Baire property and the Ellentuck-Prikry topology

Vincenzo Dimonte

February 18, 2020

Joint work with Xianghui Shi

Inspiration (Woodin)

10 is a large cardinal similar to AD.

Motivation

- Proving theorems that reinforce such statement
- Understanding the deep reasons behind such similarity

Definition (Woodin, 1980)

We say that $IO(\lambda)$ holds iff there is an elementary embedding $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ such that $j \upharpoonright V_{\lambda+1}$ is not the identity.

It is a large cardinal: if $IO(\lambda)$ holds, then λ is a strong limit cardinal of cofinality ω , limit of cardinals that are *n*-huge for every $n \in \omega$.

These are some similiarities with AD:

$L(\mathbb{R})$ under AD	$L(V_{\lambda+1})$ under IO($\lambda)$
DC	DC_{λ}
Θ is regular	$\Theta^{L(V_{\lambda+1})}$ is regular
ω_1 is measurable	λ^+ is measurable
the Coding Lemma holds	the Coding Lemma holds

Theorem (Laver)

Let $\langle \kappa_n : n \in \omega \rangle$ be a cofinal sequence in λ . For every $A \subseteq V_{\lambda}$:

- A is Σ_1^1 -definable in $(V_\lambda, V_{\lambda+1})$ iff there is a tree $\mathcal{T} \subseteq \prod_{n \in \omega} V_{\kappa_n} \times \prod_{n \in \omega} V_{\kappa_n}$ whose projection is A;
- A is Σ_2^1 -definable in $(V_{\lambda}, V_{\lambda+1})$ iff there is a tree $T \subseteq \prod_{n \in \omega} V_{\kappa_n} \times \lambda^+$ whose projection is A.

Let us go a bit deeper.

We define a topology on $V_{\lambda+1}$: Since $V_{\lambda+1} = \mathcal{P}(V_{\lambda})$, the basic open sets of the topology are, for any $\alpha < \lambda$ and $a \subseteq V_{\alpha}$,

$$O_{(a,\alpha)} = \{b \in V_{\lambda+1} : b \cap V_{\alpha} = a\}.$$

Theorem (Cramer, 2015)

Suppose IO(λ). Then for every $X \subseteq V_{\lambda+1}$, $X \in L(V_{\lambda+1})$, either $|X| \leq \lambda$ or ${}^{\omega}\lambda$ can be continuously embedded inside X (${}^{\omega}\lambda$ with the bounded topology).

This is similar to AD: in fact, under AD every subset of the reals has the Perfect Set Property.

But the proof is completely different: Cramer uses heavily elementary embeddings (inverse limit reflection), while in the classical case involves games. In recent work, with Motto Ros we clarified the similarity.

The classical case is:

- Large cardinals \Rightarrow every set of reals in $L(\mathbb{R})$ is homogeneously Suslin
- Every homogeneously Suslin set is determined (so $L(\mathbb{R}) \vDash AD$)
- Every determined set has the Perfect Set Property

But there is a shortcut for regularity properties:

- Infinite Woodin cardinals ⇒ every set of reals in L(ℝ) is weakly homogeneously Suslin
- Every weakly homogeneously Suslin set has the Perfect Set Property

D.-Motto Ros

Let λ be a strong limit cardinal of cofinality ω , and let $\langle \kappa_n : n \in \omega \rangle$ be a increasing cofinal sequence in λ . Then the following spaces are isomorphic:

- $^{\lambda}$ 2, with the bounded topology;
- ${}^{\omega}\lambda$, with the bounded topology, and the discrete topology in every copy of λ ;
- ∏_{n∈ω} κ_n, with the bounded topology and the discrete topology in every κ_n;
- if $|V_{\lambda}| = \lambda$, $V_{\lambda+1}$, with the previously defined topology.

Moreover, they are $\lambda\text{-Polish},$ i.e., completely metrizable and with a dense subset of cardinality $\lambda.$

So, for example, we can rewrite Cramer's result as:

Theorem (Cramer, 2015)

Suppose IO(λ). Then $L(^{\lambda}2) \vDash \forall X X \subseteq {}^{\lambda}2$ has the λ -PSP.

For any λ strong limit of cofinality ω , we defined *representable* subsets of ${}^{\omega}\lambda$, a generalization of weakly homogeneously Suslin sets.

D.-Motto Ros

Let λ strong limit of cofinality $\omega.$ Then every representable subset of $^{\omega}\lambda$ has the $\lambda\text{-PSP}.$

Cramer's analysis of IO finalizes the similarity with AD:

Theorem (Cramer, to appear)

Suppose IO(λ). Then every $X \subseteq V_{\lambda+1}$, $X \in L(V_{\lambda+1})$ is representable.

- Infinite Woodin cardinals ⇒ every set of reals in L(ℝ) is weakly homogeneously Suslin
- Every weakly homogeneously Suslin set has the Perfect Set Property

- I0 \Rightarrow every subset of $V_{\lambda+1}$ in $L(V_{\lambda+1})$ is representable
- Every representable set has the λ -Perfect Set Property

This approach is more scalable, as it works even in $\lambda\text{-Polish}$ spaces such that λ does not satisfy IO:

D.-Motto Ros

Suppose IO(λ). Then it is consistent that there is κ strong limit of cofinality ω such that all the subsets of ${}^{\omega}\kappa$ in $L(V_{\kappa+1})$ have the κ -PSP, and \neg IO(κ).

The next step would be to analyze the Baire Property.

The most natural thing is to define nowhere dense sets as usual, λ -meager sets as λ -union of nowhere dense sets and λ -comeager sets as complement of λ -meager sets.

The most natural thing is to define nowhere dense sets as usual, λ -meagre sets as λ -union of nowhere dense sets and λ -comeagre sets as complement of λ -meagre sets.

Let $f : \omega \to \omega$. Then $D_f = \prod_{n \in \omega} \kappa_{f(n)}$ is nowhere dense in ${}^{\omega}\lambda$. But ${}^{\omega}\lambda = \bigcup_{f \in {}^{\omega}\omega} D_f$, therefore the whole space is λ -meagre (in fact, it is c-meagre), and the Baire property in this setting is just nonsense.

Or is it?

From now on, we work with λ strong limit of cofinality ω , $\langle \kappa_n : n \in \omega \rangle$ a strictly increasing cofinal sequence of *measurable* cardinals in λ .

The space we work in is $\prod_{n \in \omega} \kappa_n$.

Idea

- Baire category is closely connected to Cohen forcing
- The space ^κ2, with κ regular, is κ-Baire (i.e., every nonempty open set is not κ-meagre) because Cohen forcing on κ is
 < κ-distributive
- "Cohen" forcing on λ singular is not $<\lambda$ -distributive, and this is why $^\lambda 2$ is not $\lambda\text{-Baire}$
- But there are other forcings on λ that are $<\lambda\text{-distributive},$ like Prikry forcing
- We can try to define Baire category via Prikry forcing instead of Cohen forcing.

Definition

Let λ be strong limit of cofinality ω , $\langle \kappa_n : n \in \omega \rangle$ a strictly increasing cofinal sequence of *measurable* cardinals in λ , and fix μ_n a measure for each κ_n . The *Prikry forcing* $\mathbb{P}_{\vec{\mu}}$ on λ respect to $\vec{\mu}$ has conditions of the form $\langle \alpha_1, \ldots, \alpha_n, A_{n+1}, A_{n+2} \ldots \rangle$, where $\alpha_i \in \kappa_i$ and $A_i \in \mu_i$.

$$\langle \alpha_1, \ldots, \alpha_n \rangle$$
 is the *stem* of the condition.
 $\langle \beta_1, \ldots, \beta_m, B_{m+1}, B_{m+2} \ldots \rangle \leq \langle \alpha_1, \ldots, \alpha_n, A_{n+1}, A_{n+2} \ldots \rangle$ iff $m \geq n$ and

- for $i \leq n \beta_i = \alpha_i$
- for $n < i \le m \ \beta_i \in A_i$
- for $i > m B_i \subseteq A_i$.

 $p \leq^* q$ if $p \leq q$ and they have the same stem.

Definition

The *Ellentuck-Prikry* $\vec{\mu}$ -topology (in short EP-topology) on $\prod_{n \in \omega} \kappa_n$ is the topology generated by the family $\{O_p : p \in \mathbb{P}_{\vec{\mu}}\}$, where if $p = \langle \alpha_1, \ldots, \alpha_n, A_{n+1}, A_{n+2} \ldots \rangle$, then

$$\mathcal{O}_{p} = \{ x \in \prod_{n \in \omega} \kappa_{n} : \forall i \leq n \ x(i) = \alpha_{i}, \ \forall i > n \ x(i) \in A_{i} \}.$$

The EP-topology is a refinement of the bounded topology: if a set is open in the bounded topology, it is open also in the EP-topology, but not viceversa (in fact, many open sets in the EP-topology are nowhere dense in the bounded topology). There is a connection between the concepts of "open" and "dense" relative to the forcing and relative to the topology:

$$\begin{array}{ccc} \mathbb{P}_{\vec{\mu}} \text{ (forcing)} & \prod_{n \in \omega} \kappa_n \text{ (EP-topology)} \\ \hline O \text{ open} & \rightarrow & {}^I O = \{ x \in \prod_{n \in \omega} \kappa_n : \\ & \exists p \in \mathbb{P}_{\vec{\mu}} \ x \in O_p \} \text{ open} \end{array}$$

$${}_{I}U = \qquad \leftarrow \qquad U$$
 open $\{p \in \mathbb{P}_{\vec{\mu}} : O_p \subseteq U\}$ open

- O open dense \rightarrow $^{\prime}O$ open dense
- $_{I}U$ open dense \leftarrow U open dense
- I(IU) = U, but not viceversa.

Definition

Let X be a topological space.

- a set A ⊆ X is λ-meagre iff it is the λ-union of nowhere dense sets
- a set A ⊆ X is λ-comeagre iff it is the complement of a λ-meagre set
- a set A ⊆ X has the λ-Baire property iff there is an open set U such that A△U is λ-meagre
- X is a λ-Baire space iff every nonempty open set in X is not λ-meagre, i.e., the intersection of λ-many open dense sets is dense.

The key to prove that the space $\prod_{n \in \omega} \kappa_n$ is λ -Baire resides in this combinatorial property of Prikry forcing:

Strong Prikry condition

Let $D \subseteq \mathbb{P}_{\vec{\mu}}$ be open dense. Then for every $p \in \mathbb{P}_{\vec{\mu}}$ there are $p' \leq^* p$ and $n \in \omega$ such that for every $q \leq p'$ with stem of length at least $n, q \in D$.

Topologically: Let $D \subseteq \prod_{n \in \omega} \kappa_n$ be open dense. Then for every $p \in \mathbb{P}_{\vec{\mu}}$ there is a $p' \leq^* p$ such that $O_{p'} \subseteq D$.

Coupled with the fact that if $p \in \mathbb{P}_{\vec{\mu}}$ has stem of length *n*, then the intersection of $< \kappa_n$ -many \leq^* -extensions of *p* is still in $\mathbb{P}_{\vec{\mu}}$, we have:

Proposition (D.-Shi)

The space $\prod_{n \in \omega} \kappa_n$ with the EP-topology is λ -Baire.

(Generalized) Mycielski Theorem (D.-Shi)

In $\prod_{n \in \omega} \kappa_n$ with the EP-topology every λ -comeagre set contains a λ -perfect set.

Conjecture

All the results in classical descriptive set theory that depend only on Baire category can be generalized to this setting.

Test case:

Kuratowski-Ulam Theorem

Let X, Y be second-countable spaces, and $A \subseteq X \times Y$ with the Baire property. Then A is meagre iff $\{x \in X : \{y \in Y : (x, y) \in A\}$ is meagre in Y} is λ -comeagre in X.

The key lemma to prove the Kuratowski-Ulam Theorem is the following:

Lemma

Let X, Y be second-countable spaces. Then if $A \subseteq X \times Y$ is open dense, $\{x \in X : \{y \in Y : (x, y) \in A\}$ is open dense in Y} is comeagre in X.

Sketch of proof.

For any $x \in X$, let $A_x = \{y \in Y : (x, y) \in A\}$, and let $\langle V_n : n \in \omega \rangle$ be a countable base. Then A_x is open, and A_x is dense iff $\forall n \in \omega \ A_x \cap V_n \neq \emptyset$. But then $\{x \in X : A_x \text{ is open} dense\} = \bigcap_{n \in \omega} \{x \in X : A_x \cap V_n \neq \emptyset\}$, a countable intersection of open dense sets, so comeagre.

We can see why this proof cannot be generalized:

 $\prod_{n\in\omega} \kappa_n$, with the EP-topology, has a base of cardinality 2^{λ} , so the set we want to be λ -comeagre is actually the intersection of 2^{λ} -many open dense sets, not λ -many.

The key is still the Strong Prikry condition, in this more general definition:

Strong Prikry condition

Let $A \subseteq \mathbb{P}_{\vec{\mu}}$ be an *open* set. Then for any $p \in \mathbb{P}_{\vec{\mu}}$, there is a $p^A \leq^* p$ such that if there is a $q \leq p^A$ with $q \in A$ with stem of length n, then for every $q \leq p^A$ with stem at least $n, q \in A$.

Topologically: Let $U \subseteq \prod_{n \in \omega} \kappa_n$ be an open set. Then for any $p \in \mathbb{P}_{\vec{\mu}}$, there is a $p^A \leq^* p$ such that either $O_{p^A} \subseteq A$, or $O_{p^A} \cap A = \emptyset$.

For any $s \in \bigcup_{m \in \omega} \prod_{n \leq m} \kappa_n$, let $1_s = s^{\frown} \langle \kappa_{m+1}, \kappa_{m+2}, \dots \rangle$. Let $A \subseteq \prod_{n \in \omega} \kappa_n$ be open.

For any $s \in \bigcup_{m \in \omega} \prod_{n \le m} \kappa_n$, fix 1_s^A as in the Strong Prikry condition.

Then A is dense iff for all $s \in \bigcup_{m \in \omega} \prod_{n \leq m} \kappa_n$ there is a $q \leq 1_s^A$ such that $q \in A$.

So to test that A open is dense, we do not need to test it for all the basic open sets, just for a subfamily of them of size λ !

(Generalized) Kuratowski-Ulam Theorem (D.)

Let $A \subseteq \prod_{n \in \omega} \kappa_n \times \prod_{n \in \omega} \kappa_n$ be with the λ -Baire property. Then A is λ -meagre iff $\{x \in X : A_x \text{ is } \lambda\text{-meagre}\}$ is λ -comeagre.

ERRATA CORRIGE

The last theorem is vacuously true. In fact:

Proposition

The $\prod_{n \in \omega} \kappa_n \times \prod_{n \in \omega} \kappa_n$, with the product topology of the EP-topology, is not c-Baire.

Proof.

For any
$$c \in {}^{\omega}2$$
, consider $D_c = \{(x, y) \in \prod_{n \in \omega} \kappa_n \times \prod_{n \in \omega} \kappa_n : \exists n \in \omega(c(n) = 0 \land x(n) = y(n)) \lor (c(n) = 1 \land x(n) \neq y(n)\}.$
Then D_c is open dense and $\bigcap_{c \in {}^{\omega}2} D_c = \emptyset$.

The "right" product is the following:

$$\prod_{n \in \omega} \kappa_n \ltimes \prod_{n \in \omega} \kappa_n = \{ (x, y) \in \prod_{n \in \omega} \kappa_n \times \prod_{n \in \omega} \kappa_n : \exists n \in \omega \forall m > n \ x(m) < y(m) \}$$

Then $\prod_{n \in \omega} \kappa_n \ltimes \prod_{n \in \omega} \kappa_n$, with the topology that is the restricted product of the EP-topologies, is λ -Baire and

(Generalized) Kuratowski-Ulam Theorem (D.)

Let $A \subseteq \prod_{n \in \omega} \kappa_n \ltimes \prod_{n \in \omega} \kappa_n$ be with the λ -Baire property. Then A is λ -meagre iff $\{x \in X : A_x \text{ is } \lambda\text{-meagre}\}$ is λ -comeagre.

Question

Are measurable cardinals necessary?

Question

What other forcings there are on λ that can generate interesting concepts?

Question

What about λ -universally Baire sets?

Questions

Thanks for watching