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ZFC leaves a lot of freedom for our understanding of the universe

.

• Is there a set of reals of cardinality strictly between the set of
natural numbers and the set of real numbers? (CH)

• Is every set definable from some ordinal? (V=HOD)

• Is the Reflection Principle (with class parameters) reflected?

• Is every Borelian measure on B([0, 1]) extendible to P([0, 1])?

These are all question non-answerable in ZFC.
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A-philosophical Remark:
In this talk I won’t go into philosophical questions, like whether
ZFC is the “right” axiom system, and so on.

The right point of view for this seminar is “set theory as a
mathematical branch” and not “set theory as foundation of
mathematics”.
A good mental image is the multiverse, a collection of universes
that satisfy ZFC. We want to know what can happen in those
universes, and what cannot.
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Guidelines:

• Forcing constructions permit to pass from one universe to
another;

• Large cardinals hypotheses enlarge our multiverse (more
universes!)

• V = L has very nice structural properties;

• it is also interesting to go the other way, and investigating
properties opposed to those in V = L;

• combinatorial properties can be local (regarding one cardinal)
or global (regarding all cardinals, or at least a class).
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Loosely speaking, combinatorics is the study of the structural
properties of sets.

Some examples:

Definition

The power function is κ 7→ 2κ. The exponentiation function is
(κ, λ) 7→ κλ.

Local: how large is 2κ?
Global: given a function f : Ord → Ord , is it possible 2κ = f (κ)?
On regular cardinals? Or on singulars?
Special global case: for every λ singular, 2λ is the least possible
(SCH).
V = L→ for all κ, 2κ = κ+ (GCH).

Definition (Gödel, 1965)

Global: V = HOD iff every set is definable from some ordinal.

V = L→ V = HOD.
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Other properties that will appear in the talk:

• ♦κ is about stationary subsets of κ (globally true in L)
(Jensen, 1972);

• �κ is about the existence of a coherent collection of clubs
(globally true in L);

• APκ (Approachability Property) is a weakening of �κ;

• � is the global version of �κ (it is morally �∞);

• � at small cofinalities is a weaker version of � (ad hoc to
avoid inconsistencies with large cardinals);

• TPκ (Tree Property) is König’s Lemma for κ. TPκ++ is both
a stronger failure of the local GCH and a failure of �.
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2κ = κ+

2κ > κ+ (∀γ < κ 2γ = γ+) ∧ 2κ > κ+

♦κ ¬♦κ

�κ ¬�κ + APκ ¬APκ

GCH ¬GCH+SCH ¬SCH

V = HOD V 6= HOD

� � s.m.
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Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

8 / 17



Introduction Cardinal Combinatorics Large Cardinals Large Cardinals and Combinatorics Open Problems

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

8 / 17



Introduction Cardinal Combinatorics Large Cardinals Large Cardinals and Combinatorics Open Problems

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes

. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

8 / 17



Introduction Cardinal Combinatorics Large Cardinals Large Cardinals and Combinatorics Open Problems

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

8 / 17



Introduction Cardinal Combinatorics Large Cardinals Large Cardinals and Combinatorics Open Problems

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ

. This
implies <κM ⊆ M.

8 / 17



Introduction Cardinal Combinatorics Large Cardinals Large Cardinals and Combinatorics Open Problems

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff ∀γ, η < κ γη < κ.

• κ is (strongly) inaccessible iff uncountable, regular and strong
limit.

Definition

Let M,N be sets or classes. Then j : M → N is an elementary
embedding iff for any formula ϕ(v0, . . . , vn) and for any x0, . . . , xn ∈
M,

M � ϕ(x0, . . . , xn) iff N � ϕ(j(x0), . . . , j(xn)).

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.
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Definition (late 60’s)

Let κ and γ be cardinals

. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

Definition

Let j : V ≺ M with crt(j) = κ. We define the critical sequence
〈κ0, κ1, . . . 〉 as κ0 = κ and j(κn) = κn+1.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is Reinhardt iff there is a j : V ≺ M
with crt(j) = κ0, λM ⊆ M, with λ = supn∈ω κn.Equivalently, if
there is a j : V ≺ V , with κ = crt(j).
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Theorem (Kunen, 1971)

There is no Reinhardt cardinal.

This leaves space for the following definitions:

Definition

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : Vλ+1 ≺1 Vλ+1;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1;

I0 For some λ there exists a
j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ
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All the large cardinals defined, other than the inaccessible, are
incompatible with V = L.

It makes sense to ask the relationship between large cardinals and
combinatorics:

• Are there consistency equivalences? (It needs another talk)

• Which combinatorial properties (local or global) are possible
in models with large cardinals?

• Special case: local case exactly at the large cardinal.
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Theorem (Easton, 1970)

We say that E is an Easton function if

• if κ < λ then E (κ) ≤ E (λ);

• cof(E (κ)) > κ.

Then Con(ZFC )→ Con(ZFC + ∀κ regular 2κ = E (κ)).

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. If for all κ < λ
2κ = κ+, then 2λ = λ+.

Same thing for measurable (Scott, 1961).

Theorem (Solovay, 1974)

Let κ be supercompact.For all λ > κ strong limit singular, 2λ = λ+.
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Theorem

Con(inaccessible)→Con(inaccessible+GCH).

Con(supercompact)→Con(supercompact+GCH).

Theorem

If κ is λ+-supercompact, then �λ fails. If there exists a subcompact,
then � fails.
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Theorem (D., Friedman, 2014)

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the
following

:

• GCH

• failure of GCH at regular cardinals

• V=HOD

• ♦

• � at small cofinalities

• etc...
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Theorem (D., Wu, 2016)

Suppose I0. Then I1, i.e., j : Vλ+1 ≺ Vλ+1, is consistent with each
of the following

:

• the failure of SCH at λ

• the first failure of SCH at λ

• TP(λ++)

• ¬SCH + ¬APλ

• etc...

Shi-Trang actually raised this to I0, starting with a hypothesis
stronger than I0.
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Can we lower the hypotheses of the last Theorem to I1?

Is there a combinatorial property that is non-trivially inconsistent
with I*?

Or some that is equiconsistent?
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Thanks for your attention.
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