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Let’s introduce a new definition

• Chapter I: The Importance of Being Generic Rank-into Rank

(model-theoretic / combinatorial on the first ω cardinals)

• Chapter II: The Importance of Being Generic I0 (¬AC
combinatorics of P(ℵω)).
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Definition (Chang’s Conjecture, 1963)

Every model of type (ℵ2,ℵ1) (i.e., the universe has cardinality ℵ2
and there is a predicate of cardinality ℵ1) for a countable language
has an elementary submodel of type (ℵ1,ℵ0).

Notation: (ℵ2,ℵ1) � (ℵ1,ℵ0).

Pretty much, a relationship between ℵ2 and ℵ1 holds also between
ℵ1 and ℵ0 (not necessarily viceversa!).

Theorem (Silver, Donder, 1979)

Con((ℵ2,ℵ1) � (ℵ1,ℵ0))↔ Con(ω1-Erdös).

What about (ℵ3,ℵ2) � (ℵ2,ℵ1)? Or (ℵ3,ℵ2,ℵ1) � (ℵ2,ℵ1,ℵ0)?
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Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ

. This
implies <κM ⊆ M.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.
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Definition

Let j : V ≺ M with crt(j) = κ. We define the critical sequence
〈κ0, κ1, . . . 〉 as κ0 = κ and j(κn) = κn+1.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is n-huge iff there is a j : V ≺ M with
crt(j) = κ, κnM ⊆ M.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is ω-huge or Reinhardt iff there is
a j : V ≺ M with crt(j) = κ0, λM ⊆ M, with λ = supn∈ω κn.
Equivalently, if there is a j : V ≺ V , with κ = crt(j).

Theorem (Kunen, 1971)

There is no Reinhardt cardinal.
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Large cardinals are really large, but there is a trick to apply their
properties to small cardinals

.
Generic large cardinals are a “virtual” version of large cardinals.

Definition (”‘Generic measurable”’)

(Solovay) Let κ be a cardinal, I an ideal on P(κ). Then P(κ)/I is a
forcing notion. If G is generic for P(κ)/I , then G is a V -ultrafilter
on P(κ) and there exists j : V ≺ Ult(V ,G ).
(Jech, Prikry) I is precipitous iff Ult(V ,G ) is well-founded, and in
that case there exists j : V ≺ M ⊆ V [G ].

One can extend the definition to all the large cardinals above:
generic γ-supercompact, generic huge, generic n-huge
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Theorem (Laver)

Con(huge cardinal)→Con((ℵ3,ℵ2) � (ℵ2,ℵ1))

.

In fact, the Theorem above by is divided in two:

Theorem (Laver)

Con(huge cardinal)→Con(ℵ2 is generic huge cardinal and j(ℵ2) =
ℵ3).

Proposition

If j : V ≺ M ⊆ V [G ], M closed under ℵ3-sequences, crt(j) = ℵ2
and j(ℵ2) = ℵ3, then (ℵ3,ℵ2) � (ℵ2,ℵ1).
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In the same way

Proposition

If j : V ≺ M ⊆ V [G ], M closed under ℵn+1-sequences, crt(j) =
ℵ1 and j(ℵ1) = ℵ2, j(ℵ2) = ℵ3, . . . , then (ℵn+1, . . . ,ℵ2,ℵ1) �
(ℵn, . . . ,ℵ1,ℵ0).
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Definition (1962)

κ is Jónsson iff every structure for a countable language with domain
of cardinality κ has a proper elementary substructure with domain
of the same cardinality

.

Then ℵω is Jónsson if (. . . ,ℵ2,ℵ1)→ (. . . ,ℵ1,ℵ0):

Theorem (Silver)

ℵω is Jónsson iff there are kn ∈ {ℵm : m ∈ ω}, strictly increasing,
such that (. . . ,ℵk2 ,ℵk1)→ (. . . ,ℵk1 ,ℵk0)

Open Problem

What about Con(ℵω is Jónsson)?

There is no ω-huge (and Shelah proved there is no generic
ω-huge)! What can we do?
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Kunen proved in fact ¬∃j : Vλ+2 ≺ Vλ+2

. This leaves space for
the following definitions:

Definition

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : Vλ+1 ≺1 Vλ+1;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1;

I0 For some λ there exists a
j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ.

With the ”right“ forcing, generic I1 or I0 at ℵω implies ℵω is
Jónsson:
Remark

If there exists j : V ≺ M ⊆ V [G ], j(ℵω) = ℵω, j”ℵω ∈ M, then ℵω
is Jónsson.
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Disclaimer: it is still not clear how strong this is

:

Theorem (Foreman,1982)

Con(2-huge cardinal)→Con(ℵ1 is generic 2-huge cardinal and . . . ).

Open Problem

What about Con(ℵ1 is generic 3-huge cardinal and . . . )?
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How to define generic I0 (at ℵω)

?

Naive attempt

(GCH) ∃j : L(P(ℵω)) ≺ (L(P(ℵω))V [G ].

Example

Remember: if j : V ≺ M then M<crt(j) ⊆ M.
If I is precipitous, then there exists j : V ≺ M ⊆ V [G ], with G .
But not always M<crt(j) ⊆ M, only when I is saturated.
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Definition

Suppose GCH below ℵω. We say that generic I0 holds at ℵω if there
exists a forcing notion P and a generic G such that:

1. in V [G ] there exists j : L(P(ℵω)) ≺ L(P(ℵω))[G ];

2. P ∈ L(P(ℵω)) and in L(P(ℵω)) there exists π : P(ℵω) � P;

3. ℵVω = ℵV [G ]
ω ;

4. every element of P(ℵω)V [G ] has a name (coded) in P(ℵω);

5. there is a P-term for HV P
(ℵω) and

j � H(ℵω) : H(ℵω) ≺ HV P
(ℵω)

.

Examples: P = Coll(ℵ3,ℵ2), P = product of Pn, where
Pn = Coll(ℵn+3,ℵn+2).
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Definition

Θ = sup{α : ∃π : P(ℵω) � α, π ∈ L(P(ℵω))}

.

Theorem

Suppose generic I0 at ℵω. Then in L(P(ℵω)):

1. ℵω+1 is measurable (in fact ω-strongly measurable);

2. Θ is weakly inaccessible;

3. Θ is limit of measurable cardinals.
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Confront this with:
Theorem (Shelah)

If ℵω is strong limit, then 2ℵω < ℵω4

.

So:

• Either generic I0 is consistent, and then pcf-theory without
AC has some serious limits;

• or generic I0 is inconsistent, and that would put a shadow on
the consistency of I0.
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Having just ℵω+1 measurable is nothing new

:

Theorem (Apter, 1985)

Suppose κ is 2λ-supercompact, with λ measurable. Then there is a
model of ZF+ ℵω+1 is measurable.

But the rest comes from the theory of AD:

Definition

Define D(λ) as the following: in L(P(λ)):

• λ+ is measurable;

• Θ is a weakly inaccessible limit of measurable cardinals.
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When it does happens

Theorem

With enough large cardinals, L(R) � AD, and D(ω) holds.

Theorem (Woodin)

I 0(λ)→ D(λ).
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When it does not happen

For regular cardinals, with forcing one can kill AC, so it is not
interesting.

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then L(P(λ)) � AC, therefore
¬D(λ).

Theorem

In the Mitchell-Steel core model, if λ is singular, then L(P(λ)) � AC,
therefore ¬D(λ).
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Conjecture (Woodin)

In Ultimate L, internal I 0(λ) iff L(P(λ) 2 AC

.

Open Problem

How ”small“ can be λ (uncountable) if D(λ)?

Open Problem

What is the consistency strength of D(λ) with λ uncountable?
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Thanks for your attention.
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