★ロト ★課 ト ★注 ト ★注 ト 一注

1 / 17

Very Large Cardinals and Combinatorics

Vincenzo Dimonte Kurt Gödel Research Center

21 May 2016

• Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)

< ロ > < 個 > < 臣 > < 臣 > < 臣 > < 臣</p>

2 / 17

• Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)

< ロ > < 個 > < 回 > < 回 > < 三 > 三 三

2 / 17

• Is every set definable from some ordinal? (V=HOD)

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?
- Is every Borelian measure on B([0,1]) extendible to P([0,1])?

- Is there a set of reals of cardinality strictly between the set of natural numbers and the set of real numbers? (CH)
- Is every set definable from some ordinal? (V=HOD)
- Is the Reflection Principle (with class parameters) reflected?
- Is every Borelian measure on $\mathcal{B}([0,1])$ extendible to $\mathcal{P}([0,1])$? These are all question non-answerable in ZFC.

A-philosophical Remark:

In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on.

A-philosophical Remark:

In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on. The right point of view for this seminar is "set theory as a mathematical branch" and not "set theory as foundation of mathematics".

A-philosophical Remark:

In this talk I won't go into philosophical questions, like whether ZFC is the "right" axiom system, and so on.

The right point of view for this seminar is "set theory as a mathematical branch" and not "set theory as foundation of mathematics".

A good mental image is the multiverse, a collection of universes that satisfy ZFC. We want to know what can happen in those universes, and what cannot.

<ロト < 部ト < 言ト < 言ト ここ のの() 3 / 17

 Forcing constructions permit to pass from one universe to another;

Introduction	Cardinal Combinatorics	Large Cardinals	Large Cardinals and Combinatorics	Open Problems

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

4 / 17

Introduction	Cardinal Combinatorics	Large Cardinals	Large Cardinals and Combinatorics	Open Problems

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- V = L has very nice structural properties;

Introduction	Cardinal Combinatorics	Large Cardinals	Large Cardinals and Combinatorics	Open Problems

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- V = L has very nice structural properties;
- it is also interesting to go the other way, and investigating properties opposed to those in V = L;

Introduction	Cardinal Combinatorics	Large Cardinals	Large Cardinals and Combinatorics	Open Problems

- Forcing constructions permit to pass from one universe to another;
- Large cardinals hypotheses enlarge our multiverse (more universes!)
- V = L has very nice structural properties;
- it is also interesting to go the other way, and investigating properties opposed to those in V = L;
- combinatorial properties can be local (regarding one cardinal) or global (regarding all cardinals, or at least a class).

<ロ> (四) (四) (三) (三) (三)

Loosely speaking, combinatorics is the study of the structural properties of sets.

◆□▶ ◆舂▶ ◆産▶ ◆産▶ → 産

5 / 17

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

<ロ> (四) (四) (三) (三) (三)

5 / 17

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ?

<ロ> (四) (四) (三) (三) (三)

5 / 17

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ? Global: given a function $f : Ord \to Ord$, is it possible $2^{\kappa} = f(\kappa)$? On regular cardinals? Or on singulars? Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ? Global: given a function $f: Ord \rightarrow Ord$, is it possible $2^{\kappa} = f(\kappa)$? On regular cardinals? Or on singulars? Special global case: for every λ singular, 2^{λ} is the least possible (SCH)

◆□>
◆□>
●

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ? Global: given a function $f : Ord \to Ord$, is it possible $2^{\kappa} = f(\kappa)$? On regular cardinals? Or on singulars? Special global case: for every λ singular, 2^{λ} is the least possible (SCH).

 $V = L \rightarrow$ for all κ , $2^{\kappa} = \kappa^+$ (GCH).

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ? Global: given a function $f : Ord \to Ord$, is it possible $2^{\kappa} = f(\kappa)$? On regular cardinals? Or on singulars? Special global case: for every λ singular, 2^{λ} is the least possible (SCH).

 $V = L \rightarrow$ for all κ , $2^{\kappa} = \kappa^+$ (GCH).

Definition (Gödel, 1965)

Global: V = HOD iff every set is definable from some ordinal.

<ロ> (四) (四) (三) (三) (三) (三)

Loosely speaking, combinatorics is the study of the structural properties of sets. Some examples:

Definition

The power function is $\kappa \mapsto 2^{\kappa}$. The exponentiation function is $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Local: how large is 2^{κ} ? Global: given a function $f : Ord \to Ord$, is it possible $2^{\kappa} = f(\kappa)$? On regular cardinals? Or on singulars? Special global case: for every λ singular, 2^{λ} is the least possible (SCH).

 $V = L \rightarrow$ for all κ , $2^{\kappa} = \kappa^+$ (GCH).

Definition (Gödel, 1965)

Global: V = HOD iff every set is definable from some ordinal.

 $V = L \rightarrow V = HOD.$

<ロ> (四) (四) (三) (三) (三) (三)

6 / 17

Other properties that will appear in the talk:

• \Diamond_{κ} is about stationary subsets of κ (globally true in L) (Jensen, 1972);

<ロ> (四) (四) (三) (三) (三)

6 / 17

- ◊_κ is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- □_κ is about the existence of a coherent collection of clubs (globally true in L);

- ◊_κ is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- □_κ is about the existence of a coherent collection of clubs (globally true in L);
- AP_{κ} (Approachability Property) is a weakening of \Box_{κ} ;

<ロ> (四) (四) (三) (三) (三)

6 / 17

- ◊_κ is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- □_κ is about the existence of a coherent collection of clubs (globally true in L);
- AP_κ (Approachability Property) is a weakening of □_κ;
- \Box is the global version of \Box_{κ} (it is morally \Box_{∞});

6 / 17

- ◊_κ is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- □_κ is about the existence of a coherent collection of clubs (globally true in L);
- AP_κ (Approachability Property) is a weakening of □_κ;
- \Box is the global version of \Box_{κ} (it is morally \Box_{∞});
- □ at small cofinalities is a weaker version of □ (ad hoc to avoid inconsistencies with large cardinals);

Other properties that will appear in the talk:

- ◊_κ is about stationary subsets of κ (globally true in L) (Jensen, 1972);
- □_κ is about the existence of a coherent collection of clubs (globally true in L);
- AP_{κ} (Approachability Property) is a weakening of \Box_{κ} ;
- \Box is the global version of \Box_{κ} (it is morally \Box_{∞});
- □ at small cofinalities is a weaker version of □ (ad hoc to avoid inconsistencies with large cardinals);
- TP_{κ} (Tree Property) is König's Lemma for κ . $TP_{\kappa^{++}}$ is both a stronger failure of the local GCH and a failure of \Box .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣�?

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

<□ > < @ > < E > < E > E のQ @

$2^{\kappa} = \kappa^+$	$2^{\kappa} > \kappa^+$	$(\forall \gamma < \kappa \; 2^{\gamma} = \gamma^+) \land 2^{\kappa} > \kappa^+$
\Diamond_{κ}	$\neg \diamondsuit_{\kappa}$	
\Box_{κ}	$\neg \Box_{\kappa} + AP_{\kappa}$	$\neg AP_{\kappa}$
GCH	\neg GCH+SCH	−SCH
V = HOD	$V \neq HOD$	

<□ > < @ > < E > < E > E のQ @

$2^{\kappa} = \kappa^+$	$2^{\kappa} > \kappa^+$	$(\forall \gamma < \kappa \; 2^{\gamma} = \gamma^+) \land 2^{\kappa} > \kappa^+$
\Diamond_{κ}	$\neg \diamondsuit_{\kappa}$	
\Box_{κ}	$ eg \square_{\kappa} + AP_{\kappa}$	$\neg AP_{\kappa}$
GCH	¬GCH+SCH	−SCH
V = HOD	V eq HOD	

$2^{\kappa} = \kappa^+$	$2^{\kappa} > \kappa^+$	$(orall \gamma < \kappa \; 2^\gamma = \gamma^+) \wedge 2^\kappa > \kappa^+$
\Diamond_{κ}	$\neg \diamondsuit_{\kappa}$	
\Box_{κ}	$ eg \Box_{\kappa} + AP_{\kappa}$	$ eg AP_{\kappa}$
GCH	¬GCH+SCH	−SCH
V = HOD	$V \neq HOD$	
	□ s.m.	

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

・ロト ・ 母 ト ・ 国 ト ・ 国

8 / 17

Definition (1930)

Let κ be a cardinal. Then

• κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.

▲ロト ▲圖 ト ▲ 国ト ▲ 国ト 二 国

8 / 17

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.
- κ is *(strongly) inaccessible* iff uncountable, regular and strong limit.

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.
- κ is (strongly) inaccessible iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes

8 / 17

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.
- κ is *(strongly) inaccessible* iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j : M \to N$ is an *elementary embedding* iff for any formula $\varphi(v_0, \ldots, v_n)$ and for any $x_0, \ldots, x_n \in M$,

$$M \vDash \varphi(x_0, \ldots, x_n)$$
 iff $N \vDash \varphi(j(x_0), \ldots, j(x_n))$.

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.
- κ is *(strongly) inaccessible* iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j : M \to N$ is an *elementary embedding* iff for any formula $\varphi(v_0, \ldots, v_n)$ and for any $x_0, \ldots, x_n \in M$,

$$M \vDash \varphi(x_0, \ldots, x_n)$$
 iff $N \vDash \varphi(j(x_0), \ldots, j(x_n))$.

Theorem (Keisler, 1962)

 κ is measurable iff there exists $j : V \prec M$ with $crt(j) = \kappa$

8 / 17

イロト イポト イヨト イヨト

Definition (1930)

Let κ be a cardinal. Then

- κ is strong limit iff $\forall \gamma, \eta < \kappa \ \gamma^{\eta} < \kappa$.
- κ is *(strongly) inaccessible* iff uncountable, regular and strong limit.

Definition

Let M, N be sets or classes. Then $j : M \to N$ is an *elementary embedding* iff for any formula $\varphi(v_0, \ldots, v_n)$ and for any $x_0, \ldots, x_n \in M$,

$$M \vDash \varphi(x_0, \ldots, x_n)$$
 iff $N \vDash \varphi(j(x_0), \ldots, j(x_n))$.

Theorem (Keisler, 1962)

 κ is measurable iff there exists $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$. This implies ${}^{<\kappa}M \subseteq M$.

Let κ and γ be cardinals

▲口 > ▲圖 > ▲ 国 > ▲ 国 > 二 国

9 / 17

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *huge* iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa, j^{(\kappa)}M \subseteq M$.

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *huge* iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa, j^{(\kappa)}M \subseteq M$.

Definition

Let $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \ldots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *huge* iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa, j^{(\kappa)}M \subseteq M$.

Definition

Let $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is *Reinhardt* iff there is a $j: V \prec M$ with $\operatorname{crt}(j) = \kappa_0$, ${}^{\lambda}M \subseteq M$, with $\lambda = \sup_{n \in \omega} \kappa_n$.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *huge* iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa, j^{(\kappa)}M \subseteq M$.

Definition

Let $j : V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is *Reinhardt* iff there is a $j : V \prec M$ with $\operatorname{crt}(j) = \kappa_0$, ${}^{\lambda}M \subseteq M$, with $\lambda = \sup_{n \in \omega} \kappa_n$. Equivalently, if there is a $j : V \prec V$, with $\kappa = \operatorname{crt}(j)$.

There is no Reinhardt cardinal.

There is no Reinhardt cardinal.

This leaves space for the following definitions:


```
There is no Reinhardt cardinal.
```

This leaves space for the following definitions:

Definition

I3 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

There is no Reinhardt cardinal.

This leaves space for the following definitions:

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;

```
There is no Reinhardt cardinal.
```

This leaves space for the following definitions:

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

```
There is no Reinhardt cardinal.
```

This leaves space for the following definitions:

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$

イロト イヨト イヨト イヨト 三日

It makes sense to ask the relationship between large cardinals and combinatorics:

It makes sense to ask the relationship between large cardinals and combinatorics:

• Are there consistency equivalences? (It needs another talk)

It makes sense to ask the relationship between large cardinals and combinatorics:

- Are there consistency equivalences? (It needs another talk)
- Which combinatorial properties (local or global) are possible in models with large cardinals?

It makes sense to ask the relationship between large cardinals and combinatorics:

- Are there consistency equivalences? (It needs another talk)
- Which combinatorial properties (local or global) are possible in models with large cardinals?
- Special case: local case exactly at the large cardinal.

★白▶ ★課▶ ★注▶ ★注▶ 一注

12 / 17

Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

12 / 17

Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

Then $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZFC + \forall \kappa \text{ regular } 2^{\kappa} = E(\kappa)).$

Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

Then $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZFC + \forall \kappa \text{ regular } 2^{\kappa} = E(\kappa)).$

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality
Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

Then $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZFC + \forall \kappa \text{ regular } 2^{\kappa} = E(\kappa)).$

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa < \lambda$ $2^{\kappa} = \kappa^+$, then $2^{\lambda} = \lambda^+$.

イロト イロト イヨト イヨト 三日

Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

Then $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZFC + \forall \kappa \text{ regular } 2^{\kappa} = E(\kappa)).$

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa < \lambda$ $2^{\kappa} = \kappa^+$, then $2^{\lambda} = \lambda^+$.

Same thing for measurable (Scott, 1961).

Theorem (Solovay, 1974)

Let κ be supercompact.

Theorem (Easton, 1970)

We say that E is an Easton function if

- if $\kappa < \lambda$ then $E(\kappa) \leq E(\lambda)$;
- $\operatorname{cof}(E(\kappa)) > \kappa$.

Then $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZFC + \forall \kappa \text{ regular } 2^{\kappa} = E(\kappa)).$

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. If for all $\kappa < \lambda$ $2^{\kappa} = \kappa^+$, then $2^{\lambda} = \lambda^+$.

Same thing for measurable (Scott, 1961).

Theorem (Solovay, 1974)

Let κ be supercompact. For all $\lambda > \kappa$ strong limit singular, $2^{\lambda} = \lambda^+$.

★白▶ ★課▶ ★注▶ ★注▶ 一注

13 / 17

Theorem

$Con(inaccessible) \rightarrow Con(inaccessible+GCH).$

Theorem

 $Con(inaccessible) \rightarrow Con(inaccessible+GCH).$ $Con(supercompact) \rightarrow Con(supercompact+GCH).$

Theorem

```
\begin{aligned} & \mathsf{Con}(\mathsf{inaccessible}) {\rightarrow} \mathsf{Con}(\mathsf{inaccessible}{+}\mathsf{GCH}).\\ & \mathsf{Con}(\mathsf{supercompact}) {\rightarrow} \mathsf{Con}(\mathsf{supercompact}{+}\mathsf{GCH}). \end{aligned}
```

Theorem

```
If \kappa is \lambda^+-supercompact, then \Box_{\lambda} fails
```

Theorem

 $\begin{aligned} & \mathsf{Con}(\mathsf{inaccessible}) {\rightarrow} \mathsf{Con}(\mathsf{inaccessible}{+}\mathsf{GCH}).\\ & \mathsf{Con}(\mathsf{supercompact}) {\rightarrow} \mathsf{Con}(\mathsf{supercompact}{+}\mathsf{GCH}). \end{aligned}$

Theorem

If κ is λ^+ -supercompact, then \Box_{λ} fails. If there exists a subcompact, then \Box fails.

≣≯

< 17 ▶

→

(日)

14 / 17

Theorem (D., Friedman, 2014)

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

• GCH

- GCH
- failure of GCH at regular cardinals

- GCH
- failure of GCH at regular cardinals
- V=HOD

(日)、

14 / 17

Theorem (D., Friedman, 2014)

- GCH
- failure of GCH at regular cardinals
- V=HOD
- 🛇

- GCH
- failure of GCH at regular cardinals
- V=HOD
- 🛇
- at small cofinalities

- GCH
- failure of GCH at regular cardinals
- V=HOD
- 🛇
- at small cofinalities
- etc...

Suppose I0. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

• the failure of SCH at λ

(日)

15 / 17

Theorem (D., Wu, 2016)

- the failure of SCH at λ
- the first failure of SCH at λ

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP_{\lambda}$

15 / 17

Theorem (D., Wu, 2016)

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP_{\lambda}$
- etc..

Suppose I0. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP_{\lambda}$
- etc...

Shi-Trang actually raised this to I0, starting with a hypothesis stronger than I0.

Can we lower the hypotheses of the last Theorem to I1?

Can we lower the hypotheses of the last Theorem to 11?

Is there a combinatorial property that is non-trivially inconsistent with $\mathsf{I}^*?$

Can we lower the hypotheses of the last Theorem to I1?

Is there a combinatorial property that is non-trivially inconsistent with $\mathsf{I}^*?$

Or some that is equiconsistent?

Introduction

Open Problems

Thanks for your attention.

