Generic I0 at \aleph_{ω}

Vincenzo Dimonte

25 August 2015

Let's introduce a new definition

- Chapter I: The Importance of Being Generic Rank-into Rank

Let's introduce a new definition

- Chapter I: The Importance of Being Generic Rank-into Rank (model-theoretic / combinatorial on the first ω cardinals)

Let's introduce a new definition

- Chapter I: The Importance of Being Generic Rank-into Rank (model-theoretic / combinatorial on the first ω cardinals)
- Chapter II: The Importance of Being Generic IO

Let's introduce a new definition

- Chapter I: The Importance of Being Generic Rank-into Rank (model-theoretic / combinatorial on the first ω cardinals)
- Chapter II: The Importance of Being Generic IO ($\neg \mathrm{AC}$ combinatorics of $\left.\mathcal{P}\left(\aleph_{\omega}\right)\right)$.

Definition (Chang's Conjecture, 1963)

Every model of type $\left(\aleph_{2}, \aleph_{1}\right)$ (i.e., the universe has cardinality \aleph_{2} and there is a predicate of cardinality \aleph_{1}) for a countable language has an elementary submodel of type $\left(\aleph_{1}, \aleph_{0}\right)$.

Definition (Chang's Conjecture, 1963)

Every model of type $\left(\aleph_{2}, \aleph_{1}\right)$ (i.e., the universe has cardinality \aleph_{2} and there is a predicate of cardinality \aleph_{1}) for a countable language has an elementary submodel of type (\aleph_{1}, \aleph_{0}).
Notation: $\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

Definition (Chang's Conjecture, 1963)

Every model of type (\aleph_{2}, \aleph_{1}) (i.e., the universe has cardinality \aleph_{2} and there is a predicate of cardinality \aleph_{1}) for a countable language has an elementary submodel of type (\aleph_{1}, \aleph_{0}).
Notation: $\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.
Pretty much, a relationship between \aleph_{2} and \aleph_{1} holds also between \aleph_{1} and \aleph_{0} (not necessarily viceversa!)

Definition (Chang's Conjecture, 1963)

Every model of type $\left(\aleph_{2}, \aleph_{1}\right)$ (i.e., the universe has cardinality \aleph_{2} and there is a predicate of cardinality \aleph_{1}) for a countable language has an elementary submodel of type $\left(\aleph_{1}, \aleph_{0}\right)$.
Notation: $\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.
Pretty much, a relationship between \aleph_{2} and \aleph_{1} holds also between \aleph_{1} and \aleph_{0} (not necessarily viceversa!).
Theorem (Silver, Donder, 1979)
$\operatorname{Con}\left(\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)\right) \leftrightarrow \operatorname{Con}\left(\omega_{1}\right.$-Erdös $)$

Definition (Chang's Conjecture, 1963)

Every model of type $\left(\aleph_{2}, \aleph_{1}\right)$ (i.e., the universe has cardinality \aleph_{2} and there is a predicate of cardinality \aleph_{1}) for a countable language has an elementary submodel of type $\left(\aleph_{1}, \aleph_{0}\right)$.
Notation: $\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.
Pretty much, a relationship between \aleph_{2} and \aleph_{1} holds also between \aleph_{1} and \aleph_{0} (not necessarily viceversa!).
Theorem (Silver, Donder, 1979)
$\operatorname{Con}\left(\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)\right) \leftrightarrow \operatorname{Con}\left(\omega_{1}\right.$-Erdös $)$.
What about $\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right) ? \operatorname{Or}\left(\aleph_{3}, \aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}, \aleph_{0}\right)$?

Theorem (Keisler, 1962)
κ is measurable iff there exists $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$

Theorem (Keisler, 1962)
κ is measurable iff there exists $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. This implies ${ }^{<\kappa} M \subseteq M$

Theorem (Keisler, 1962)
κ is measurable iff there exists $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. This implies ${ }^{<\kappa} M \subseteq M$.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{j(\kappa)} M \subseteq M$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is n-huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{\kappa_{n}} M \subseteq M$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is n-huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{\kappa_{n}} M \subseteq M$.

Definition (Reinhardt, 1970)
Let κ be a cardinal. Then κ is ω-huge or Reinhardt iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa_{0},{ }^{\lambda} M \subseteq M$, with $\lambda=\sup _{n \in \omega} \kappa_{n}$.

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is n-huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{\kappa_{n}} M \subseteq M$.

Definition (Reinhardt, 1970)
Let κ be a cardinal. Then κ is ω-huge or Reinhardt iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa_{0},{ }^{\lambda} M \subseteq M$, with $\lambda=\sup _{n \in \omega} \kappa_{n}$. Equivalently, if there is a $j: V \prec V$, with $\kappa=\operatorname{crt}(j)$

Definition

Let $j: V \prec M$ with $\operatorname{crt}(j)=\kappa$. We define the critical sequence $\left\langle\kappa_{0}, \kappa_{1}, \ldots\right\rangle$ as $\kappa_{0}=\kappa$ and $j\left(\kappa_{n}\right)=\kappa_{n+1}$.

Definition (Kunen, 1972)
Let κ be a cardinal. Then κ is n-huge iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa,{ }^{\kappa_{n}} M \subseteq M$.

Definition (Reinhardt, 1970)
Let κ be a cardinal. Then κ is ω-huge or Reinhardt iff there is a $j: V \prec M$ with $\operatorname{crt}(j)=\kappa_{0},{ }^{\lambda} M \subseteq M$, with $\lambda=\sup _{n \in \omega} \kappa_{n}$. Equivalently, if there is a $j: V \prec V$, with $\kappa=\operatorname{crt}(j)$.

Theorem (Kunen, 1971)
There is no Reinhardt cardinal.

Large cardinals are really large, but there is a trick to apply their properties to small cardinals

Large cardinals are really large, but there is a trick to apply their properties to small cardinals.
Generic large cardinals are a "virtual" version of large cardinals

Large cardinals are really large, but there is a trick to apply their properties to small cardinals.
Generic large cardinals are a "virtual" version of large cardinals.
Definition (" 'Generic measurable" ')
(Solovay) Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa) / I$ is a forcing notion

Large cardinals are really large, but there is a trick to apply their properties to small cardinals.
Generic large cardinals are a "virtual" version of large cardinals.
Definition (" 'Generic measurable" ')
(Solovay) Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa) / I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa) / I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j: V \prec \operatorname{Ult}(V, G)$

Large cardinals are really large, but there is a trick to apply their properties to small cardinals.
Generic large cardinals are a "virtual" version of large cardinals.
Definition ("'Generic measurable"')
(Solovay) Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa) / I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa) / I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j: V \prec \operatorname{Ult}(V, G)$.
(Jech, Prikry) I is precipitous iff $\operatorname{Ult}(V, G)$ is well-founded, and in that case there exists $j: V \prec M \subseteq V[G]$

Large cardinals are really large, but there is a trick to apply their properties to small cardinals.
Generic large cardinals are a "virtual" version of large cardinals.
Definition ("'Generic measurable"')
(Solovay) Let κ be a cardinal, I an ideal on $\mathcal{P}(\kappa)$. Then $\mathcal{P}(\kappa) / I$ is a forcing notion. If G is generic for $\mathcal{P}(\kappa) / I$, then G is a V-ultrafilter on $\mathcal{P}(\kappa)$ and there exists $j: V \prec \operatorname{Ult}(V, G)$.
(Jech, Prikry) I is precipitous iff $\operatorname{Ult}(V, G)$ is well-founded, and in that case there exists $j: V \prec M \subseteq V[G]$.

One can extend the definition to all the large cardinals above: generic γ-supercompact, generic huge, generic n-huge

Theorem (Laver)
Con $($ huge cardinal $) \rightarrow \operatorname{Con}\left(\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right)\right)$

Theorem (Laver)
Con $($ huge cardinal $) \rightarrow \operatorname{Con}\left(\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right)\right)$.
In fact, the Theorem above by is divided in two

Theorem (Laver)

Con (huge cardinal) $\rightarrow \operatorname{Con}\left(\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right)\right)$.
In fact, the Theorem above by is divided in two:
Theorem (Laver)
Con(huge cardinal) \rightarrow Con $\left(\aleph_{2}\right.$ is generic huge cardinal and $j\left(\aleph_{2}\right)=$ \aleph_{3})

Theorem (Laver)
Con $($ huge cardinal $) \rightarrow \operatorname{Con}\left(\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right)\right)$.
In fact, the Theorem above by is divided in two:
Theorem (Laver)
Con(huge cardinal) \rightarrow Con $\left(\aleph_{2}\right.$ is generic huge cardinal and $j\left(\aleph_{2}\right)=$ \aleph_{3}).

Proposition
If $j: V \prec M \subseteq V[G], M$ closed under \aleph_{3}-sequences, $\operatorname{crt}(j)=\aleph_{2}$ and $j\left(\aleph_{2}\right)=\aleph_{3}$, then $\left(\aleph_{3}, \aleph_{2}\right) \rightarrow\left(\aleph_{2}, \aleph_{1}\right)$.

In the same way
Proposition
If $j: V \prec M \subseteq V[G], M$ closed under \aleph_{n+1}-sequences, $\operatorname{crt}(j)=$ \aleph_{1} and $j\left(\aleph_{1}\right)=\aleph_{2}, j\left(\aleph_{2}\right)=\aleph_{3}, \ldots$, then $\left(\aleph_{n+1}, \ldots, \aleph_{2}, \aleph_{1}\right) \rightarrow$ $\left(\aleph_{n}, \ldots, \aleph_{1}, \aleph_{0}\right)$.

Definition (1962)

κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality

Definition (1962)

κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson if $\left(\ldots, \aleph_{2}, \aleph_{1}\right) \rightarrow\left(\ldots, \aleph_{1}, \aleph_{0}\right)$

Definition (1962)

κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson if $\left(\ldots, \aleph_{2}, \aleph_{1}\right) \rightarrow\left(\ldots, \aleph_{1}, \aleph_{0}\right)$:
Theorem (Silver)
\aleph_{ω} is Jónsson iff there are $k_{n} \in\left\{\aleph_{m}: m \in \omega\right\}$, strictly increasing, such that $\left(\ldots, \aleph_{k_{2}}, \aleph_{k_{1}}\right) \rightarrow\left(\ldots, \aleph_{k_{1}}, \aleph_{k_{0}}\right)$

Definition (1962)

κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson if $\left(\ldots, \aleph_{2}, \aleph_{1}\right) \rightarrow\left(\ldots, \aleph_{1}, \aleph_{0}\right)$:
Theorem (Silver)
\aleph_{ω} is Jónsson iff there are $k_{n} \in\left\{\aleph_{m}: m \in \omega\right\}$, strictly increasing, such that $\left(\ldots, \aleph_{k_{2}}, \aleph_{k_{1}}\right) \rightarrow\left(\ldots, \aleph_{k_{1}}, \aleph_{k_{0}}\right)$

Open Problem
What about Con $\left(\aleph_{\omega}\right.$ is Jónsson $)$?

Definition (1962)

κ is Jónsson iff every structure for a countable language with domain of cardinality κ has a proper elementary substructure with domain of the same cardinality.

Then \aleph_{ω} is Jónsson if $\left(\ldots, \aleph_{2}, \aleph_{1}\right) \rightarrow\left(\ldots, \aleph_{1}, \aleph_{0}\right)$:
Theorem (Silver)
\aleph_{ω} is Jónsson iff there are $k_{n} \in\left\{\aleph_{m}: m \in \omega\right\}$, strictly increasing, such that $\left(\ldots, \aleph_{k_{2}}, \aleph_{k_{1}}\right) \rightarrow\left(\ldots, \aleph_{k_{1}}, \aleph_{k_{0}}\right)$

Open Problem

What about Con $\left(\aleph_{\omega}\right.$ is Jónsson)?
There is no ω-huge (and Shelah proved there is no generic ω-huge)! What can we do?

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:
Definition
13 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:
Definition
13 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
I2 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:

Definition

13 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
12 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;
I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:

Definition

13 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
12 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;
I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
I0 For some λ there exists a

$$
j: L\left(V_{\lambda+1}\right) \prec L\left(V_{\lambda+1}\right), \text { with } \operatorname{crt}(j)<\lambda
$$

Kunen proved in fact $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. This leaves space for the following definitions:

Definition

I3 iff there exists λ s.t. $\exists j: V_{\lambda} \prec V_{\lambda}$;
I2 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec_{1} V_{\lambda+1}$;
I1 iff there exists λ s.t. $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
IO For some λ there exists a

$$
j: L\left(V_{\lambda+1}\right) \prec L\left(V_{\lambda+1}\right), \text { with } \operatorname{crt}(j)<\lambda .
$$

With the "right " forcing, generic I1 or I0 at \aleph_{ω} implies \aleph_{ω} is Jónsson:
Remark
If there exists $j: V \prec M \subseteq V[G], j\left(\aleph_{\omega}\right)=\aleph_{\omega}, j " \aleph_{\omega} \in M$, then \aleph_{ω} is Jónsson.

Disclaimer: it is still not clear how strong this is

Disclaimer: it is still not clear how strong this is:
Theorem (Foreman, 1982)
Con(2-huge cardinal) \rightarrow Con $\left(\aleph_{1}\right.$ is generic 2-huge cardinal and \ldots.)

Disclaimer: it is still not clear how strong this is:
Theorem (Foreman, 1982)
Con(2-huge cardinal) \rightarrow Con $\left(\aleph_{1}\right.$ is generic 2-huge cardinal and \ldots. .
Open Problem
What about Con $\left(\aleph_{1}\right.$ is generic 3-huge cardinal and . . .) ?

How to define generic I0 (at \aleph_{ω})

How to define generic $10\left(\right.$ at $\left.\aleph_{\omega}\right)$?
Naive attempt
$(\mathrm{GCH}) \exists j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec\left(L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)^{V[G]}\right.$

How to define generic $10\left(\right.$ at $\left.\aleph_{\omega}\right)$?
Naive attempt
$(\mathrm{GCH}) \exists j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec\left(L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)^{V[G]}\right.$.
Example
Remember: if $j: V \prec M$ then $M^{<\operatorname{crt}(j)} \subseteq M$

How to define generic $10\left(\right.$ at $\left.\aleph_{\omega}\right)$?
Naive attempt
$(\mathrm{GCH}) \exists j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec\left(L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)^{V[G]}\right.$.
Example
Remember: if $j: V \prec M$ then $M^{<\operatorname{crt}(j)} \subseteq M$. If I is precipitous, then there exists $j: V \prec M \subseteq V[G]$, with G

How to define generic $10\left(\right.$ at $\left.\aleph_{\omega}\right)$?
Naive attempt
$(\mathrm{GCH}) \exists j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec\left(L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)^{V[G]}\right.$.

Example

Remember: if $j: V \prec M$ then $M^{<\operatorname{crt}(j)} \subseteq M$. If I is precipitous, then there exists $j: V \prec M \subseteq V[G]$, with G. But not always $M^{<\operatorname{crt}(j)} \subseteq M$, only when I is saturated.

Definition

Suppose GCH below \aleph_{ω}. We say that generic 10 holds at \aleph_{ω} if there exists a forcing notion \mathbb{P} and a generic G such that:

1. in $V[G]$ there exists $j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)[G]$;
2. $\mathbb{P} \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ and in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ there exists $\pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \mathbb{P}$;
3. $\aleph_{\omega}^{V}=\aleph_{\omega}^{V[G]}$;
4. every element of $\mathcal{P}\left(\aleph_{\omega}\right)^{V[G]}$ has a name (coded) in $\mathcal{P}\left(\aleph_{\omega}\right)$;
5. there is a \mathbb{P}-term for $H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right)$ and $j \upharpoonright H\left(\aleph_{\omega}\right): H\left(\aleph_{\omega}\right) \prec H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right)$

Definition

Suppose GCH below \aleph_{ω}. We say that generic 10 holds at \aleph_{ω} if there exists a forcing notion \mathbb{P} and a generic G such that:

1. in $V[G]$ there exists $j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)[G]$;
2. $\mathbb{P} \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ and in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ there exists $\pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \mathbb{P}$;
3. $\aleph_{\omega}^{V}=\aleph_{\omega}^{V[G]}$;
4. every element of $\mathcal{P}\left(\aleph_{\omega}\right)^{V[G]}$ has a name (coded) in $\mathcal{P}\left(\aleph_{\omega}\right)$;
5. there is a \mathbb{P}-term for $H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right)$ and $j \upharpoonright H\left(\aleph_{\omega}\right): H\left(\aleph_{\omega}\right) \prec H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right)$.

Examples: $\mathbb{P}=\operatorname{Coll}\left(\aleph_{3}, \aleph_{2}\right)$

Definition

Suppose GCH below \aleph_{ω}. We say that generic 10 holds at \aleph_{ω} if there exists a forcing notion \mathbb{P} and a generic G such that:

1. in $V[G]$ there exists $j: L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right) \prec L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)[G]$;
2. $\mathbb{P} \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ and in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$ there exists $\pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \mathbb{P}$;
3. $\aleph_{\omega}^{V}=\aleph_{\omega}^{V[G]}$;
4. every element of $\mathcal{P}\left(\aleph_{\omega}\right)^{V[G]}$ has a name (coded) in $\mathcal{P}\left(\aleph_{\omega}\right)$;
5. there is a \mathbb{P}-term for $H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right)$ and

$$
j \upharpoonright H\left(\aleph_{\omega}\right): H\left(\aleph_{\omega}\right) \prec H^{V^{\mathbb{P}}}\left(\aleph_{\omega}\right) .
$$

Examples: $\mathbb{P}=\operatorname{Coll}\left(\aleph_{3}, \aleph_{2}\right), \mathbb{P}=$ product of \mathbb{P}_{n}, where $\mathbb{P}_{n}=\operatorname{Coll}\left(\aleph_{n+3}, \aleph_{n+2}\right)$.

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$.
Theorem
Suppose generic 10 at \aleph_{ω}

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$.
Theorem
Suppose generic 10 at \aleph_{ω}. Then in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$.
Theorem
Suppose generic 10 at \aleph_{ω}. Then in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$:

1. $\aleph_{\omega+1}$ is measurable (in fact ω-strongly measurable)

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$.

Theorem

Suppose generic 10 at \aleph_{ω}. Then in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$:

1. $\aleph_{\omega+1}$ is measurable (in fact ω-strongly measurable);
2. Θ is weakly inaccessible

Definition

$\Theta=\sup \left\{\alpha: \exists \pi: \mathcal{P}\left(\aleph_{\omega}\right) \rightarrow \alpha, \pi \in L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)\right\}$.

Theorem

Suppose generic 10 at \aleph_{ω}. Then in $L\left(\mathcal{P}\left(\aleph_{\omega}\right)\right)$:

1. $\aleph_{\omega+1}$ is measurable (in fact ω-strongly measurable);
2. Θ is weakly inaccessible;
3. Θ is limit of measurable cardinals.

Confront this with:
Theorem (Shelah)
If \aleph_{ω} is strong limit, then $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$

Confront this with:
Theorem (Shelah)
If \aleph_{ω} is strong limit, then $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$.
So:

- Either generic 10 is consistent, and then pcf-theory without AC has some serious limits

Confront this with:
Theorem (Shelah)
If \aleph_{ω} is strong limit, then $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$.
So:

- Either generic 10 is consistent, and then pcf-theory without AC has some serious limits;
- or generic I0 is inconsistent, and that would put a shadow on the consistency of I .

Having just $\aleph_{\omega+1}$ measurable is nothing new

Having just $\aleph_{\omega+1}$ measurable is nothing new:
Theorem (Apter, 1985)
Suppose κ is 2^{λ}-supercompact, with λ measurable. Then there is a model of $Z F+\aleph_{\omega+1}$ is measurable

Having just $\aleph_{\omega+1}$ measurable is nothing new:
Theorem (Apter, 1985)
Suppose κ is 2^{λ}-supercompact, with λ measurable. Then there is a model of $Z F+\aleph_{\omega+1}$ is measurable.

But the rest comes from the theory of $A D$

Having just $\aleph_{\omega+1}$ measurable is nothing new:
Theorem (Apter, 1985)
Suppose κ is 2^{λ}-supercompact, with λ measurable. Then there is a model of $Z F+\aleph_{\omega+1}$ is measurable.

But the rest comes from the theory of AD:
Definition
Define $D(\lambda)$ as the following

Having just $\aleph_{\omega+1}$ measurable is nothing new:
Theorem (Apter, 1985)
Suppose κ is 2^{λ}-supercompact, with λ measurable. Then there is a model of $Z F+\aleph_{\omega+1}$ is measurable.

But the rest comes from the theory of AD:
Definition
Define $D(\lambda)$ as the following: in $L(\mathcal{P}(\lambda))$:

- λ^{+}is measurable;
- Θ is a weakly inaccessible limit of measurable cardinals.

When it does happens

When it does happens
Theorem
With enough large cardinals, $L(\mathbb{R}) \vDash \mathrm{AD}$, and $D(\omega)$ holds

When it does happens
Theorem
With enough large cardinals, $L(\mathbb{R}) \vDash \mathrm{AD}$, and $D(\omega)$ holds.
Theorem (Woodin)
$I O(\lambda) \rightarrow D(\lambda)$.

When it does not happen

When it does not happen
For regular cardinals, with forcing one can kill $A C$, so it is not interesting

When it does not happen
For regular cardinals, with forcing one can kill $A C$, so it is not interesting.
Theorem (Shelah, 1996)
If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \vDash A C$, therefore $\neg D(\lambda)$

When it does not happen
For regular cardinals, with forcing one can kill AC, so it is not interesting.

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then $L(\mathcal{P}(\lambda)) \vDash A C$, therefore $\neg D(\lambda)$.

Theorem

In the Mitchell-Steel core model, if λ is singular, then $L(\mathcal{P}(\lambda)) \vDash \mathrm{AC}$, therefore $\neg D(\lambda)$.

Conjecture (Woodin)
In Ultimate L, internal $I O(\lambda)$ iff $L(\mathcal{P}(\lambda) \not \models \mathrm{AC}$

Conjecture (Woodin)
In Ultimate L, internal $I O(\lambda)$ iff $L(\mathcal{P}(\lambda) \not \models \mathrm{AC}$.
Open Problem
How "small" can be λ (uncountable) if $D(\lambda)$?

Conjecture (Woodin)
In Ultimate L, internal $I O(\lambda)$ iff $L(\mathcal{P}(\lambda) \nvdash \mathrm{AC}$.
Open Problem
How "small" can be λ (uncountable) if $D(\lambda)$?
Open Problem
What is the consistency strength of $D(\lambda)$ with λ uncountable?

Thanks for your attention.

