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Let’s introduce a new definition

e Chapter |: The Importance of Being Generic Rank-into Rank
(model-theoretic / combinatorial on the first w cardinals)

e Chapter Il: The Importance of Being Generic 10 (-AC
combinatorics of P(X,)).
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Definition (Chang's Conjecture, 1963)

Every model of type (N2,N;) (i.e., the universe has cardinality N,
and there is a predicate of cardinality R;) for a countable language
has an elementary submodel of type (Ri, Rp).
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Definition (Chang's Conjecture, 1963)

Every model of type (R2,N;) (i.e., the universe has cardinality N
and there is a predicate of cardinality R;) for a countable language
has an elementary submodel of type (N1, Np).

Notation: (Ng, Nl) —» (Nl, No).

Pretty much, a relationship between Ny and X; holds also between
N; and Ny (not necessarily viceversal).

Theorem (Silver, Donder, 1979)
Con((Ng, Nl) —» (Nl, No)) <~ Con(wl-Erdés). J

What about (N3,N2) —» (Nz,Nl)? Or (N3, Nz,Nl) —» (Ng, Nl,No)?
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Theorem (Keisler, 1962)
Kk is measurable iff there exists j : V < M with crt(j) = &
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implies <*M C M.

W

Definition (Kunen, 1972)

Let k be a cardinal. Then x is huge iff there is a j : V < M with
crt(j) = k, {IM C M.
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Definition (Kunen, 1972)

Let x be a cardinal. Then k is n-huge iff there isa j : V < M with
crt(j) = K, "M C M.

Definition (Reinhardt, 1970)
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Definition

Let j : V < M with crt(j) = x. We define the critical sequence
(Ko, K1,...) as ko = k and j(kp) = Knt1-

Definition (Kunen, 1972)

Let x be a cardinal. Then k is n-huge iff there isa j : V < M with
crt(j) = &, "M C M.

Definition (Reinhardt, 1970)

Let x be a cardinal. Then k is w-huge or Reinhardt iff there is
aj: V < M with crt(j) = ko, *M C M, with X = sup,c,, kn.
Equivalently, if there is a j : V < V, with k = crt()).

Theorem (Kunen, 1971)

There is no Reinhardt cardinal.

v
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Large cardinals are really large, but there is a trick to apply their
properties to small cardinals.
Generic large cardinals are a "virtual” version of large cardinals.

Definition (" 'Generic measurable”")

(Solovay) Let x be a cardinal, / an ideal on P(x). Then P(x)/l is a
forcing notion. If G is generic for P(x)/I, then G is a V-ultrafilter
on P(k) and there exists j : V < Ult(V, G).

(Jech, Prikry) I is precipitous iff Ult(V, G) is well-founded, and in
that case there exists j: V < M C V[G].

One can extend the definition to all the large cardinals above:
generic ~y-supercompact, generic huge, generic n-huge
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Theorem (Laver)
Con(huge cardinal)—Con((R3, Ra) — (N2, Ny1)).

In fact, the Theorem above by is divided in two:
Theorem (Laver)

Con(huge cardinal)—Con(X; is generic huge cardinal and j(®2) =
N3).
Proposition

If j: V<M C V[G], M closed under N3-sequences, crt(j) = N
and j(Nz) = N3, then (N3, Ng) —» (Ng,Nl).

<

v
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In the same way

Proposition

If j: V<M C V[G], M closed under R, 1-sequences, crt(j) =
Ny and j(Nl) = Ny, j(Nz) = N3,..., then (N,H_l,...,Ng,Nl) —»
(Np, ..., N1, No).
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Definition (1962)

K is Jonsson iff every structure for a countable language with domain
of cardinality x has a proper elementary substructure with domain
of the same cardinality.

Then X, is Jénsson if (..., Rp,N1) — (..., Ry, Ng):
Theorem (Silver)

N, is Jénsson iff there are k, € {X,, : m € w}, strictly increasing,
such that ( c Ny, Nkl) — ( Ny, Nko)

Open Problem
What about Con(R,, is Jénsson)?

There is no w-huge (and Shelah proved there is no generic
w-huge)! What can we do?
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Kunen proved in fact =3j : Vi42 < Vi42. This leaves space for
the following definitions:
Definition

I3 iff there exists A s.t. dj: V) < Vj;

12 iff there exists A s.t. 3j : Viy1 <1 Vigg;

I1 iff there exists A s.t. 3j : Viy1 < Vogg;

|0 For some A there exists a
E L(V/\Jrl) =< L(V)\+1), with crt(j) <A

With the "right" forcing, generic I1 or 10 at N, implies N, is
Joénsson:

Remark

If there exists j : V < M C V[G], j(R,) =Ry, j'R, € M, then X,
is Jénsson.
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Theorem (Foreman,1982)
Con(2-huge cardinal)—Con(X; is generic 2-huge cardinal and )J

Open Problem
What about Con(R; is generic 3-huge cardinal and ...)?
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How to define generic 10 (at R,,)?
Naive attempt

(GCH) 3j : L(P(Ry)) < (L(P(X,))VICL
Example

Remember: if j : V < M then M<<tU) C M.
If I is precipitous, then there exists j : V < M C V[G], with G.
But not always M<<t() C M, only when [ is saturated.

v
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Definition
Suppose GCH below X,,. We say that generic 10 holds at N, if there
exists a forcing notion P and a generic G such that:

in V[G] there exists j : L(P(R,)) < L(P(X))[G];

P e L(P(R,)) and in L(P(X,)) there exists 7 : P(R,,) — P;
NV — N(}J/[G];

every element of P(X,,)V[¢] has a name (coded) in P(R,,);

there is a P-term for HY"(R,,) and
JTHR) : H(Ry) < HY (%)

—

CI-ER CORRIS
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in V[G] there exists j : L(P(R,)) < L(P(X))[G];

P e L(P(R,)) and in L(P(X,)) there exists 7 : P(R,,) — P;
NV = nytel,

every element of P(X,,)V[¢] has a name (coded) in P(R,,);
there is a P-term for HY"(R,,) and

JTH®RL) - HRG) < HY (Ry).

Examples: P = Coll(X3, N»)
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Definition
Suppose GCH below X,,. We say that generic 10 holds at N, if there
exists a forcing notion P and a generic G such that:

in V[G] there exists j : L(P(R,)) < L(P(X))[G];

P e L(P(R,)) and in L(P(X,)) there exists 7 : P(R,,) — P;
NV — N(}J/[G];

every element of P(X,,)V[¢] has a name (coded) in P(R,,);

there is a P-term for HY"(R,,) and
JTHR) = H(Ry) < HY ().

—

CI-ER CORRIS

Examples: P = Coll(X3,N;), P = product of P, where
Pn = CO”(Nn+3, Nn+2).
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Definition
© =sup{a:3I1: PR,) - a, m€ L(P(N,))}.

Theorem
Suppose generic 10 at 8,,. Then in L(P(Ry)):
1. Ny41 is measurable (in fact w-strongly measurable);

2. © is weakly inaccessible;

3. © is limit of measurable cardinals.

15 / 21



Introduction Chapter | Chapter Il

Confront this with:
Theorem (Shelah) J

If N, is strong limit, then 2% < Ny
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Confront this with:
Theorem (Shelah) J

If R, is strong limit, then 2% < R, .

So:
e Either generic 10 is consistent, and then pcf-theory without
AC has some serious limits;
e or generic 10 is inconsistent, and that would put a shadow on
the consistency of 0.

16 / 21
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Having just N1 measurable is nothing new:
Theorem (Apter, 1985)

Suppose £ is 2*-supercompact, with A measurable. Then there is a
model of ZF+ N, 11 is measurable.

But the rest comes from the theory of AD:

Definition

Define D(\) as the following: in L(P(\)):
e AT is measurable;

e O is a weakly inaccessible limit of measurable cardinals.

17 /21
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When it does happens
Theorem

With enough large cardinals, L(R) F AD, and D(w) holds.
Theorem (Woodin)
10(A) — D(X).

N—  N—
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When it does not happen
For regular cardinals, with forcing one can kill AC, so it is not
interesting.

Theorem (Shelah, 1996)

If A has uncountable cofinality, then L(P()\)) E AC, therefore
=D(\).

y

Theorem

In the Mitchell-Steel core model, if X is singular, then L(P(\)) E AC,
therefore =D(\).

19 /21



Introduction Chapter | Chapter Il

Conjecture (Woodin)
In Ultimate L, internal /0(\) iff L(P(\) # AC J
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Conjecture (Woodin)
In Ultimate L, internal /0(\) iff L(P(\) # AC.

Open Problem
How "small* can be A\ (uncountable) if D())?

Open Problem
What is the consistency strength of D(\) with A uncountable?

20 /21



Introduction Chapter | Chapter Il

Thanks for your attention.
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