Quando \aleph_{ω} è un potente grande cardinale (generico)

Vincenzo Dimonte

09 April 2015

Hausdorff, dopo aver definito il cardinale debolmente inaccessibile, disse

Hausdorff, dopo aver definito il cardinale debolmente inaccessibile, disse:

Quote

Il più piccolo fra di loro ha una grandezza così esorbitante [exorbitanten Grösse] che difficilmente verrà preso in considerazione per gli scopi consueti [üblich] della teoria degli insiemi

Hausdorff, dopo aver definito il cardinale debolmente inaccessibile, disse:

Quote

Il più piccolo fra di loro ha una grandezza così esorbitante [exorbitanten Grösse] che difficilmente verrà preso in considerazione per gli scopi consueti [üblich] della teoria degli insiemi.

Definizione

 κ è un cardinale *inaccessibile* se è regolare e strong limit

Hausdorff, dopo aver definito il cardinale debolmente inaccessibile, disse:

Quote

Il più piccolo fra di loro ha una grandezza così esorbitante [exorbitanten Grösse] che difficilmente verrà preso in considerazione per gli scopi consueti [üblich] della teoria degli insiemi.

Definizione

 κ è un cardinale *inaccessibile* se è regolare e strong limit.

Osservazione

Se κ è inaccessibile, allora $\aleph_{\kappa} = \kappa$.

 κ è un cardinale *Mahlo* se l'insieme di cardinali inaccessibili sotto di esso è stazionario (implica che ci sono κ inaccessibili sotto di esso)

 κ è un cardinale *Mahlo* se l'insieme di cardinali inaccessibili sotto di esso è stazionario (implica che ci sono κ inaccessibili sotto di esso).

Definizione

 κ è un cardinale *misurabile* se esiste $j: V \prec M \subseteq V$ e κ è il punto critico di j

 κ è un cardinale *Mahlo* se l'insieme di cardinali inaccessibili sotto di esso è stazionario (implica che ci sono κ inaccessibili sotto di esso).

Definizione

 κ è un cardinale *misurabile* se esiste $j: V \prec M \subseteq V$ e κ è il punto critico di j.

Ovvero, j è iniettiva, per ogni formula φ e per ogni insieme a, $V \vDash \varphi(a)$ sse $M \vDash \varphi(j(a))$ e κ è il più piccolo ordinale tale che $j(\kappa) > \kappa$.

 κ è un cardinale *huge* se esiste $j:V\prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(\kappa)$

 κ è un cardinale *huge* se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(\kappa)$.

Definizione (Kunen, 1972)

 κ è un cardinale 2-huge se esiste $j:V\prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(j(\kappa))$

 κ è un cardinale *huge* se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(\kappa)$.

Definizione (Kunen, 1972)

 κ è un cardinale 2-huge se esiste $j:V\prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(j(\kappa))$.

Definition (Reinhardt, 1970)

 κ è un cardinale ω -huge o Reinhardt se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $\lambda = \sup_{n \in \omega} j^n(\kappa)$

 κ è un cardinale *huge* se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(\kappa)$.

Definizione (Kunen, 1972)

 κ è un cardinale 2-huge se esiste $j:V\prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(j(\kappa))$.

Definition (Reinhardt, 1970)

 κ è un cardinale ω -huge o Reinhardt se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $\lambda = \sup_{n \in \omega} j^n(\kappa)$. Equivalentemente, $j: V \prec V$

 κ è un cardinale *huge* se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(\kappa)$.

Definizione (Kunen, 1972)

 κ è un cardinale 2-huge se esiste $j:V\prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $j(j(\kappa))$.

Definition (Reinhardt, 1970)

 κ è un cardinale ω -huge o Reinhardt se esiste $j: V \prec M$, κ è il punto critico di j e M è chiuso per sequenze lunghe $\lambda = \sup_{n \in \omega} j^n(\kappa)$. Equivalentemente, $j: V \prec V$.

Teorema (Kunen, 1971)

Non esistono cardinali Reinhardt.

Definition

(Solovay) Sia κ un cardinale, I un ideale su $\mathcal{P}(\kappa)$. Allora $\mathcal{P}(\kappa)/I$ è un forcing

Definition

(Solovay) Sia κ un cardinale, I un ideale su $\mathcal{P}(\kappa)$. Allora $\mathcal{P}(\kappa)/I$ è un forcing. Se G è generico per $\mathcal{P}(\kappa)/I$, allora G è un V-ultrafiltro su $\mathcal{P}(\kappa)$ ed esiste $j:V \prec \mathsf{Ult}(V,G)$

Definition

(Solovay) Sia κ un cardinale, I un ideale su $\mathcal{P}(\kappa)$. Allora $\mathcal{P}(\kappa)/I$ è un forcing. Se G è generico per $\mathcal{P}(\kappa)/I$, allora G è un V-ultrafiltro su $\mathcal{P}(\kappa)$ ed esiste $j:V \prec \mathsf{Ult}(V,G)$.

(Jech, Prikry) I è precipitevole sse Ult(V, G) è ben fondato, e in quel caso $j: V \prec M \subseteq V[G]$

Definition

(Solovay) Sia κ un cardinale, I un ideale su $\mathcal{P}(\kappa)$. Allora $\mathcal{P}(\kappa)/I$ è un forcing. Se G è generico per $\mathcal{P}(\kappa)/I$, allora G è un V-ultrafiltro su $\mathcal{P}(\kappa)$ ed esiste $j:V \prec \mathsf{Ult}(V,G)$.

(Jech, Prikry) I è precipitevole sse Ult(V, G) è ben fondato, e in quel caso $j: V \prec M \subseteq V[G]$.

Quindi κ è un cardinale misurabile "generico"

Definition

(Solovay) Sia κ un cardinale, I un ideale su $\mathcal{P}(\kappa)$. Allora $\mathcal{P}(\kappa)/I$ è un forcing. Se G è generico per $\mathcal{P}(\kappa)/I$, allora G è un V-ultrafiltro su $\mathcal{P}(\kappa)$ ed esiste $j:V \prec \mathsf{Ult}(V,G)$.

(Jech, Prikry) I è precipitevole sse Ult(V, G) è ben fondato, e in quel caso $j: V \prec M \subseteq V[G]$.

Quindi κ è un cardinale misurabile "generico".

Allo stesso modo si possono definire huge generico, *n*-huge generico, supercompatto generico. . .

Ogni modello di tipo (\aleph_2, \aleph_1) (ovvero, l'universo ha cardinalità \aleph_2 ed ha un predicato di cardinalità \aleph_1) per un linguaggio numerabile ha un sottomodello elementare di tipo (\aleph_1, \aleph_0) .

Ogni modello di tipo (\aleph_2, \aleph_1) (ovvero, l'universo ha cardinalità \aleph_2 ed ha un predicato di cardinalità \aleph_1) per un linguaggio numerabile ha un sottomodello elementare di tipo (\aleph_1, \aleph_0) .

Notazione: $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$

Ogni modello di tipo (\aleph_2, \aleph_1) (ovvero, l'universo ha cardinalità \aleph_2 ed ha un predicato di cardinalità \aleph_1) per un linguaggio numerabile ha un sottomodello elementare di tipo (\aleph_1, \aleph_0) .

Notazione: $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$.

Osservazione

CC implica la non esistenza di un albero di Kurepa

Ogni modello di tipo (\aleph_2, \aleph_1) (ovvero, l'universo ha cardinalità \aleph_2 ed ha un predicato di cardinalità \aleph_1) per un linguaggio numerabile ha un sottomodello elementare di tipo (\aleph_1, \aleph_0) .

Notazione: $(\aleph_2, \aleph_1) \rightarrow (\aleph_1, \aleph_0)$.

Osservazione

CC implica la non esistenza di un albero di Kurepa.

Vi sono estensioni di CC: $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$, oppure $(\aleph_3, \aleph_2, \aleph_1) \twoheadrightarrow (\aleph_2, \aleph_1, \aleph_0)$.

 $\mathsf{Con}(\mathsf{huge}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1))$

$$\mathsf{Con}(\mathsf{huge}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)).$$

In effetti, il teorema precedente si divide in due:

$$\mathsf{Con}(\mathsf{huge}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)).$$

In effetti, il teorema precedente si divide in due: :

Teorema (Laver)

 $\mathsf{Con}(\mathsf{huge}\;\mathsf{cardinal}){ o}\mathsf{Con}(\aleph_2\;\check{\mathsf{e}}\;\mathsf{huge}\;\mathsf{generico}\;\mathsf{e}\;j(\aleph_2)=\aleph_3)$

 $\mathsf{Con}(\mathsf{huge}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)).$

In effetti, il teorema precedente si divide in due: :

Teorema (Laver)

Con(huge cardinal) \rightarrow Con(\aleph_2 è huge generico e $j(\aleph_2) = \aleph_3$).

Proposizione

Se $j: V \prec M \subseteq V[G]$, M chiuso sotto \aleph_3 -sequenze, $\operatorname{crt}(j) = \aleph_2$ e $j(\aleph_2) = \aleph_3$, allora $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$

 $\mathsf{Con}(\mathsf{huge}) {\rightarrow} \mathsf{Con}((\aleph_3,\aleph_2) \twoheadrightarrow (\aleph_2,\aleph_1)).$

In effetti, il teorema precedente si divide in due: :

Teorema (Laver)

Con(huge cardinal) \rightarrow Con(\aleph_2 è huge generico e $j(\aleph_2) = \aleph_3$).

Proposizione

Se $j: V \prec M \subseteq V[G]$, M chiuso sotto \aleph_3 -sequenze, $crt(j) = \aleph_2$ e $j(\aleph_2) = \aleph_3$, allora $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)$.

La proposizione si può generalizzare:

Proposizione

Se $j: V \prec M \subseteq V[G]$, M è chiuso sotto \aleph_{n+1} -sequenze, $\operatorname{crt}(j) = \aleph_1$ e $j(\aleph_1) = \aleph_2$, $j(\aleph_2) = \aleph_3, \ldots$, allora $(\aleph_{n+1}, \ldots, \aleph_2, \aleph_1) \twoheadrightarrow (\aleph_n, \ldots, \aleph_1, \aleph_0)$.

 κ è un cardinale *Jónsson* sse ogni struttura in un linguaggio numerabile con dominio di cardinalità κ ha una sottostruttura elementare propria con dominio della stessa cardinalità

 κ è un cardinale *Jónsson* sse ogni struttura in un linguaggio numerabile con dominio di cardinalità κ ha una sottostruttura elementare propria con dominio della stessa cardinalità.

Teorema (Silver)

Se $(\ldots, \aleph_2, \aleph_1) \to (\ldots, \aleph_1, \aleph_0)$ allora \aleph_ω è Jónsson

 κ è un cardinale *Jónsson* sse ogni struttura in un linguaggio numerabile con dominio di cardinalità κ ha una sottostruttura elementare propria con dominio della stessa cardinalità.

Teorema (Silver)

Se
$$(\ldots, \aleph_2, \aleph_1) \to (\ldots, \aleph_1, \aleph_0)$$
 allora \aleph_ω è Jónsson.

La consistenza di \aleph_{ω} Jónsson è un problema rimasto aperto da decenni.

Kunen ha dimostrato $\neg \exists j : V_{\lambda+2} \prec V_{\lambda+2}$

Kunen ha dimostrato $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Kunen ha dimostrato $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

13 sse esiste λ tale che $\exists j : V_{\lambda} \prec V_{\lambda}$;

Kunen ha dimostrato $\neg \exists j : V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;

Kunen ha dimostrato $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;
- I1 sse esiste λ tale che $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;

Kunen ha dimostrato $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;
- I1 sse esiste λ tale che $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 sse esiste λ tale che
 - $\exists j : L(V_{\lambda+1}) \prec L(V_{\lambda+1}), \text{ con } crt(j) < \lambda$

Kunen ha dimostrato $\neg \exists j: V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j: V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;
- I1 sse esiste λ tale che $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 sse esiste λ tale che $\exists j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, con $crt(j) < \lambda$.

Nella giusta situazione, \aleph_ω I1 o I0 generico implica \aleph_ω Jónsson

Kunen ha dimostrato $\neg \exists j : V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j: V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;
- I1 sse esiste λ tale che $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 sse esiste λ tale che $\exists j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, con $crt(j) < \lambda$.

Nella giusta situazione, \aleph_ω I1 o I0 generico implica \aleph_ω Jónsson. Peccato che non sia chiaro se I0 generico sia consistente

Kunen ha dimostrato $\neg \exists j : V_{\lambda+2} \prec V_{\lambda+2}$. Ciò lascia un po' di spazio aperto:

Definition

- 13 sse esiste λ tale che $\exists j: V_{\lambda} \prec V_{\lambda}$;
- 12 sse esiste λ tale che $\exists j : V \prec_1 V_{\lambda+1}$;
- I1 sse esiste λ tale che $\exists j: V_{\lambda+1} \prec V_{\lambda+1}$;
- 10 sse esiste λ tale che $\exists j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, con $crt(j) < \lambda$.

Nella giusta situazione, \aleph_{ω} I1 o I0 generico implica \aleph_{ω} Jónsson. Peccato che non sia chiaro se I0 generico sia consistente.

Teorema (Foreman, 1982)

 $Con(2-huge) \rightarrow Con(\aleph_1 \text{ è un cardinale } 2-huge \text{ e } \dots).$

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}\$

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}.$

Teorema (GCH)

Supponiamo \aleph_ω 10 generico

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}.$

Teorema (GCH)

Supponiamo \aleph_{ω} I0 generico. Allora in $L(\mathcal{P}(\aleph_{\omega}))$

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}.$

Teorema (GCH)

Supponiamo \aleph_{ω} I0 generico. Allora in $L(\mathcal{P}(\aleph_{\omega}))$:

1. $\aleph_{\omega+1}$ è misurabile (di più, ω -fortemente misurabile)

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}.$

Teorema (GCH)

Supponiamo \aleph_{ω} I0 generico. Allora in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ è misurabile (di più, ω -fortemente misurabile);
- 2. Θ è debolmente inaccessibile (di più, è "inaccessibile" nel senso di ¬AC)

Definition

 $\Theta = \sup\{\alpha : \exists \pi : \mathcal{P}(\aleph_{\omega}) \twoheadrightarrow \alpha, \ \pi \in L(\mathcal{P}(\aleph_{\omega}))\}.$

Teorema (GCH)

Supponiamo \aleph_{ω} I0 generico. Allora in $L(\mathcal{P}(\aleph_{\omega}))$:

- 1. $\aleph_{\omega+1}$ è misurabile (di più, ω -fortemente misurabile);
- 2. Θ è debolmente inaccessibile (di più, è "inaccessibile" nel senso di ¬AC);
- 3. ⊖ è limite di cardinali misurabili.

Teorema (Shelah)

Se \aleph_ω è strong limit, allora $2^{\aleph_\omega} < \aleph_{\omega_4}$

Teorema (Shelah)

Se \aleph_{ω} è strong limit, allora $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

Quindi in ZFC la grandezza dell'insieme potenza è molto limitata

Teorema (Shelah)

Se \aleph_{ω} è strong limit, allora $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

Quindi in ZFC la grandezza dell'insieme potenza è molto limitata. Ma I0 generico dà un esempio in ZF in cui la grandezza è spropositata

Teorema (Shelah)

Se \aleph_{ω} è strong limit, allora $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

Quindi in ZFC la grandezza dell'insieme potenza è molto limitata. Ma I0 generico dà un esempio in ZF in cui la grandezza è spropositata.

Ci sono dunque due opzioni:

- I0 generico è consistente, dunque la teoria pcf senza AC ha dei seri limiti di applicazione;
- 10 generico è inconsistente; questo potrebbe mettere in dubbio la consistenza di 10 stesso.

Teorema

Sotto grandi cardinali, $L(\mathbb{R}) \vDash \mathsf{AD}$, e vale $D(\omega)$

Teorema

Sotto grandi cardinali, $L(\mathbb{R}) \vDash AD$, e vale $D(\omega)$.

Teorema (Woodin)

$$I0(\lambda) \rightarrow D(\lambda)$$

Teorema

Sotto grandi cardinali, $L(\mathbb{R}) \vDash AD$, e vale $D(\omega)$.

Teorema (Woodin)

 $I0(\lambda) \rightarrow D(\lambda)$.

Ma

Osservazione

Se λ è regolare, è facile forzare $L(\mathcal{P}(\lambda)) \vDash \neg AC$, quindi $\neg D(\lambda)$

Teorema

Sotto grandi cardinali, $L(\mathbb{R}) \vDash AD$, e vale $D(\omega)$.

Teorema (Woodin)

 $I0(\lambda) \rightarrow D(\lambda)$.

Ma

Osservazione

Se λ è regolare, è facile forzare $L(\mathcal{P}(\lambda)) \vDash \neg AC$, quindi $\neg D(\lambda)$.

Teorema (Shelah, 1996)

Se λ ha cofinalità non numerabile, allora $L(\mathcal{P}(\lambda)) \models AC$, quindi $\neg D(\lambda)$

Teorema

Sotto grandi cardinali, $L(\mathbb{R}) \vDash AD$, e vale $D(\omega)$.

Teorema (Woodin)

 $I0(\lambda) \rightarrow D(\lambda)$.

Ma

Osservazione

Se λ è regolare, è facile forzare $L(\mathcal{P}(\lambda)) \vDash \neg AC$, quindi $\neg D(\lambda)$.

Teorema (Shelah, 1996)

Se λ ha cofinalità non numerabile, allora $L(\mathcal{P}(\lambda)) \models AC$, quindi $\neg D(\lambda)$.

Teorema

Nel core model di Mitchell-Steel, se λ è singolare, allora $L(\mathcal{P}(\lambda)) \models AC$, quindi $\neg D(\lambda)$.

Riassumendo:

Problema

Qual è la consistenza di \aleph_ω Jónsson?

Riassumendo:

Problema

Qual è la consistenza di \aleph_{ω} Jónsson?

Problema

Dobbiamo rinunciare a parte della teoria pcf senza AC oppure (forse) a 10?

Riassumendo:

Problema

Qual è la consistenza di \aleph_{ω} Jónsson?

Problema

Dobbiamo rinunciare a parte della teoria pcf senza AC oppure (forse) a 10?

Problema

Quando $L(\mathcal{P}(\lambda)) \vDash \neg AC$? Quando $L(\mathcal{P}(\lambda)) \vDash D(\lambda)$?

Grazie per l'attenzione.