Generic IO at \aleph_{ω}

Vincenzo Dimonte

25 March 2015

ullet model-theoretic / combinatorial on the first ω cardinals,

- ullet model-theoretic / combinatorial on the first ω cardinals, or
- $\neg AC$ combinatorics of $\mathcal{P}(\aleph_{\omega})$.

- ullet model-theoretic / combinatorial on the first ω cardinals, or
- $\neg AC$ combinatorics of $\mathcal{P}(\aleph_{\omega})$.

The first is a motivation for the *hypothesis*. No new results.

- ullet model-theoretic / combinatorial on the first ω cardinals, or
- $\neg AC$ combinatorics of $\mathcal{P}(\aleph_{\omega})$.

The first is a motivation for the *hypothesis*. No new results. The second is a motivation for the *thesis*.

Every model of type (\aleph_2, \aleph_1) (i.e., the universe has cardinality \aleph_2 and there is a predicate of cardinality \aleph_1) for a countable language has an elementary submodel of type (\aleph_1, \aleph_0) .

Every model of type (\aleph_2, \aleph_1) (i.e., the universe has cardinality \aleph_2 and there is a predicate of cardinality \aleph_1) for a countable language has an elementary submodel of type (\aleph_1, \aleph_0) .

Notation: $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Every model of type (\aleph_2, \aleph_1) (i.e., the universe has cardinality \aleph_2 and there is a predicate of cardinality \aleph_1) for a countable language has an elementary submodel of type (\aleph_1, \aleph_0) .

Notation: $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Pretty much, the relationship between \aleph_2 and \aleph_1 is not that different from the one between \aleph_1 and \aleph_0

Every model of type (\aleph_2, \aleph_1) (i.e., the universe has cardinality \aleph_2 and there is a predicate of cardinality \aleph_1) for a countable language has an elementary submodel of type (\aleph_1, \aleph_0) .

Notation: $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Pretty much, the relationship between \aleph_2 and \aleph_1 is not that different from the one between \aleph_1 and \aleph_0 .

Proposition (Todorcevic)

Chang's Conjecture $\rightarrow \neg \square_{\aleph_1}$

Every model of type (\aleph_2, \aleph_1) (i.e., the universe has cardinality \aleph_2 and there is a predicate of cardinality \aleph_1) for a countable language has an elementary submodel of type (\aleph_1, \aleph_0) .

Notation: $(\aleph_2, \aleph_1) \rightarrow (\aleph_1, \aleph_0)$.

Pretty much, the relationship between \aleph_2 and \aleph_1 is not that different from the one between \aleph_1 and \aleph_0 .

Proposition (Todorcevic)

Chang's Conjecture $\to \neg \square_{\aleph_1}$, or the non-existence of a Kurepa tree.

Theorem (Silver, 1967)

 $\mathsf{Con}(\mathsf{Ramsey}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture})$

Theorem (Silver, 1967)

 $\mathsf{Con}(\mathsf{Ramsey}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture}).$

Theorem (Rowbottom, 1971)

Chang's Conjecture $\rightarrow \aleph_1$ is inaccessible in L

Theorem (Silver, 1967)

 $\mathsf{Con}(\mathsf{Ramsey}) \to \mathsf{Con}(\mathsf{Chang's}\ \mathsf{Conjecture}).$

Theorem (Rowbottom, 1971)

Chang's Conjecture $\rightarrow \aleph_1$ is inaccessible in L.

Theorem (Kunen)

Chang's Conjecture $\rightarrow 0^{\sharp}$ (in fact, x^{\sharp} for all reals x)

Theorem (Silver, 1967)

 $\mathsf{Con}(\mathsf{Ramsey}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture}).$

Theorem (Rowbottom, 1971)

Chang's Conjecture $\rightarrow \aleph_1$ is inaccessible in L.

Theorem (Kunen)

Chang's Conjecture $\rightarrow 0^{\sharp}$ (in fact, x^{\sharp} for all reals x).

Theorem (Silver)

 $\mathsf{Con}(\omega_1\text{-Erd\"os}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture})$

Theorem (Silver, 1967)

 $\mathsf{Con}(\mathsf{Ramsey}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture}).$

Theorem (Rowbottom, 1971)

Chang's Conjecture $\rightarrow \aleph_1$ is inaccessible in L.

Theorem (Kunen)

Chang's Conjecture $\rightarrow 0^{\sharp}$ (in fact, x^{\sharp} for all reals x).

Theorem (Silver)

 $\mathsf{Con}(\omega_1\operatorname{\mathsf{-Erd\"os}}) \to \mathsf{Con}(\mathsf{Chang's}\;\mathsf{Conjecture}).$

Theorem (Donder, 1979)

Chang's Conjecture $\rightarrow \aleph_1$ is ω_1 -Erdös in the core model.

Generic 10

What about $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$?

What about $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$?

Theorem (Laver)

 $\mathsf{Con}(\mathsf{huge}\;\mathsf{cardinal}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1))$

What about $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$?

Theorem (Laver)

 $\mathsf{Con}(\mathsf{huge}\;\mathsf{cardinal}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)).$

Theorem (Schindler)

 $\mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)) \rightarrow \mathsf{Con}(o(\kappa) = \kappa^{+\omega}).$

 κ is measurable iff there exists $j: V \prec M$ with $crt(j) = \kappa$

 κ is measurable iff there exists $j:V\prec M$ with $\mathrm{crt}(j)=\kappa$. This implies ${}^{<\kappa}M\subseteq M$

 κ is measurable iff there exists $j:V\prec M$ with $\mathrm{crt}(j)=\kappa$. This implies ${}^{<\kappa}M\subseteq M$.

Definition (late 60's)

Let κ and γ be cardinals

 κ is measurable iff there exists $j:V\prec M$ with $\mathrm{crt}(j)=\kappa$. This implies ${}^{<\kappa}M\subseteq M$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$

 κ is measurable iff there exists $j: V \prec M$ with $\mathrm{crt}(j) = \kappa$. This implies ${}^{<\kappa}M \subseteq M$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$, $\gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact

 κ is measurable iff there exists $j:V\prec M$ with $\mathrm{crt}(j)=\kappa$. This implies ${}^{<\kappa}M\subseteq M$.

Definition (late 60's)

Let κ and γ be cardinals. Then κ is γ -supercompact iff there is a $j: V \prec M$ with $\mathrm{crt}(j) = \kappa, \ \gamma < j(\kappa)$ and $\gamma M \subseteq M$. If κ is γ -supercompact for any γ , then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $crt(j) = \kappa$, $j(\kappa)M \subseteq M$.

Let $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Let $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *n*-huge iff there is a $j: V \prec M$ with $crt(j) = \kappa$, $\kappa_n M \subseteq M$.

Let $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *n*-huge iff there is a $j: V \prec M$ with $crt(j) = \kappa$, $\kappa_n M \subseteq M$.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is ω -huge or Reinhardt iff there is a $j: V \prec M$ with $\mathrm{crt}(j) = \kappa_0$, ${}^{\lambda}M \subseteq M$, with $\lambda = \sup_{n \in \omega} \kappa_n$.

Let $j: V \prec M$ with $\operatorname{crt}(j) = \kappa$. We define the critical sequence $\langle \kappa_0, \kappa_1, \dots \rangle$ as $\kappa_0 = \kappa$ and $j(\kappa_n) = \kappa_{n+1}$.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is *n*-huge iff there is a $j: V \prec M$ with $crt(j) = \kappa$, $\kappa_n M \subseteq M$.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is ω -huge or Reinhardt iff there is a $j: V \prec M$ with $\mathrm{crt}(j) = \kappa_0$, ${}^{\lambda}M \subseteq M$, with $\lambda = \sup_{n \in \omega} \kappa_n$. Equivalently, if there is a $j: V \prec V$, with $\kappa = \mathrm{crt}(j)$.

There is no Reinhardt cardinal

There is no Reinhardt cardinal.

Proof

Let
$$S_{\omega} = \{ \alpha < \lambda^+ : \operatorname{cof}(\alpha) = \omega \}$$

There is no Reinhardt cardinal.

Proof

Let $S_{\omega} = \{ \alpha < \lambda^+ : \operatorname{cof}(\alpha) = \omega \}$. By Solovay there exists $\langle S_{\xi} : \xi < \kappa \rangle$ a partition of S_{ω} in stationary sets

There is no Reinhardt cardinal.

Proof

Let $S_{\omega} = \{ \alpha < \lambda^+ : \operatorname{cof}(\alpha) = \omega \}$. By Solovay there exists $\langle S_{\xi} : \xi < \kappa \rangle$ a partition of S_{ω} in stationary sets. It's a quick calculation that $j(\lambda) = \lambda$ and $j(\lambda^+) = \lambda^+$

There is no Reinhardt cardinal.

Proof

Let $S_{\omega} = \{ \alpha < \lambda^{+} : \operatorname{cof}(\alpha) = \omega \}$. By Solovay there exists $\langle S_{\xi} : \xi < \kappa \rangle$ a partition of S_{ω} in stationary sets. It's a quick calculation that $j(\lambda) = \lambda$ and $j(\lambda^{+}) = \lambda^{+}$. Let $j(\langle S_{\xi} : \xi < \kappa \rangle) = \langle T_{\xi} : \xi < \kappa_{1} \rangle$

There is no Reinhardt cardinal.

Proof

Let $S_{\omega} = \{ \alpha < \lambda^{+} : \operatorname{cof}(\alpha) = \omega \}$. By Solovay there exists $\langle S_{\xi} : \xi < \kappa \rangle$ a partition of S_{ω} in stationary sets. It's a quick calculation that $j(\lambda) = \lambda$ and $j(\lambda^{+}) = \lambda^{+}$. Let $j(\langle S_{\xi} : \xi < \kappa \rangle) = \langle T_{\xi} : \xi < \kappa_{1} \rangle$. $C = \{ \alpha < \lambda^{+} : j(\alpha) = \alpha \}$ is an ω -club, therefore there exists $\alpha \in C \cap T_{\kappa}$

Theorem (Kunen, 1971)

There is no Reinhardt cardinal.

Proof

Let $S_{\omega} = \{ \alpha < \lambda^{+} : \operatorname{cof}(\alpha) = \omega \}$. By Solovay there exists $\langle S_{\xi} : \xi < \kappa \rangle$ a partition of S_{ω} in stationary sets. It's a quick calculation that $j(\lambda) = \lambda$ and $j(\lambda^{+}) = \lambda^{+}$. Let $j(\langle S_{\xi} : \xi < \kappa \rangle) = \langle T_{\xi} : \xi < \kappa_{1} \rangle$. $C = \{ \alpha < \lambda^{+} : j(\alpha) = \alpha \}$ is an ω -club, therefore there exists $\alpha \in C \cap T_{\kappa}$. Let $\alpha \in S_{\xi}$. Then $j(\alpha) = \alpha \in T_{j}(\xi) \cap T_{\kappa}$.

Generic large cardinals are a "virtual" version of large cardinals

Generic large cardinals are a "virtual" version of large cardinals.

Definition (Jech, Prikry, 1976)

Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa)/I$ is a forcing notion

Generic large cardinals are a "virtual" version of large cardinals.

Definition (Jech, Prikry, 1976)

Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa)/I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa)/I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j:V\prec \mathsf{Ult}(V,G)$

Generic large cardinals are a "virtual" version of large cardinals.

Definition (Jech, Prikry, 1976)

Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa)/I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa)/I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j:V \prec \mathsf{Ult}(V,G)$.

I is precipitous iff Ult(V, G) is well-founded, and in that case there exists $j: V \prec M \subseteq V[G]$

Generic large cardinals are a "virtual" version of large cardinals.

Definition (Jech, Prikry, 1976)

Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa)/I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa)/I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j:V \prec \mathsf{Ult}(V,G)$.

I is precipitous iff Ult(V, G) is well-founded, and in that case there exists $j: V \prec M \subseteq V[G]$.

We say that κ is a generically measurable cardinal.

One can extend the definition to all the large cardinals above: generic γ -supercompact, generic huge, generic n-huge

One can extend the definition to all the large cardinals above: generic γ -supercompact, generic huge, generic n-huge. In fact, the Theorem above by Laver is in fact divided in two

One can extend the definition to all the large cardinals above: generic γ -supercompact, generic huge, generic n-huge. In fact, the Theorem above by Laver is in fact divided in two:

Theorem (Laver)

Con(huge cardinal) \to Con(\aleph_1 is generic huge cardinal and $j(\aleph_2)=\aleph_3)$

One can extend the definition to all the large cardinals above: generic γ -supercompact, generic huge, generic n-huge. In fact, the Theorem above by Laver is in fact divided in two:

Theorem (Laver)

Con(huge cardinal) \rightarrow Con(\aleph_1 is generic huge cardinal and $j(\aleph_2) = \aleph_3$).

Proposition

If $j: V \prec M \subseteq V[G]$, M closed under \aleph_3 -sequences, $crt(j) = \aleph_2$ and $j(\aleph_2) = \aleph_3$, then $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$.

Suppose not. Let ${\mathcal U}$ of type (\aleph_3,\aleph_2) be a counterexample

Suppose not. Let $\mathcal U$ of type (\aleph_3,\aleph_2) be a counterexample. Then $j(\mathcal U)$ is of type (\aleph_3^M,\aleph_2^M)

Suppose not. Let \mathcal{U} of type (\aleph_3, \aleph_2) be a counterexample. Then $j(\mathcal{U})$ is of type (\aleph_3^M, \aleph_2^M) . But by hugeness j " \mathcal{U} is in M, and j" $\mathcal{U} \prec j(\mathcal{U})$

Suppose not. Let $\mathcal U$ of type (\aleph_3,\aleph_2) be a counterexample. Then $j(\mathcal U)$ is of type (\aleph_3^M,\aleph_2^M) . But by hugeness j " $\mathcal U$ is in M, and j" $\mathcal U \prec j(\mathcal U)$. Finally, j " $\mathcal U$ is of type $(\aleph_3,\aleph_2)=(\aleph_2^M,\aleph_1^M)$

Suppose not. Let $\mathcal U$ of type (\aleph_3,\aleph_2) be a counterexample. Then $j(\mathcal U)$ is of type (\aleph_3^M,\aleph_2^M) . But by hugeness j " $\mathcal U$ is in M, and j" $\mathcal U \prec j(\mathcal U)$. Finally, j " $\mathcal U$ is of type $(\aleph_3,\aleph_2)=(\aleph_2^M,\aleph_1^M)$.

In the same way,

Proposition

If $j: V \prec M \subseteq V[G]$, M closed under \aleph_{n+1} -sequences, $\operatorname{crt}(j) = \aleph_1$ and $j(\aleph_1) = \aleph_2$, $j(\aleph_2) = \aleph_3, \ldots$, then $(\aleph_{n+1}, \ldots, \aleph_2, \aleph_1) \twoheadrightarrow (\aleph_n, \ldots, \aleph_1, \aleph_0)$.

 κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality

 κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson is $(\ldots, \aleph_2, \aleph_1) \to (\ldots, \aleph_1, \aleph_0)$

 κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson is $(\ldots, \aleph_2, \aleph_1) \to (\ldots, \aleph_1, \aleph_0)$.

Open Problem

What about $Con(\aleph_{\omega} \text{ is Jónsson})$?

 κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson is $(\ldots, \aleph_2, \aleph_1) \to (\ldots, \aleph_1, \aleph_0)$.

Open Problem

What about $Con(\aleph_{\omega} \text{ is Jónsson})$?

There is no ω -huge (and Shelah proved there is no generic ω -huge)! What can we do?

Kunen proved in fact $\neg \exists j : V_{\lambda+2} \prec V_{\lambda+2}$

Definition

I3 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;

Definition

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 For some λ there exists a $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$

Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 For some λ there exists a $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$.

With the "right" forcing, generic I* implies \aleph_{ω} is Jónsson.

Disclaimer: it is still not clear how strong this is

Disclaimer: it is still not clear how strong this is:

Theorem (Foreman, 1982)

 $\mathsf{Con}(2\text{-huge cardinal}) {\to} \mathsf{Con}(\aleph_1 \text{ is generic } 2\text{-huge cardinal and } \dots)$

Disclaimer: it is still not clear how strong this is:

Theorem (Foreman, 1982)

 $\mathsf{Con}(\mathsf{2}\text{-huge cardinal}) {\to} \mathsf{Con}(\aleph_1 \text{ is generic 2-huge cardinal and } \dots).$

Open Problem

What about $Con(\aleph_1 \text{ is generic 3-huge cardinal and } \dots)$?

Definition (GCH)

Generic IO at \aleph_{ω} is true

Definition (GCH)

Generic IO at \aleph_{ω} is true if there exists a forcing notion \mathbb{P} such that for any generic G there exists $j: L(\mathcal{P}(\aleph_{\omega})) \prec L(\mathcal{P}(\aleph_{\omega}))^{V[G]}$ and \mathbb{P} is reasonable.

Examples: $\mathbb{P} = Coll(\aleph_3, \aleph_2)$

Definition (GCH)

Generic IO at \aleph_{ω} is true if there exists a forcing notion \mathbb{P} such that for any generic G there exists $j: L(\mathcal{P}(\aleph_{\omega})) \prec L(\mathcal{P}(\aleph_{\omega}))^{V[G]}$ and \mathbb{P} is reasonable.

Examples: $\mathbb{P} = \text{Coll}(\aleph_3, \aleph_2)$, $\mathbb{P} = \text{product of } \mathbb{P}_n$, where $\mathbb{P}_n = \text{Coll}(\aleph_{n+1}, \aleph_n)$.

$$\Theta = \sup\{\alpha: \exists \pi: \mathcal{P}(\aleph_\omega) \twoheadrightarrow \alpha, \ \pi \in \mathit{L}(\mathcal{P}(\aleph_\omega))$$

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic I0 at \aleph_ω

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic IO at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$

$$\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$$

Theorem

Suppose generic IO at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$:

1. $\aleph_{\omega+1}$ is measurable

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic IO at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ is measurable;
- 2. Θ is weakly inaccessible

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic IO at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ is measurable;
- 2. Θ is weakly inaccessible;
- 3. Θ is limit of measurable cardinals

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic IO at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ is measurable;
- 2. Θ is weakly inaccessible;
- 3. Θ is limit of measurable cardinals.

Confront this with:

Theorem (Shelah)

If \aleph_{ω} is strong limit, then $2^{\aleph_0} < \aleph_{\omega_4}$

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega})).$

Theorem

Suppose generic I0 at \aleph_{ω} . Then in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ is measurable;
- 2. Θ is weakly inaccessible;
- 3. Θ is limit of measurable cardinals.

Confront this with:

Theorem (Shelah)

If \aleph_{ω} is strong limit, then $2^{\aleph_0} < \aleph_{\omega_4}$.

(From now on, let's suppose $crt(j) = \aleph_2$ and $j(\aleph_2) = \aleph_3$).

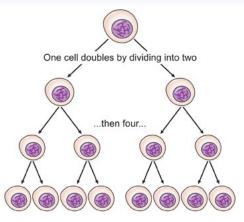
It is practically the same proof as Kunen's Theorem

It is practically the same proof as Kunen's Theorem. Suppose $\langle S_\xi: \xi<\aleph_2 \rangle$ is an ω -stationary partition

It is practically the same proof as Kunen's Theorem. Suppose $\langle S_{\xi} : \xi < \aleph_2 \rangle$ is an ω -stationary partition. Now, $j \upharpoonright L_{\alpha}(\mathcal{P}) \in L(\mathcal{P}(\aleph_{\omega}))[G]$, so $C = \{\alpha < \aleph_{\omega+1} : j(\alpha) = \alpha\} \in L(\mathcal{P}(\aleph_{\omega}))[G]$

It is practically the same proof as Kunen's Theorem. Suppose $\langle S_{\xi} : \xi < \aleph_2 \rangle$ is an ω -stationary partition. Now, $j \upharpoonright L_{\alpha}(\mathcal{P}) \in L(\mathcal{P}(\aleph_{\omega}))[G]$, so $C = \{\alpha < \aleph_{\omega+1} : j(\alpha) = \alpha\} \in L(\mathcal{P}(\aleph_{\omega}))[G]$. As before, then there exists $\alpha \in \mathcal{T}_{\xi} \cap \mathcal{T}_{\aleph_2}$. In $L(\mathcal{P}(\aleph_{\omega}))$ we have some choice, namely $DC_{\aleph_{\omega}}$...

roduction Hypothesis Motivation Generic IO Thesis Motivation



...then eight and so on...

Diagram showing how cells reproduce Copyright © CancerHelp UK For points (2) and (3) we need more choice than DC_{\aleph_ω}

For points (2) and (3) we need more choice than $DC_{\aleph_{\omega}}$:

Coding Lemma

$$\forall \eta < \Theta \, \forall \rho : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \eta \, \exists \gamma < \Theta \, \forall A \subseteq \mathcal{P}(\aleph_{\omega}) \, \exists B \subseteq \mathcal{P}(\aleph_{\omega}) \, B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \, B \subseteq A \, \text{and} \, \{\rho(a) : a \in B\} = \{\rho(a) : a \in A\}.$$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$.

Proof of (3)

The measurable cardinals will be the first γ 's such that $L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \prec_1 L(\mathcal{P}(\aleph_{\omega}))$ above a fixed point

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$.

Proof of (3)

The measurable cardinals will be the first γ 's such that $L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \prec_1 L(\mathcal{P}(\aleph_{\omega}))$ above a fixed point. Prove the Coding Lemma inside $L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$.

Proof of (3)

The measurable cardinals will be the first γ 's such that $L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \prec_1 L(\mathcal{P}(\aleph_{\omega}))$ above a fixed point. Prove the Coding Lemma inside $L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$. One can prove, as before, that the ω -club filter on γ is $\aleph_{\omega+1}$ -complete

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$.

Proof of (3)

The measurable cardinals will be the first γ 's such that $L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \prec_1 L(\mathcal{P}(\aleph_{\omega}))$ above a fixed point. Prove the Coding Lemma inside $L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$. One can prove, as before, that the ω -club filter on γ is $\aleph_{\omega+1}$ -complete. Change the filter with the ω -club filter generated by the fixed points of $k: N \prec \mathcal{P}(\aleph_{\omega})$

One has to prove that if there exists $\rho: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha$, then there exists $\pi: \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \mathcal{P}(\alpha)$. Let $A \subseteq \alpha$, and consider $\{a: \rho(a) \in A\}$. Apply the Coding Lemma to this, to find $B \in L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$ such that $\{\rho(a): a \in B\} = A$. Therefore $\mathcal{P}(\alpha) \subseteq L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$.

Proof of (3)

The measurable cardinals will be the first γ 's such that $L_{\gamma}(\mathcal{P}(\aleph_{\omega})) \prec_1 L(\mathcal{P}(\aleph_{\omega}))$ above a fixed point. Prove the Coding Lemma inside $L_{\gamma}(\mathcal{P}(\aleph_{\omega}))$. One can prove, as before, that the ω -club filter on γ is $\aleph_{\omega+1}$ -complete. Change the filter with the ω -club filter generated by the fixed points of $k: N \prec \mathcal{P}(\aleph_{\omega})$. Pick $\langle A_{\xi} : \xi < \gamma \rangle$ and choose inside each one the sets of fixed points that witness the non-empty intersection.

Theorem (Apter, 1985)

Suppose κ is 2^{λ} -supercompact, with λ measurable. Then there is a model of ZF+ $\aleph_{\omega+1}$ is measurable

Theorem (Apter, 1985)

Suppose κ is 2^{λ} -supercompact, with λ measurable. Then there is a model of ZF+ $\aleph_{\omega+1}$ is measurable.

It's the rest that it is interesting

Theorem (Apter, 1985)

Suppose κ is 2^{λ} -supercompact, with λ measurable. Then there is a model of ZF+ $\aleph_{\omega+1}$ is measurable.

It's the rest that it is interesting:

Definition

Define $D(\lambda)$ as the following

Theorem (Apter, 1985)

Suppose κ is 2^{λ} -supercompact, with λ measurable. Then there is a model of ZF+ $\aleph_{\omega+1}$ is measurable.

It's the rest that it is interesting:

Definition

Define $D(\lambda)$ as the following: in $L(\mathcal{P}(\lambda))$:

- 1. λ^+ is measurable;
- 2. Θ is a weakly inaccessible limit of measurable cardinals

Theorem (Apter, 1985)

Suppose κ is 2^{λ} -supercompact, with λ measurable. Then there is a model of ZF+ $\aleph_{\omega+1}$ is measurable.

It's the rest that it is interesting:

Definition

Define $D(\lambda)$ as the following: in $L(\mathcal{P}(\lambda))$:

- 1. λ^+ is measurable;
- 2. Θ is a weakly inaccessible limit of measurable cardinals.

Therefore, the Theorem proves that if we have generic IO at \aleph_{ω} , then $D(\aleph_{\omega})$.

$$L(\mathbb{R}) \vDash \mathsf{AD} \to L(\mathbb{R}) \vDash D(\omega)$$

$$L(\mathbb{R}) \vDash AD \rightarrow L(\mathbb{R}) \vDash D(\omega).$$

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \models AC$, therefore $\neg D(\lambda)$

$$L(\mathbb{R}) \vDash \mathsf{AD} \to L(\mathbb{R}) \vDash D(\omega).$$

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \models AC$, therefore $\neg D(\lambda)$.

Theorem (Woodin)

$$I0(\lambda) \rightarrow D(\lambda)$$

$$L(\mathbb{R}) \vDash \mathsf{AD} \to L(\mathbb{R}) \vDash D(\omega).$$

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \models AC$, therefore $\neg D(\lambda)$.

Theorem (Woodin)

$$I0(\lambda) \rightarrow D(\lambda)$$
.

Open Problem

How "small" can be λ (uncountable) if $D(\lambda)$?

$$L(\mathbb{R}) \vDash \mathsf{AD} \to L(\mathbb{R}) \vDash D(\omega).$$

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \models AC$, therefore $\neg D(\lambda)$.

Theorem (Woodin)

$$I0(\lambda) \to D(\lambda)$$
.

Open Problem

How "small" can be λ (uncountable) if $D(\lambda)$?

Open Problem

What is the consistency strength of $D(\lambda)$ with λ uncountable?

Thanks for your attention.