}.

There is a property that I am not going to define, it is called properness. Every weakly proper IO-embedding is proper, but the Theorem above says that we can find both proper and non-proper embeddings that coincide on V_{λ}
This is it! This is finally a different algebra! Now ρ_{α} is still a homomorphism, but it is not an isomorphism.

This is fodder for many new inequalities, and some even meet Dehornoy's criterion!

There are three different kinds of inequalities

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j$,..

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j, \ldots$
- Actually $\rho: \mathcal{E}_{j, k} \rightarrow \mathcal{E}_{\rho(j)}$, that is free, so $j \neq k \cdot j$, $j \cdot j \neq(j \cdot k) \cdot j, .$.

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j$, ...
- Actually $\rho: \mathcal{E}_{j, k} \rightarrow \mathcal{E}_{\rho(j)}$, that is free, so $j \neq k \cdot j$, $j \cdot j \neq(j \cdot k) \cdot j, \ldots$
- By elementarity, properness is preserved, so $j \cdot k \neq k \cdot j$, $(j \cdot k) \cdot j \neq(j \cdot k) \cdot j$..

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j$, ...
- Actually $\rho: \mathcal{E}_{j, k} \rightarrow \mathcal{E}_{\rho(j)}$, that is free, so $j \neq k \cdot j$, $j \cdot j \neq(j \cdot k) \cdot j, \ldots$
- By elementarity, properness is preserved, so $j \cdot k \neq k \cdot j$, $(j \cdot k) \cdot j \neq(j \cdot k) \cdot j \ldots$
Unfortunately some inequalities from Dehornoy's criterion do not fall in these rules: Is $j \cdot k \neq k \cdot k$?

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j$, ...
- Actually $\rho: \mathcal{E}_{j, k} \rightarrow \mathcal{E}_{\rho(j)}$, that is free, so $j \neq k \cdot j$, $j \cdot j \neq(j \cdot k) \cdot j, \ldots$
- By elementarity, properness is preserved, so $j \cdot k \neq k \cdot j$, $(j \cdot k) \cdot j \neq(j \cdot k) \cdot j \ldots$
Unfortunately some inequalities from Dehornoy's criterion do not fall in these rules: Is $j \cdot k \neq k \cdot k$?

So this leaves us with the question

There are three different kinds of inequalities:

- Laver-Steel Theorem, that holds because ρ is an homomorphism. So $j \neq j \cdot k, j \cdot k \neq(j \cdot k) \cdot j$, ...
- Actually $\rho: \mathcal{E}_{j, k} \rightarrow \mathcal{E}_{\rho(j)}$, that is free, so $j \neq k \cdot j$, $j \cdot j \neq(j \cdot k) \cdot j, \ldots$
- By elementarity, properness is preserved, so $j \cdot k \neq k \cdot j$, $(j \cdot k) \cdot j \neq(j \cdot k) \cdot j \ldots$
Unfortunately some inequalities from Dehornoy's criterion do not fall in these rules: Is $j \cdot k \neq k \cdot k$?

So this leaves us with the question:
Open problem
Is $\mathcal{E}_{j, k}$ free?

Thanks you for your attention

