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Forget about large cardinals.
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Question

Let Vκ the cumulative hierarchy of sets. Is there a non-trivial ele-
mentary embedding j : Vη ≺ Vη

?

There are some limitations:

In these cases, if j is not trivial, then some ordinals are moved. We
call critical point of j the least ordinal (cardinal) moved.
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Let κ0 = crt(j)

. We can define κn+1 = j(κn), and λ = supn∈ω κn
(this is called the critical sequence.

Theorem (Kunen)

If j : Vη ≺ Vη and there is a well-ordering of Vλ+1 in Vη, then 1 = 0.

So η can only be limit or successor of limit.

Assumption

I3: There are elementary embeddings j : Vλ ≺ Vλ, λ limit.
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We can extend a little bit the scope of j

.

Picture: slicing a subset of Vλ.

Lemma

Let j : M ≺ N. Let X ⊆ M. Suppose that:

• M ∩ Ord and N ∩ Ord are singular cardinals;

• j is cofinal;

• X is amenable, i.e., rank-fragments of X are in M.

Then j+ : (M,X ) ≺ (N, j+(X )).
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Special case: X = k : Vλ ≺ Vλ

. Therefore j+(k) : Vλ ≺ Vλ. We
write j · k .

This is not to be confused with j ◦ k! For example:

• critical sequence of j ◦ j : κ0, κ2, κ4, . . .

• critical sequence of j · j : by elementarity crt(j(j)) = j(crt(j)),
so κ1, κ2, κ3 . . .

This is an operation on the space Eλ = {j : Vλ ≺ Vλ}, called
application. What is its algebra? What are the rules?

Keep in mind that j(k) is difficult to calculate: while, for example,
j ◦ k(x) is definable from j , k, x , this is not true for j · k(x), that is
known only on ran(j).
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One rule is left-distributivity

:

j · (k · l) = (j · k) · (j · l)

so (Eλ, ·) is a left distributive algebra. Are there other rules?

Let Tn be the sets of words constructed using generators x1, . . . , xn
and the binary operator ·.

Let ≡LD the congruence on Tn generated by all pairs of the form
t1 · (t2 · t3), (t1 · t2) · (t1 · t3). Then Tn/ ≡LD is the universal free
LD-algebra with n generators. We call it Fn.
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Given an LD-algebra A, we can consider its subalgebra AX

generated by the elements in a finite subset X

. There is always a
surjective homomorphism from F|X | to AX . We say that AX is free
if it is an isomorphism.

In other words, AX is free iff if two elements of AX are equal, it
must be because of left-distributivity.

Theorem (Laver)

Let j ;Vλ ≺ Vλ. Then E{j} is free.

Open problem

What about A{j ,k}? Can it be free?
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This is a hard problem

. We have to prove many inequalities at the
same time, and since an embedding can be represented by many
words there is no clear order to use induction.

For the one generator case this was useful, and still holds:

Theorem (Laver, Steel)

Let ≤L be the left-division, i.e., w <L v iff there are u1, . . . un such
that v = (. . . ((w · u1) · u2) · · · · un).
Then <L is irreflexive on Eλ.
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This proves, for example, that the associativity rule does not hold
in Eλ:

j · (j · j) = (j · j) · (j · j) = ((j · j) · j) · ((j · j) · j)

But then (j · j) · j <L j · (j · j), so (j · j) · j 6= j · (j · j).
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By Laver’s Criterion, this is enough to prove freeness for one
generator

. For the many-finite-generators case, there is the
Dehornoy’s Criterion, that wants irreflexivity that wants
(. . . ((((c1 · . . . ) · cr ) · x) · a1) . . . ) · ap 6=
(. . . ((((c1 · . . . ) · cr ) · y) · b1) . . . ) · bq for any c ’s, a’s. b’s and x , y
different generators.

Some examples: with (DC) are indicated inequalities asked by
Dehornoy’s Criterion, with (LST) inequalities that come from
Laver-Steel Theorem (therefore always true). With such small
words the left distributive law does not appear, but if we continue
it will come up.
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Some examples: j 6= k (DC) j · j 6= k (DC) j · k 6= j (LST)
j · k 6= k (DC) k · j 6= j (DC) k · j 6= k (LST) k · k 6= j (DC)
j · j 6= j · k (DC) j · j 6= k · j (DC) j · j 6= k · k (DC) j · k 6= k · j
(DC) j · k 6= k · k (DC) k · j 6= k · k (DC) ...
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There is a whole hierarchy above I3, with larger and larger
embeddings:

• I3: j : Vλ ≺ Vλ

• I1: j : Vλ+1 ≺ Vλ+1

• I0 (or E0): j : L(Vλ+1) ≺ L(Vλ+1), where L(Vλ) is the
smallest ZF model that contains Vλ+1

• I0] (ore E1): j : L(Vλ+1, (Vλ+1)]) ≺ L(Vλ+1, (Vλ+1)]), where
(Vλ+1)] is a description of the truth in L(Vλ+1) coded as a
subset of Vλ+1;

• E2: j : L(Vλ+1, (Vλ+1)]]) ≺ L(Vλ+1, (Vλ+1)]])

• ...

• Eα: j : L(Eα) ≺ L(Eα)

• ...
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First question: can we define application on these embeddings?
Laver did it for I1.

The problem from I0 and beyond is that j is not amenable in
L(Vλ+1) or L(Eα): there is a Θ such that j � LΘ(Vλ+1) /∈ L(Vλ+1).

The first step is to reduce us to embeddings that are ultrapowers,
called weakly proper embeddings:

Theorem (Woodin)

Let j : L(Eα) ≺ L(Eα) with crt(j) < λ. Then there are two embed-
dings jU , kU : L(Eα) ≺ L(Eα) such that j = kU ◦ jU and

• crt(jU) < λ and it comes from an ultrafilter, so its behaviour
it’s definable from jU � Eα;

• kU(X ) = X for any X ∈ Eα

.
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The second step is to partition L(Eα) in fragments on which k is
amenable, called Zs , so that j · k =

⋃
s j(k � Zs). Is this an

embedding?

Theorem (D.)

Suppose Eα and that L(Eα) � V = HODVλ+1
. Let E(Eα) be the

“set” of weakly proper elementary embeddings from Eα to itself.
Then we can define an operation · on E(Eα) that is a left-distributive
algebra and such that ρα : E(Eα) → Eλ, ρα(j) = j � Vλ, is a
homeomorphism.
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This means that the following diagram commutes:

F1 E(Eα)j
π1

Eρα(j)

ρ
π2

So ρα is an isomorphism on E(Eα)j , and this is free.

Note: for any j , k : L(Vλ+1) ≺ L(Vλ+1) weakly proper, j = k iff
ρ0(j) = ρ0(k). So ρ0 is an isomorphism from E(Eα)j ,k to
Eρα(j),ρ0(k).

Second question: are there α and j , k ∈ E(Eα) such that ρα is not
an isomorphism on E(Eα)j ,k?

Answer negative for any α successor, or limit with cofinality > ω.
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Theorem (D., 2012)

If there is a ξ such that L(Eξ) 1 V = HODVλ+1
, then there is a

α < ξ such that L(Eα) � V = HODVλ+1
, and there are 2λ different

elements of E(Eα) that coincide on Vλ.

There is a property that I am not going to define, it is called
properness. Every weakly proper I0-embedding is proper, but the
Theorem above says that we can find both proper and non-proper
embeddings that coincide on Vλ
This is it! This is finally a different algebra!

Now ρα is still a
homomorphism, but it is not an isomorphism.

This is fodder for many new inequalities, and some even meet
Dehornoy’s criterion!
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There are three different kinds of inequalities

:

• Laver-Steel Theorem, that holds because ρ is an
homomorphism. So j 6= j · k , j · k 6= (j · k) · j , ...

• Actually ρ : Ej ,k → Eρ(j), that is free, so j 6= k · j ,
j · j 6= (j · k) · j , ...

• By elementarity, properness is preserved, so j · k 6= k · j ,
(j · k) · j 6= (j · k) · j ...

Unfortunately some inequalities from Dehornoy’s criterion do not
fall in these rules: Is j · k 6= k · k?

So this leaves us with the question:

Open problem

Is Ej ,k free?
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Thanks you for your attention
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