
Descriptive set theory and large cardinals

1. Vorlesung

The aim of these lectures is to prove some results about the connection
between Descriptive Set Theory and Large Cardinals, more specifically about
how the Axiom of Determinacy implies the consistency of large cardinals.
The structure of the lectures is narrative: there is the main plot, that goes
straight to the theorems that we want to proof, and there are going to be
flashbacks, i.e., introductions to other topics (for example analytic and co-
analytic sets, inner models...) that are going to be useful for the main plot
but that can be also read by themselves.

1 AD implies large cardinals

First a quick notation. In the following, (a0, . . . ) will denote a sequence (finite
or infinite), while 〈a0, . . . 〉 will denote the recursive coding, so for example if
m,n ∈ ω then (m,n) ∈ ω2 and 〈m,n〉 ∈ ω. When it is not obvious, we write
at the bottom of the parenthesis what kind of object is coded (for example
〈s, t〉ω ∈ ω).

Let X ⊆ ωω. We associate with X the following game, GX :
I a0 a2

. . .
II a1 a3

The idea is that in this game there are two players, Player I and Player
II, and they take turns in playing elements of ω, so I plays a0 ∈ ω, II plays
a1 ∈ ω and so on. We say that I wins iff (a0, a1, . . . ) ∈ X.

Note that, provided a suitable codification in natural numbers, every
game in “real life” that does not use randomness is such a game. Typical
example: chess. One can label every legal dispositions of pieces with a num-
ber, and then X is the set of all the successions of moves that end with the
victory of white, or where black makes an illegal move.

A strategy for I is a map ϕ : ω<ω → ω. Its interpretation is that it
suggests to Player I what to play, given a partial run of II, so in the example
above ϕ(∅) = a0, ϕ(a1) = a2, ϕ(a1, a3) = a4 and so on. Similarly one can
define a strategy for II. We can already note that strategies can be coded as
elements of ωω: the code for ϕ is ϕ′(〈n, 〈a1, . . . , an〉〉) = ϕ(a1, . . . , an), so can
always think of strategies as reals (this is to be remembered, as in the future
we are going to do a lot of complexity calculations).

A strategy for I is winning iff for every run of the game where I follows
the strategy, I wins. We denote a run of such play as ϕ ∗ x, where ϕ is the
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strategy for I and x ∈ ωω is (a1, a3, . . . ). In other words, ϕ is winning for I iff
∀x ∈ ωω ϕ ∗ x ∈ X. Similarly for a winning strategy for II. A set X is called
determined if one of the two players has a winning strategy. Note that it is
not possible for both to have a winning strategy.

We are going to ask for some flexibility in the definition of a game, per-
mitting the introduction of rules. For example, we can ask for all the moves
for I to be even, or for I to win just for (a0, a2, . . . ) to be in X, etc. The
idea is that is always possible to reduce these games to game above, with the
definition of an appropriate X. We are going to take this for granted for the
rest of the lectures.

Proposition 1.1 (ZFC). There is a set that is not determined.

Proof. Let 〈σα : α < 2ℵ0〉 be an enumeration of the strategies for I, and
let 〈τα : α < 2ℵ0〉 be an enumeration of the strategies for II. We build by
induction X = {xα : α < 2ℵ0} and Y = {yα : α < 2ℵ0}: Suppose we have
already defined {xξ : ξ < α} and {yξ : ξ < α}. Then |{xξ : ξ < α}| < 2ℵ0

and |{σα ∗ b : b ∈ ωω}| = 2ℵ0 , so there exists yα that is in the second set and
not in the first, and viceversa for xα.

Consider the game GX . Now, X and Y are disjoint, and for any α < 2ℵ0

there exists b ∈ ωω such that σα ∗ b = yα ∈ Y , so for any α < 2ℵ0 σα ∗ b /∈ X,
and therefore no strategy is winning for I. Viceversa, for all α < 2ℵ0 there
exists a ∈ ωω such that a∗τα = xα ∈ X, and therefore no strategy is winning
for I.

This proof makes heavy use of the “non-costructive” Axiom of Choice,
and therefore it provides a “non-definable” non-determined set. On the other
hand, “simply definable” sets are determined.

Theorem 1.2 (ZFC, Gale-Stewart). Every closed set is determined.

Proof. Let X be a closed set, we play the game GX , and assume that II has
no winning strategy.

Giving a position p = (a0, a1, . . . , a2n−1) that ends with a move from II,
we say that p is not losing for I if II has no winning strategy from then on.
So ∅ is not losing for I. So if p is not losing for I, there is a a2n such that for
any a2n+1 the position p a (a2n, a2n+1) is not losing for I. With this we build
a strategy for I: every time the strategy suggests a move that will guarantee
I to pass from a not losing position to another.

We claim that the strategy is winning. Let (a0, a1, . . . ) be a run of the
game where I follows the strategy. If it is not in X, then it is in ωω \X, that
is open in ωω, so there is a k ∈ ω such that N(a0,...,a2k−1) ⊆ ωω \X. But then
(a0, . . . , a2k−1) is a losing position for I, contradiction.
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Most of the “real life” games, if not all, are closed, because they are are
of the kind: if the game reaches this state then the game is over and I or II
win. This means that the payoff set is the set of all the runs that start with
a winning state, for which there are finite ones, so the payoff is a finite union
of clopen sets, so it is clopen.

It is easy to see that if X is determined, then ωω \X is determined.

Theorem 1.3 (Martin). Every Borel set is determined.

We are now going to introduce another game. the Perfect Set game, to
show that determined games have “nice” properties.

Definition 1.4. We say that a set X ⊆ ωω contains a perfect set iff there
exists a continuous embedding from 2ω to X.

An embedding is an injective map that is continuous whose inverse is also
continuous. Note that 2ω is compact, therefore every injective map whose
inverse is continuous is an embedding.

Note that if X contains a perfect set, then |X| = 2ℵ0 . So if the continuum
hypothesis does not hold, then the set that goes against it cannot contain a
perfect set. On the other hand, if every set is countable or contains a perfect
set, then the continuum hypothesis holds.

Given X ⊆ ωω, consider the following game:
I (s0

0, s
1
0) (s0

1, s
1
1)

. . .
II i0 i1

where sin ∈ ω<ω, sin 6= ∅, Ns0n
∩ Ns1n

= ∅ and in ∈ {0, 1}. Given a run of

this game, consider x = si00 a si11 a . . . . Then I wins iff x ∈ X.
To understand better this game, ω<ω should be seen as a tree: the root of

the tree is the empty sequence, that then branch into ω-th different successors
(one for any 1-sequence), and each one of them branch into other ω-th succes-
sors (one for any 2-sequence that start with a fixed number), etc. Branches
of this tree are then reals, elements of ωω. The game asks I to propose two
finite branches of this tree, and then II choses one of the two. I then propose
two different extensions of the branch chosen by II, and II once again choses
one of the two extensions. In the end an infinite branch will appear, and I
wins if it is in X.

It is clear that if X contains a perfect set, then I has a winning strategy
in this game: let f : 2ℵ0 → X be a continuous embedding. Let s ∈ 2<ω. As
f is continuous, there is a t ∈ ω<ω such that f ′′Ns ⊆ Nt. Let F (s) = t, with
t minimal. Then the strategy is as this: I as first move plays (F (0), F (1)).
Suppose that II plays 0. Then F (00), F (01) w F (0), and let I play (t01, t

1
1)
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such that F (0) a t01 = F (00) and F (0) a t11 = F (01). And so on. The moves
on 1 then never leave X, and the final run will be in X. On the other hand
if I has a winning strategy σ, this clearly induces a continuous embedding
from 2ℵ0 to X: just let f(i0, . . . , in, . . . ) = σ(i0) a σ(i0, i1) a . . . . The initial
segments of the image depend only on the initial segments of the element in
the domain, therefore f is continuous, and since σ is winning f [2ℵ0 ] ⊆ X.

In other words, X contains a perfect set iff I has a winning strategy in
the game.

Theorem 1.5. Every uncountable determined set contains a perfect set.

Proof. It remains to prove that if there is a winning strategy for II, then
X is countable. Let σ be a winning strategy for II. Given x ∈ X, call a
position p of length 2n good for x if it has been played according to σ and
x ∈ N

s
i0
0 a···as

in−1
n−1

. By convention, ∅ is always good for x. If every good

position for x had a proper extension that is good for x, then there would
be a run that follows σ but that produces x, that is in X, and therefore I
would win, contradiction. So for any x ∈ X there is a px that is maximal and
good for x. Let x ∈ X, define Apx as the set of y such that px = py. Thus
X ⊆

⋃
x∈X Apx . Now, suppose that x 6= y ∈ Apx . Then I can play (s0

n, s
1
n)

such that si00 a · · · a s
in−1

n−1 a s0
n v x and si00 a · · · a s

in−1

n−1 a s1
n v y, and II is

forced to decide one of the two, contradicting the fact that px was maximal
for both, so the strategy would make II play something out of x and y. So
Apx = {x} and |X| ≤ |{positions}| = ℵ0.

We are now introducing the main axiom of this series of lectures:

Definition 1.6. Axiom of Determinacy: (AD) Every set is determined.

By Proposition ?? AD cannot be added to ZFC, as it will produce an
inconsistency. But we can consider it in addition to ZF: without the Ax-
iom of Choice, there is less possibility to create “complicated” and “non-
constructive” sets, therefore it becomes a feasible axiom, that can bring order
to the universe:

Theorem 1.7 (ZF+AD). All sets are Lebesgue Measurable, have the Baire
property and contain a perfect set.

Therefore this theory is as close as possible to solve the continuum hypot-
hesis: the only obstacle is that AD is incompatible with a well-ordering of the
reals, therefore 2ℵ0 is not a cardinal number. Also, some amount of choice
remains:
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Definition 1.8 (Weak forms of choice). DC: ∀X ∀R ⊆ X × X ∃f : ω →
X ∀n ∈ ω f(n)Rf(n+ 1).

ACω: For any 〈An : n ∈ ω〉 such that An 6= ∅ there exists f : ω → ωω

such that f(n) ∈ An.
DC(R): ∀X ⊆ ωω ∀R ⊆ X ×X ∃f : ω → X ∀n ∈ ω f(n)Rf(n+ 1).
ACω(R): For any 〈An : n ∈ ω〉 such that An ⊆ ωω \ {∅} there exists

f : ω → ωω such that f(n) ∈ An.

The first one is called Principle of Dependent Choice. DC implies ACω

and DC(R), and of course ACω implies ACω(R).

Theorem 1.9 (ZF+AD). ACω(R) holds.

Proof. Let 〈An : n ∈ ω〉 be such that An ⊆ ωω, all non-empty. Consider the

game
I x0 x1

. . .
II y0 y1

where I wins iff y = (y0, y1, . . . ) /∈ Ax0 . Of course, as the An’s are not
empty, Player I cannot win, so II has a winning strategy. Let τ be it. Then
the function f(n) = (n, 0, 0, . . . ) ∗ τ is a choice function for 〈An : n ∈ ω〉.

One can ask if ZF+AD implies stronger forms of choice. It turns out that
DC is independent from AD:

Theorem 1.10 (Kechris). Con(ZF+AD) implies Con(ZF+AD+DC)

Theorem 1.11 (Woodin). Con(ZF+AD) implies Con(ZF+AD+¬ACω)

It is still an open question whether AD implies a local form of DC with
subsets of reals.

The fact that a basic form of choice is compatible with AD suggests
us that some basic results of ZFC are going to hold also on ZF+AD. For
example: is ω1 regular? In ZFC the proof is like this: Let 〈αn : n < ω〉 such
that αn < ω1 for any n < ω. Use AC to fix for any n < ω a fn : ω → αn
bijection, and then define F : ω × ω → ω1 as F (n,m) = fn(m). It is a
surjection, contradiction. Here choice is used on a countable sequence of
“small” sets. If only there could be a way to code countable ordinals as
subsets of reals, maybe we could use ACω(R) instead...

——–
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2 First flashback: Analytic and Co-analytic

sets

We remind the “classic” topology on ωω: A set A ⊆ ωω is clopen iff there
exists s ∈ ω<ω such that A = Ns = {x ∈ ωω : s v x}. Then open sets are
all the arbitrary unions of clopen sets, and closed sets are complementaries
of open sets. The Borel sets are those sets in the σ-algebra generated by
the open sets. In current times Descriptive Set Theory has taken two pretty
distinct directions: on one hand the study of Borel sets, therefore of “simply
definable” sets, very close to other branch of mathematics, and many times
worried about the exact complexity of sets and problems. On the other hand
the study of projective sets, therefore of “complexely definable” sets, very
connected to the Axiom of Determinacy and inner model theory. We are
going to focus on this second direction, but without going too far on the
complexity, so we are dealing mostly with analytic and co-analytic sets.

Definition 2.1. A set X ⊆ ωω is Σ1
1 if there exists a recursive set R ⊆⋃

n∈ω(ωn × ωn) (or, equivalently, defined in Vω) such that for all x ∈ ωω

x ∈ X iff ∃y ∈ ωω∀n ∈ ωR(x � n, y � n).
For any a ∈ ωω, a set X ⊆ ωω is Σ1

1(a) if there exists a set R ⊆
⋃
n∈ω(ωn×

ωn) recursive in a (or, equivalently, defined in (Vω, a)) such that for all x ∈ ωω
x ∈ X iff ∃y ∈ ωω∀n ∈ ωR(x � n, y � n).

For any a ∈ ωω, a set X ⊆ ωω is Π1
1(a) if it is the complement of a Σ1

1(a)
set.

A set X ⊆ ωω is analytic, or Σ1
1, if it is Σ1

1(a) for some a ∈ ωω. It is
co-analytic, or Π1

1, if it is Π1
1(a) for some a ∈ ωω.

So Σ1
1 sets are those that are projections of recursive sets, and Π1

1 are
their complement. Also, Σ1

1 are those that are projections of closed sets,
and Π1

1 are their complement. This is the start of another hierarchy, the
projective hierarchy, where at each step we alternately take projections and
complements. This hierarchy is above the Borel hierarchy:

Theorem 2.2. Borel sets are exactly those that are analytic and co-analytic.

Lemma 2.3. If A,B are Σ1
1(a), then so are ∃xA, A∧B, A∨B, ∃mA, ∀mA.

If A,B are Π1
1(a), then so are ∀xA, A ∧B, A ∨B, ∃mA, ∀mA.

Proof. The second part is immediate from the first. The main point is that
it is possible to define a recursive coupling 〈·, ·〉 : ωω × ωω → ωω and also a
recursive coupling 〈·, ·〉 : ω × ωω → ωω, and this will permit to contract the
quantifiers in the definitions. We see the first case, and leave the other for
exercise.
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So let A be Σ1
1(a), defined via a relation R recursive in a. So we have that

(x, y) ∈ A iff ∃z∀n(x � n, y � n, z � n) ∈ R. So y ∈ ∃A iff ∃x∃z∀n(x � n, y �
n, z � n) ∈ R. Define (b)0 = (〈c, d〉)0 = c and (b)1 = (〈c, d〉)1 = d. Then
y ∈ ∃A iff ∃u∀n((u)0 � n, y � n, (u)1 � n) ∈ R. Now define R′ as (s, t) ∈ R′
iff ((s)0, t, (s)1) ∈ R. Then R′ is recursive, and it is a viable witness for the
analiticity of ∃A.

The case for conjuctions and disjunctions uses the same coupling trick,
and the fact that conjunctions and disjunctions of recursive relations is re-
cursive. The case ∃m∃x is still done using the recursive coupling trick.

There is a handy equivalent definition for co-analytic sets:

Theorem 2.4. Every Σ1
1(a) a set is the projection of [T ], where T is a tree

recursive in a. Therefore a set C is Π1
1(a) iff there exists a tree T ⊆ (ω×ω)<ω

recursive in a such that for any x ∈ ωω, x ∈ C iff T (x) = {s ∈ ω<ω : ∃n ∈
ω(x � n, s) ∈ T} is well-founded.

Proof. We clarify the definitions of the objects above. A tree on ω × ω is a
subset of (ω×ω)<ω that is closed under initial segments. We say that a tree
is well-founded if it does not have infinite branches.

Now, ωω \ C is Σ1
1(a), so let R be the relation recursive in a that defines

ωω \C. Define T = {(s, t) : ∃x, y ∈ ωω s v x, t v y, ∀n ∈ ω R(x � n, y � n)}.
It is recursive in a. Now, ωω \ C = {x : ∃y(x, y) ∈ [T ]}, and if (x, y) ∈ [T ]
then y is a branch of [T (x)]. So x ∈ ωω \ C iff T (x) is a branch iff T (x) is
not well-founded.

Lemma 2.5. The counter-image by a continuous function of a Σ1
1 set is a

Σ1
1 set.

Proof. Let f : ωω → ωω a continuous function. Then for any s ∈ ω<ω there
is a t ∈ ω<ω such that f [Nt] ⊆ Ns. Let F (s) be such a t. Note that if
s1 w s2 then F (s1) w F (s2), and if for all n ∈ ω, F (sn) = z � n, then
f−1(

⋃
n∈ω sn) = z.

Let A be an analytic set, the projection of [T ], where T is a tree on ω×ω.
So A = {x : ∃y ∀n (x � n, y � n) ∈ T}. Consider now F [T ] = {(F (s), F (t)) :
(s, t) ∈ T}. Then {z : ∃y ∀n (z � n, y � n) ∈ F [T ]} = {z : ∃y ∀n ∃(s, t) ∈
T F (s) = z � n F (t) = y � n} = {f−1(x) : ∃y ∀n (x � n, y � n) ∈ T} =
f−1[A], so f−1[A] is analytic.

Lemma 2.6. There is an analytic set that is not co-analytic. And therefore
there is a co-analytic set that is not analytic.
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Proof. Let U be the tree on ω × ω × ω defined as (s, t, u) ∈ U iff lh(s) =
lh(t) = lh(u), {(s′, t′) ∈ ω<ω × ω<ω : u(〈s′, t′〉ω) = 0} is a tree and for any
i < ω such that 〈s � i, t � i〉ω < lh(u), then u(〈s � i, t � i〉ω) = 0.

We claim that for all A ⊆ ωω, A is Σ1
1 iff there is a z ∈ ωω such that A

is the projection of [U(z)], where z is the third coordinate. Let A be Σ1
1.

Then there is a T tree on ω × ω such that A is the projection of [T ]. Let
z ∈ ωω, where z(n) = 0 iff there is (s, t) ∈ T such that 〈s, t〉ω = n. Then
[U(z)] = {(x, y) : ∀n (x � n, y � n, z � n) ∈ U} = {(x, y) : ∀n ∈ ω ∀i <
n z(〈x � i, y � i〉ω) = 0} = {(x, y) : ∀n ∈ ω∀i < n (x � i, y � i) ∈ T} = [T ], so
A is the projection of [U(z)]. The other direction is trivial.

Let B = {(x, z) : ∃y (x, y, z) ∈ [U ]}. Then B is Σ1
1. If B were a Π1

1, then
{(x, z) : (x, z) /∈ B} would be Σ1

1, and therefore A = {x : (x, x) /∈ B} would
be Σ1

1. Then let z ∈ ωω be such that A is the projection of [U(z)]. Then
A = {x : (x, x) /∈ B} = {x : ∃y (x, y, x) ∈ [U ]} = {x : ∃y (x, y, z) ∈ [U ]} =
{x : (x, z) ∈ B}. But then (z, z) /∈ B iff (z, z) ∈ B, contradiction.

We are now trying to code countable ordinals as (definable) sets of reals.
Let 〈·, ·〉 : ω × ω → ω be a recursive pairing function. For any x ∈ ωω,
consider the binary relation Ex on ω defined as m Ex n iff x(〈m,n〉) = 0.
We define

WF = {x ∈ ωω : x codes a well-founded relation}
WO = {x ∈ ωω : x codes a well-ordering of ω}.

Lemma 2.7. The sets WF and WO are Π1
1.

Proof. For any x ∈ ωω, Ex is well-founded iff there is no z : ω → ω such
that z(k + 1)Exz(k) for any k ∈ ω. So x ∈ WF iff ∀z ∈ ωω ∃k ∈ ω ¬(z(k +
1)Exz(k)), that is ¬∃z ∈ ωω ∀k ∈ ω x(〈z(k + 1), z(k)〉) = 0. But ∀k ∈
ω x(〈z(k + 1), z(k)〉) = 0 iff ∀n,m, j, k (i = (z � n)(k + 1) ∨ j = (z �
n)(k) ∨m = 〈i, j〉 ∨ (x � n)(m) = 0). Therefore WF is Π1

1.
Now, “Ex is a linear order” iff ∀m,n (mExn∨nExm), so ∀m,n (x(〈m,n〉) =

0 ∨ x(〈n,m〉) = 0). This is almost trivially Π1
1, therefore WO is Π1

1.

For any x ∈ WO, we define ‖x‖ as the order-type of the well-order Ex.
Then for any x ∈ WO, ‖x‖ is a countable ordinal, and for any α countable
ordinal there is a x ∈ WO such that ‖x‖ = α. Define also WOα = {x ∈
WO : ‖x‖ = α} and WO≤α = {x ∈ WO : ‖x‖ ≤ α}.

Lemma 2.8. For any α < ω1, WO≤α is Borel.

Proof. For any α < ω1, let Bα = {(x, n) : Ex restricted to {m : mExn} is a
well-ordering of type ≤ α}. We prove by induction that Bα is Borel. It is
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easy to see that B0 is Borel. Let α < ω1 and suppose that for any β < α, Bβ

is Borel. Then
⋃
β<αBβ is Borel, and (x, n) ∈ Bα iff ∀m(mExn → (x,m) ∈⋃

β<αBβ). Therefore Bα is Borel. Now, x ∈ WO≤α iff ∀n ∈ ω(x, n) ∈⋃
β<αBβ, so also WO≤α is Borel.

Theorem 2.9. If c is a Π1
1 set, then there exists a continuous function

f : ωω → ωω such that C = f−1(WO). In other words, WO is Π1
1-universal.

Proof. Let T be a tree such that x ∈ C iff T (x) is well-founded. We write
in more detail what this means: in ω<ω there is a natural order v, “is an
initial segment of”. Then to say that T (x) is well-founded means that w is
well-founded on T (x). We can also define a linear order on ω<ω, v∗, that
is the lexicographical order. Then (T (x),w) is well-founded iff (T (x),w∗) is
well-ordered.

Let {t0, t1, . . . } be an enumeration of ω<ω. For each x ∈ ωω, we define
f(x) = y such that y(〈m,n〉) = 0 iff tm, tn ∈ T (x) and tm w∗ tn. Then
m Ef(x) n iff tm, tn ∈ T (x) and tm w∗ tn, therefore f(x) ∈ WO iff Ef(x) is a
well-ordering iff (T (x),w∗) is a well-ordering iff (T (x),w) is well-founded iff
x ∈ C. Thus C = f−1[WO].

It remains to see that f is continuous, but this is obvious: f(x) is the
code of the relation (T (x),w∗), and if s v x, then T (s) ⊆ T (x), so f(x) is
fixed in finite coordinates.

Then WO cannot be Σ1
1, because the inverse image by a continuous

function of an analytic set is analytic, but then that would mean that all
co-analytic sets are analytic, contradiction.

Lemma 2.10 (Boundedness Lemma). If B ⊆ WO is Σ1
1, then there is an

α < ω1 such that B ⊆ WO≤α.

Proof. Suppose not. Then WO = {x ∈ ωω : ∃z z ∈ B ∧ ‖x‖ ≤ ‖z‖}.
But consider A = {(x, z) : z /∈ WO ∨ ‖x‖ ≤ ‖z‖}: then (x, z) ∈ A iff
z /∈ WO ∨ (∃h : ω → ω∀m∀n mExn→ h(m)Exh(n)), therefore A is Σ1

1. But
then WO = {x ∈ ωω : ∃z z ∈ B ∧ (x, z) ∈ A} is Σ1

1, contradiction.

———

3 Back at the main plot

Therefore under ZF+AD ω1 is still regular: let (αn : n < ω) a countable
set of countable ordinals, and consider (WOαn : n < ω). Let f be a choice
function for this sequence. Then consider the relation on ω 〈n1,m1〉R〈n2,m2〉
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iff n1 < n2 or n1 = n2 and m1Ef(n1)m2. Such relation is a well-order on ω of
order-type ω1, contradiction.

The theory of ZF+AD is therefore very elegant, without pathological sets
and with a minimum of choice so not to render its models too bizarre. Can
we say something about its consistency? If only there was a way to measure
in an objective way the strength of the consistency of a theory...

———-

4 Second flashback: Large Cardinals

In 1908 Hausdorff asked: can there be a limit cardinal that is also regular?
That would mean that κ is a limit cardinal, and yet there is no < κ-sequence
that is cofinal in it (so, for example, κ is a limit of κ cardinals). ω surely
satisfies this property, as every finite sequence has a finite supremum, but
can there be an uncountable one? Seems an innocuous property, but with a
moment of thinking one realizes that this cardinal must be very big: as it is a
limit of κ cardinals, it must be that κ = ℵκ, so there is the same “number” of
ordinals and cardinals below it. Confront it with ℵω, that is very large, and
yet has only ℵ0 cardinals below it. The smallest cardinal with this property
is ℵℵℵ... , but this has cofinality ω. In fact, such a cardinal should have the
same “number” of regular cardinal and ordinals below it. Because of its size,
this cardinal is called weakly inaccessible. We can ask even more closure to
a cardinal:

Definition 4.1. A cardinal κ is a strong limit cardinal iff for any δ, γ < κ,
δγ < κ.

A cardinal κ is inaccessible iff it is an uncountable regular strong limit
cardinal.

Note that this definition does not make sense without AC.
The name inaccessible is very evocative: given any structure of cardinals

less than κ, it is just impossible to “reach” κ. Again, ω has this property: a
finite sequence of finite numbers has a finite maximum and the sum, product
and exponentiation of finite numbers is finite. So, in a certain sense, an
inaccessible cardinal is a watershed for a stronger kind of infinity: if there is
an inaccessible cardinal, then the sets can be divided in finite, small infinite
and large infinite, and each step is inaccessible to the ones below. The
existence of more inaccessible cardinals will yield more of these steps. The
idea that the universe below an inaccessible cardinal is a world of its own is
reinforced by the following theorem:

Theorem 4.2. If κ is inaccessible, then (Vκ,∈) � ZFC.
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Proof. Extensionality is obvious, Pairing, Separation, Union and Power Set
hold because κ is a limit ordinal, Infinity holds because κ is uncountable, it
remains Replacement. Let x ∈ Vκ. By induction, for any α < κ, |Vα| < κ:
|Vα+1| = |P(Vα)| = 2|Vα| < κ by strong limitness and for γ < κ limit |Vγ| =
supα<γ |Vα| < κ by regularity. Therefore |x| < κ. Let F : x → Vκ. Then
|F ′′x| ≤ |x| < κ. Since κ is regular, {rnk(y) : y ∈ F ′′x} cannot be cofinal in
Vκ, there is a α such that F ′′x ∈ Vα+1.

Therefore ZFC+exists an inaccessible cardinal proves the existence of a
model of ZFC, so it proves Con(ZFC). By the second theorem of incomplete-
ness, this means that ZFC cannot prove the existence of an inaccessible car-
dinal, so the theory “ZFC+exists an inaccessible cardinal” is strictly stronger
than ZFC. So if in a theory one can prove the existence, or the consistency, of
an inaccessible cardinal, also this theory will be strictly stronger than ZFC.
We have a way to “measure” the strength of a theory.

Inaccessible cardinals are, historically, the first notion of large cardinal.
In the last century many new and stronger notions of large cardinals were
introduced (and the quest is continuing daily), expanding the possibilities of
measuring the consistency strength of a theory. A curious pattern appeared:
even if such notions came from wildly diverse settings, they were actually
all implying each other (at least their consistency), therefore forming a li-
near order (!) of consistency strengths, and becoming the standard tool for
measuring the consistency strength of any theory stronger than ZFC.

There is no real definition for “large cardinal”, it is an umbrella term for
different things. The most classical form is as a property of a cardinal (a
cardinal is A iff ...), but sometimes they are axioms that imply the existence
of other kind of objects. Myself, I like to divide large cardinals in four
different groups: from inaccessible to 0] (excluded), from 0] to measurable
(included), from measurable to supercompact, and from supercompact on.
These groups have some characteristics in common:

“Height” cardinals. Consider V with an inaccessible cardinal κ. Then we
have already seen that Vκ is a model of ZFC. So in a certain sense we can
consider V as a “vertical extension” of a model of ZFC. In the same way, a
model with two inaccessible cardinals can be seen as a vertical extension of
a model with one inaccessible cardinal, and so on. Large cardinals up to 0]

(excluded) have often this characteristic: they seem to measure the “height”
of a model, the more there are and the stronger they are, the “higher” is the
model.

How “high”, then, are this cardinals? We have already seen that if κ is
inaccessible, then under κ there is the same amount of ordinals and regular
cardinals. A cardinal κ is Mahlo iff it is inaccessible and the regular cardinals
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below κ form a stationary subset of κ. A cardinal κ is 1-Mahlo iff the set
of Mahlo cardinals below κ form a stationary subset of of κ, and so under a
1-Mahlo there is the same amount of ordinals and of Mahlo cardinals. One
can go on, up to κ-Mahlo, and then define cardinals that are even larger.
This is somewhat typical of large cardinals: many times the set of weaker
cardinals under a large cardinal is “large”. The cardinals of the first group
are of this kind.

Reflection cardinals : The large cardinals in the first two groups can often
be expressed via reflection principles. The Reflection Principle as it is usually
called is actually the first order reflection principle. It says that for any
formula ϕ(v1, . . . vn) and any β, there is a limit ordinal α > β such that
for any x1, . . . xn ∈ Vα, V � ϕ(x1, . . . , xn) iff Vα � ϕ(x1, . . . , xn). This is a
theorem in ZFC, and actually equivalent to Infinity+Replacement.

Proposition 4.3. κ is inaccessible iff for any R ⊆ Vκ there is an α < κ such
that (Vα,∈, R ∩ Vα) ≺ (Vκ,∈, R).

κ is Mahlo iff for any R ⊆ Vκ there is an inaccessible α < κ such that
(Vα,∈, R ∩ Vα) ≺ (Vκ,∈, R).

Second-order reflection principles generate large cardinals that belong in
the first and second group. Third-order reflection principles are inconsistent.

Inner model cardinals. These belong to the second and third group, and
are those that are important in inner model theory. Ideally, those are all
the cardinals for which there is a canonical inner model, that is a definable
and constructible inner model that contains them. Whether this exists for a
supercompact cardinal is one of the most important problems in set theory.
Woodin recently proved that if there exists a canonical inner model for a
supercompact cardinal, this is a model for all the large cardinals above.

Elementary embeddings cardinals. These belong to the third and fourth
group. They are cardinals defined via elementary embeddings.

We are going now to introduce now measurable cardinals, the ones at the
border between “small” cardinals and “large” cardinals.

We remind that a filter on a nonempty set X is a collection F of subsets
of X such that X ∈ F , ∅ /∈ F , if A ∈ F and B ∈ F , then A ∩ B ∈ F , and
if A ∈ F and A ⊆ B, then B ∈ F . A filter F is principal iff there exists
A0 ⊆ X such that F = {A ⊆ X : A0 ⊆ A}. A filter U on a set X is an
ultrafilter if for every A ⊆ X, either A ∈ U or X \ A ∈ U , and an ultrafilter
is a maximal filter. A filter F is κ-complete if whenever {Aα : α < κ} ⊆ F ,
then

⋂
α<κAα ∈ F .

Definition 4.4. An uncountable cardinal κ is measurable iff there exists a
κ-complete nonprincipal ultrafilter U on κ.

12



We note this essential remark for κ-complete ultrafilters:

Lemma 4.5. Let U be a κ-complete filter on κ, let X ∈ U . Then if (Aβ :
β < γ) is a partition of X, with γ < κ, then there is one and only one β
such that Aβ ∈ U .

Proof. Suppose that for all β < γ, Aβ /∈ U . Then κ \ Aβ ∈ U for all β < γ.
But also

⋂
β<γ(κ \Aβ) = κ \

⋃
β<γ Aβ = κ \X ∈ U , by κ-completeness. But

then also κ \X ∩X = ∅ ∈ U , contradiction.

This is a large cardinal:

Lemma 4.6. Every measurable cardinal is inaccessible.

Proof. Let κ be a measurable cardinal and U a κ-complete non principal
ultrafilter on it. Suppose that κ is singular, and let (αβ : β < γ) be a cofinal
sequence in κ with γ < κ. Let Aβ = αβ+1 \ αβ. Then (Aβ : β < γ) is a
partition of κ, so there is one β such that Aβ ∈ U . But |Aβ| < κ, so Aβ can
be partitioned by ({δ} : δ ∈ Aβ), and therefore there is a single δ such that
{δ} ∈ U , contradiction because U is non principal.

Suppose that there is a λ < κ such that 2λ ≥ κ (note that this includes the
case κ successor). Let S ⊆ λ2 such that |S| = κ and transfer the ultrafilter
U on S. For each α < λ either {f ∈ S : f(α) = 0} or {f ∈ S : f(α) = 1} is
in U . Let εα be such that {f ∈ S : f(α) = εα} ∈ U and call Xα = {f ∈ S :
f(α) = εα}. Since U is complete, then X =

⋂
α<λXα ∈ U . Let f ∈ X. Then

f(α) = εα for any α < λ, so X = {f} and U is principal, contradiction.

Let’s go deeper in what we can prove with a measurable cardinal. For
this, we open a parentheses in the parentheses:

5 Third flashback: The Club Filter

We remind that for any κ cardinal such that cof(κ) > ω, a club in κ is a
subset of κ that is closed and unbounded, i.e., it contains all its limit points
and it is cofinal in κ.

Lemma 5.1. Let κ be a cardinal such that cof(κ) > ω. If C,D ⊆ κ are clubs
in κ, then C ∩D is a club in κ.

Proof. If α is a limit point of C∩D, then it is a limit point both of C and D,
and since they are both clubs α ∈ C ∩D. Let γ < κ. Since C is unbounded,
there is γ < α1 ∈ C. Since D is unbounded, there is a α1 < β1 ∈ D. Define
by induction a sequence γ < α1 < β1 < α2 < . . . such that the α’s are in
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C and the β’s are in D. Since cof(κ) > ω, supn∈ω αn = supn∈ω βn < κ. By
closure of C and D, supn∈ω αn ∈ C and supn∈ω βn ∈ D, but they are the
same, so that is an element of C ∩D bigger than γ. As γ was any, C ∩D is
unbounded.

Lemma 5.2. Let κ be a cardinal such that cof(κ) > ω. If (Cα : α < γ) is
such that γ < cof(κ) and for any α < γ Cα is a club in κ, then

⋂
α<γ Cα is

a club in κ.

Proof. A limit point for
⋂
α<γ Cα is a limit point for all the Cα, therefore it

is immediate that
⋂
α<γ Cα is closed.

The proof that
⋂
α<γ Cα is unbounded in κ (and therefore also nonempty)

is by induction on γ. The successor step is as in the previous lemma, so fix
(Cα : α < γ) and suppose γ is limit and that the lemma holds for any α < γ.
For any α < γ, let C ′α =

⋂
ξ<αCξ. Then by induction (C ′α : α < γ) is a

sequence of clubs, with the added property that C ′0 ⊇ C ′1 ⊇ · · · ⊇ C ′α ⊇ . . . .
Let δ < κ, let β0 ∈ C ′0 such that δ < β0 < κ, let β1 ∈ C ′1 such that
β0 < β1 < κ and so on. Since cof(κ) > γ, the sequence (βξ : ξ < γ) has
a supremum, say β, less then κ. But the sequence (βξ : α < ξ < γ) is a
sequence in C ′α for any α < γ, therefore β ∈

⋂
α<γ Cα.

It is tempting therefore to say that the set of clubs in κ is cof(κ)-complete,
and yet it is not a filter: Let C be a club in κ, and suppose that ω /∈ C.
Then C ⊆ C ∪ ω is not a club.

Definition 5.3. Let κ be a cardinal such that cof(κ) > ω. The club filter on
κ is the filter generated by clubs, i.e., {X ⊆ κ : ∃C club in κ C ⊆ X}.

By Lemma ?? the club filter on κ is cof(κ)-complete. We remind the defi-
nition of diagonal intersection, and we add it to the definition of measurable
cardinal.

Definition 5.4. Let κ be a cardinal, and (Xα : α < κ) be a sequence of
subsets of κ. The diagonal intersection of (Xα : α < κ) is defined as follows:
4α<κXα = {ξ < κ : ξ ∈

⋂
α<ξXα}.

We call a filter that is closed under diagonal intersections of κ-sequences
normal.

Lemma 5.5. Whrn κ is regular and uncountable, the diagonal intersection
of a κ-sequence of clubs in κ is a club in κ. So the club filter is normal.

Proof. Let (Cα : α < κ). As before, we can suppose that C0 ⊇ C1 ⊇ . . . ,
and let C = 4α<κCα.
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Let α be a limit point for C. If ξ < α, let X = {ν ∈ C : ξ < ν < α}. If
ν ∈ X then ν ∈

⋂
β<ν Cβ, and therefore ν ∈ Cξ. So X ⊆ Cξ and α = supX,

and so α ∈ Cξ. In other words, α ∈
⋂
ξ<αCξ, so α ∈ C.

Let α < κ. By induction, let β0 > α such that β0 ∈ C0 and let βn+1 > βn
such that βn+1 ∈ Cβn . Let β = supn∈ω βn, we want to prove that β ∈ C, so
that β ∈

⋂
ξ<β Cξ. So let ξ < β: then there is a n ∈ ω such that ξ < βn. But

βn+1 ∈ Cβn ⊆ Cξ, βn+2 ∈ Cβn+1 ⊆ Cξ, . . . so the whole sequence (βk : k > n)
is in Cξ, and by closure β ∈ Cξ.

In fact, the club filter is the minimal normal filter.

Lemma 5.6. If κ is regular and uncountable and if F is a normal filter on
κ that contains all final segments Xα0 = {α < κ : α > α0}, then F contains
all the clubs in κ, so also the club filter.

Proof. Let Lim(κ) be the set of limit ordinals under κ. Then Lim(κ) =
4α<κXα+1, so Lim(κ) ∈ F . If C ⊆ κ is a club, let C = {αβ : β < κ} be its
increasing enumeration. Then C ⊇ Lim(κ) ∩4β<κXαβ .

We remind that a stationary set in κ is a set that intersects all the clubs.
Therefore stationary sets intersect all the members of the club filter, and
they are exactly those that are not in the dual ideal, that is therefore called
nonstationary ideal.

Definition 5.7. Let F be a filter on κ. We say that S ⊆ κ is F -positive if it
intersects all elements of F (equivalently, if its complement does not contain
an element of F ).

So stationary sets are those that are positive for the club filter. The
following is a useful equivalence:

Lemma 5.8. A κ-complete filter F on κ is normal iff for every S F -positive
and any f : S → κ such that for any α < κ, f(α) < α, there are a T ⊆ S
F -positive and a γ < κ such that f(α) = γ for any α ∈ T .

Proof. Let F be a κ-complete normal filter, let S be F -positive and let f :
S → κ be as above. Towards a contradiction, suppose that for any γ < κ,
Tγ = {α ∈ S : f(α) = γ} is not F -positive, so there is a Cγ ∈ F such that
for any α ∈ Cγ ∩ S, f(α) 6= γ. Let C = 4γ<κCγ, and let α ∈ S ∩ C. Then
f(α) 6= γ for any γ < α, but this means that f(α) ≥ α, contradiction.

Let F be a κ-complete filter on κ, suppose the above holds, let (Xα :
α < κ) be a collection of sets in F . Suppose that 4α<κXα /∈ F . Then
κ\4α<κXα = S is F -positive and let f : S → κ any such that if f(α) = ξ < α
then α /∈ Xξ. Let T be F -positive and γ such that f(α) = γ for any α ∈ T .
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Then for any α ∈ T , α /∈ Xγ, so Xγ ∩ T = ∅, contradiction because T was
F -positive and Xγ ∈ F .

We end this flashback trying to find an answer to the question: can
the club filter be an ultrafilter? That would mean that there are no real
stationary sets, just clubs or nonstationary sets, and that every normal filter
that contains the final segments is an ultrafilter.

For κ > ω1 regular it is easily disproved: Consider Eκ
ω = {α < κ :

cof(α) = ω} and Eκ
ω1

= {α < κ : cof(α) = ω1}. They are both stationary
subsets: if C is a club in κ, then the supremum of any ω-sequence in C will
be in C ∩Eκ

ω and the supremum of any ω1-sequence in C will be in C ∩Eκ
ω1

.
They are disjoint, so it is not possible that the club filter is an ultrafilter: if
Eκ
ω is in the filter, then Eκ

ω1
cannot be stationary, but then κ \Eκ

ω should be
in the filter, against the fact that Eκ

ω is stationary.
The next question is therefore whether it is possible for the club filter

on the ordinals of a certain cofinality to be an ultrafilter, or more generally
for the club filter on a stationary set to be an ultrafilter, included the case
with κ = ω1. Of course, if S is stationary and there are T1, T2 ⊆ S that are
stationary and disjoint, then the club filter is not an ultrafilter on S. But
then under ZFC the club filter is never an ultrafilter.

Theorem 5.9 (Solovay, ZFC). Let κ be a regular uncountable cardinal. Then
every stationary set on κ is the disjoint union of κ stationary subsets.

——

6 Back at the large cardinals

Definition 6.1. Let κ be a regular cardinal. Then a normal κ-complete
nonprincipal ultrafilter on κ is a normal measure on κ.

Theorem 6.2. Let κ be a measurable cardinal. Then there is a normal
measure on κ.

Proof. We are going to focus on a fragment of an ultrapower via a κ-complete
nonprincipal ultrafilter on κ, U . It is not necessary to do the whole ultrapower
to reach the conclusion of the theorem. So, given f, g : κ → κ, we say that
f =U g iff {α < κ : f(α) = g(α)} ∈ U and f <U g iff {α < κ : f(α) <
g(α)} ∈ U . The order <U on κκ modulo =U is well-founded: Assume toward
a contradiction that f0, f1, . . . such that f0 >U f1 >U . . . . Then Xn = {α <
κ : fn(α) > fn+1(α)} ∈ U . By completeness of U , let α ∈

⋂
n∈ωXn. Then
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f0(α) > f1(α) > . . . , contradiction because there are no infinite descending
sequence in V .

Then <U is a well-ordering of κκ/ =U . Note that we proved in Lemma ??
that for any γ < κ, γ /∈ U , therefore for any γ < κ, {α < κ : α > γ} ∈ U . So
let f be the <U -minimal such that for any γ < κ, {α < κ : f(α) > γ} ∈ U
(in particular f <U id). Let D = {X ⊆ κ : f−1[X] ∈ U}. We prove that D
is a normal measure.

• κ ∈ D: f−1[κ] = {α < κ : f(α) ∈ κ} = κ ∈ U ; ∅ /∈ D iff {α < κ :
f(α) ∈ ∅} = ∅ ∈ U ;

• if X, Y ∈ D, then f−1[X], f−1[Y ] ∈ U , and f−1[X ∩ Y ] = f−1[X] ∩
f−1[Y ] ∈ U ; also f−1[

⋂
α<γ Xα] =

⋂
α<γ f

−1[Xα];

• if X ⊆ Y , X ∈ D, then f−1[X] ⊆ f−1[Y ] ∈ U ;

• if X /∈ D, then f−1[X] /∈ U , so κ \ f−1[X] = f−1[κ \X] ∈ U ;

• by the way we have chosen f , {α < κ : f(α) = γ} /∈ U for any γ < κ,
therefore f−1[{γ}] /∈ U , so {γ} /∈ D;

• to prove that D is normal, we use Lemma ?? (note that in the case of
ultrafilters being D-positive and in D is the same). Let X ∈ D, and
let h : X → κ be such that f(α) < α for any α < κ. Let g = h ◦ f .
Then for any α < κ, g(α) = h(f(α)) < f(α), so g <U f , and since f
was minimal there is a γ < κ such that {α < κ : g(α) ≤ γ} ∈ U . As
γ < κ, there is a δ ≤ γ such that Y = {α < κ : g(α) = δ} ∈ U . Then
f [Y ] = {f(α) < κ : g(α) = δ}, and h[f [Y ]] = {g(α) : g(α) = δ} = {δ},
so h is constant on f [Y ]. But f−1[f [Y ]] = Y ∈ U , so f [Y ] ∈ D.

Note that if D is a normal measure on κ, then it contains the club filter,
so every element of D intersects all clubs, and therefore is stationary.

Lemma 6.3. Every measurable cardinal is a Mahlo cardinal.

Proof. Let κ be a measurable cardinal, we need to prove that the set of the
inaccessible cardinals under κ is stationary. Let D be a normal measure on
κ.

Consider SLim(κ) = {α < κ : α is strong limit}. Since κ is strong limit,
for any β < κ the supremum of 2β, 22β , ecc... is below κ and it is strong limit,
therefore SLim(κ) is unbounded, and it is obviously closed, so SLim(κ) is a
club.
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We want to prove that the set of regular cardinals is in D, and therefore
stationary. Assume that {α : cof(α) < α} ∈ D. Consider the function
cof : {α : cof(α) < α} → κ: then, by normality, there are a λ < κ and a
set Eλ ∈ D such that for any α ∈ Eλ, cof(α) = λ. Fix for any α ∈ Eλ a
cofinal sequence (βα,ξ : ξ < λ), and now for any ξ < λ consider the function
fξ : Eλ → κ, fξ(α) = βα,ξ. Then there are by normality a βξ and an Aξ ∈ D
such that for any α ∈ Aξ, fξ(α) = βξ. Now let A =

⋂
ξ<λAξ ∈ D. Then

for any α ∈ A and any ξ < λ, fξ(α) = βξ. But then α = supξ<λ βξ, and
A = {α}, contradiction because D is nonprincipal.

The intersection of a stationary set and a club is stationary, and as the
set of regular cardinals is stationary and the set of strong limits is a club,
the set of inaccessible cardinals is stationary, therefore κ is Mahlo.

———-

7 Back to the main topic

Let DT be the set of Turing degrees. For any x ∈ ωω, we denote with [x]T its
Turing degree. A cone of Turing degrees is a set of the form {[y]T : y ≥T x0},
with x0 ∈ ωω. A Turing cone of reals is a set of the form {y : y ≥T x0}. In
both cases we call x0 the base of the cone.

So, let C the set of cones of Turing degrees, and for any x0 ∈ ωω, let Cx0
the cone with base x0.

• The whole DT is the cone with base 0, so DT ∈ C;

• there is no empty cone, so ∅ /∈ C;

• let x, y ∈ ωω; then Cx ∩ Cy = C〈x,y〉 ∈ C.

Therefore cones can generate a filter:

Definition 7.1. Let FC = {A ⊆ DT : ∃x ∈ ωω Cx ⊆ A}. It is called the
cone filter.

How much is FC complete? The countable intersections of cones contains
a cone: If we have a countable family of cones, each of which has base xn,
then we can code the sequence (xn : n ∈ ω) as a single real, and the cone
with 〈xn : n ∈ ω〉 as a base contains the intersection of all cones, as if a
real can compute 〈xn : n ∈ ω〉, then it can compute the single xn’s. Let
(An : n ∈ ω) a countable collections of sets in the cone filter. For any n ∈ ω,
let Bn = {x ∈ ωω : Cx ⊆ An}. Every Bn 6= ∅, therefore by ACω(R) there is a
choice function f for (Bn : n ∈ ω). Then, the intersection of Cf(n) contains a
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cone, and it is contained in
⋂
n∈ω An, so

⋂
n∈ω An ∈ FC . Then the cone filter

is an ω1-complete filter.

Theorem 7.2 (ZF+AD). The cone filter on DT is an ultrafilter.

Proof. Let A ⊆ DT . Consider the game
I x0 x1

. . .
II y0 y1

where I wins iff [(x0, y0, x1 . . . )]T ∈ A. Either I or II have a winning
strategy. If I has a winning strategy σ, then for any y ∈ ωω, [σ ∗ y]T ∈ A,
so if y ≥T σ, [y]T ∈ A, therefore A contains the cone with base σ and is in
the cone filter. On the other hand, if II has a winning strategy τ , then for
any x ∈ ωω, [x ∗ τ ]T ∈ DT \A, so if x ≥T τ , [x]T ∈ DT \A, therefore DT \A
contains the cone with base τ and is in the cone filter.

Finally, FC is not principal: if it were, then there would be a fixed cone
Cx inside every cone, but for example [x]T ∈ Cx and x /∈ Cx′ . In other words,
we have something similar to a “measure” on the Turing degrees. We can
actually project it to ω1, so that it generates a proper measure on ω1, but we
need a remark on principal ultrafilters:

Lemma 7.3. • Let A0 ⊆ κ. Then {X ⊆ κ : A0 ⊆ X} is a κ-complete
filter on κ.

• If U is a principal ultrafilter on κ, then there exists δ < κ such that
U = {X ⊆ κ : δ ∈ X}.

Proof. The first point is just calculations. For the second point, let U ultra-
filter on κ and A0 witness that U is principal. Suppose there are γ0 6= γ1 in
A0. Then neither κ \ {γ0} nor {γ0} are in U , contradiction.

For any x ∈ ωω, let f(x) = ωCK [x] be the least ordinal that is not
computable with x as an oracle. Then define U = {X ⊆ ω1 : f−1[X] ∈ FC}.

• for any x ∈ ωω, ωCK [x] < ω1, therefore f−1[ω1] = DT ∈ FC , so ω1 ∈ U ;

• f−1[∅] = ∅ /∈ FC , so ∅ /∈ U ;

• let (Xn : n ∈ ω) a countable collection of sets in U , so that for any
n ∈ ω, f−1[Xn] ∈ FC . Then f−1[

⋂
n∈ωXn] =

⋂
n∈ω f

−1[Xn] ∈ FC , so⋂
n∈ωXn ∈ U ;

• suppose that X /∈ U ; then f−1[X] ∈ FC , and since FC is an ultrafilter,
then f−1[ω1 \X] = DT \ f−1[X] ∈ FC , so ω1 \X ∈ U ;
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• suppose that there is a δ < ω1 such that U = {X ⊆ ω1 : δ ∈ X}; in
particular f−1(δ) ∈ FC , so there is a cone such that for any x in the
cone, ωCK [x] = δ; but there is a y ∈ Cx such that ωCK [y] > ωCK [x],
contradiction.

We have therefore proved the following:

Theorem 7.4 (ZF+AD). There is a measure on ω1.

So ω1 is “measurable”. The quotes are there because we defined the
measurable cardinal in the context of ZFC. We can use the same definition in
the context of ZF, but does it have the same consistency strength? Does the
fact that ω1 is ZF-measurable give some insight on its consistency strength
measured with ZFC-large cardinals? If only there was a way to transfer large
cardinal strength to models of ZFC...

8 Fourth flashback: The Constructible Uni-

verse

Definition 8.1. An inner model M is a transitive class such that Ord ⊆M
and M � ZFC. We can specify the theory, so for example an inner model
M for ZF is a transitive class such that Ord ⊆M and M � ZF .

A set X is definable over a model M if there exists a formula ϕ and some
a1, . . . , am ∈ M such that X = {x ∈ M : M � ϕ(x, a1, . . . , an)}. We define
def(M) = {X ⊆M : X is definable over M}. Of course, if M is a set, then
def(M) must be a set.

Definition 8.2. We define by transfinite induction:

• L0 = ∅, Lα+1 = def(Lα);

• if α limit, Lα =
⋃
β<α Lβ;

• L =
⋃
α∈Ord Lα.

By the way it is defined, L is transitive and contains all ordinals.

Theorem 8.3. L �ZF

Proof. • L is transitive and therefore extensional;

• given a, b ∈ L, let α be such that a, b ∈ Lα. Then {a, b} = {x ∈ Lα :
Lα � x = a ∨ x = b}, so {a, b} ∈ def(Lα) = Lα+1 ⊆ L;
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• Let ϕ be a formula, X, p ∈ L. Let Y = {u ∈ X : L � ϕ(u, p)}. By the
Reflection Principle, there is a α such that X, p ∈ Lα and Y = {u ∈
X : Lα � ϕ(u, p)}. Thus Y = {u ∈ Lα : Lα � u ∈ X ∧ ϕ(u, p)};

• let X ∈ L, and let Y =
⋃
X. As L is transitive, Y ⊆ L. Let α be such

that X ∈ Lα and Y ⊆ Lα. Then Y = {x ∈ Lα : ∃y ∈ X x ∈ y};

• let X ∈ L, let Y = P(X) ∩ L. Let α be such that Y ⊆ Lα. Then
Y = {x ∈ Lα : x ⊆ X};

• since ω ∈ L, this satisfies Infinity

• Let a1, . . . , an, A ∈ L such that for all x ∈ A there is a unique y ∈ L
such that ϕ(x, y, a1, . . . , an, A). Let α such that a1, . . . , an, A ∈ Lα and
{y ∈ L : ∃x ∈ Aϕ(x, y, a1, . . . , an, A)} ⊆ Lα; then it is as before.

The Axiom of Separation says that for any ϕ formula, there exists the
set Y = {u ∈ X : ϕ(u)}. Gödel discovered that if the formula is ∆0, then Y
can be constructed by means of a finite number of elementary operations.

Theorem 8.4 (Gödel Normal Form Theorem). There exist operations G1, . . . , G10

such that if ϕ(u1, . . . , un) is a ∆0-formula, then there is a composition G of
G1, . . . , G10 such that for all X1, . . . , Xn, G(X1, . . . , Xn) = {(u1, . . . , un) ∈
X1 × · · · ×Xn : ϕ(u1, . . . , un)}.

The G1, . . . , Gn are called Gödel operations. This is not the place to
introduce them, we just need to know that they exists. Suffices to say that
they are very basic, like G1(X, Y ) = {X, Y } or G6(X) =

⋃
X, and they

are all ∆0. Now if ϕ is any formula, its interpretation inside a model M
is a ∆0 formula, so for any formula ϕ there exists a composition of Gödel
operations G such that {x ∈ M : M � ϕ(a1, . . . , an)} = G(M,a1, . . . , an).
On the other hand, one can prove that a composition of Gödel operations
will always generate a definable set, so def(M) is the set of subsets of M that
are in the closure of M ∪ {M} under Gödel operations. Also, ∆0-formulas
are absolute between transitive sets, and therefore also Gödel operations are.

Theorem 8.5. A transitive class M is a model of ZF iff it is closed under
Gödel operations and every subset X ⊆M is included in some Y ∈M .

Proof. Let M transitive model of ZF. Then it must be closed under Gödel
operations: if X1, . . . , Xn ∈ M , then G(X1, . . . , Xn) ∈ def(X1 ∪ · · · ∪Xn) ∈
M . If X ⊆M , then there is an α such that X ⊆ Vα ∩M , and since α ∈M ,
Vα ∩M = (Vα)M ∈M .
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For the opposite direction, look at the proof of L �ZF. For almost every
axiom the m.o. is the same: there is a Y we want to prove it is in L, then
there is a X ∈ L such that Y ⊆ X, and finally such an Y is definable with
a ∆0-formula. Substituting L with M it works the same way. The only
exception is Separation, that in L uses the Reflection Principle and here it
must be proved separately.

So let X ∈M and Y = {u ∈ X : M � ϕ(u)}. For simplicity, we disregard
the parameter.

Let ϕ(u1, . . . , un) be a formula with k quantifiers. We modify that in
ϕ̄(u1, . . . , un, Y1, . . . , Yk), a ∆0-formula obtained bounding every quantifier
with a Yi. We prove by induction on k that for every ϕ(u1, . . . , un) with
k quantifiers and for every X ∈ M there exist Y1, . . . , Yk ∈ M such that
M � ϕ(u1, . . . , un) iff ϕ̄(u1, . . . , un, Y1, . . . , Yk) for all u1, . . . , un ∈ X. If we
can do this, we are then, because then Y = {u ∈ X : ϕ̄(u, Y1, . . . , Yk)}, and
so Y is in the closure under Gödel operations.

If k = 0 then ϕ̄ is ϕ itself, so there is nothing to prove. Suppose now
that ϕ(u) is ∃vψ(u, v), and that ψ(u, v) has k quantifiers. So ϕ̄ is ∃v ∈
Yk+1ψ̄(u, v, Y1, . . . , Yk). We now that there is a set M1 (in V , by Reflection
in V ) such that X ⊆ M1 ⊆ M and for all u ∈ X, ∃v ∈ M M � ψ(u, v) iff
∃v ∈ M1 Mψ(u, v). But then there is a Z ∈ M such that M1 ⊆ Z. So for
all u ∈ X, ∃v ∈M M � ψ(u, v) iff ∃v ∈ Z Mψ(u, v). Now use the induction
hypothesis, so that M � ψ(u, v) iff ψ̄(u, v, Y1, . . . , Yk) and define ϕ̄ bounding
the only remaining quantifier with Z.

Lemma 8.6. The function α 7→ Lα is definable with a Σ1 formula.

Proof. It is known that if a function is defined by induction, and the induction
step is Σ1-definable, then the function itself is Σ1-definable. So we need to
verify that def is Σ1-definable, or, for the Gödel normal form Theorem, that
the closure under Gödel operations is Σ1-definable. It is, because Y = cl(M)
iff there exists a function f with domain ω such that Y is the range of f ,
f(0) = M and for any n ∈ ω f(n+ 1) = f(n) ∪ {Gi(x, y) : x, y ∈ f(n)}.

Corollary 8.7. The property “x is constructible” is absolute for inner models
of ZF.

Proof. Let M be an inner model of ZF. Then if x is constructible in M , it
means that there is an α ∈ M such that (x ∈ Lα)M , but then since this is
Σ1, x ∈ Lα, i.e., x is constructible.

Suppose that x ∈ Lα. Since M is a model of ZF, there is (Lα)M , but if
(y = Lα)M by upward absoluteness y = Lα, so Lα = (Lα)M , and x ∈ (Lα)M ,
i.e., x is constructible in M .
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Now the following is immediate:

Proposition 8.8. Let V = L be the formula ∀x ∃α x ∈ Lα. Then:

• if M is a transitive set, then M � ZF + V = L implies that M = Lα
for some α ordinal;

• if M is an inner model of ZF and M � V = L, then M = L.

Also, if M is an inner model of ZF then L ⊆M .

Actually, asking for M to be a model of ZF is too much. In the end, if M
is closed under Gödel functions, if for any U ∈M , {Gi(x, y) : x, y ∈ U} ∈M
and if (Lβ : β < α) ∈M for any α ∈M , then being constructible is absolute
for such an M . It is easy to see that Lδ, for δ limit, satisfies this properties.
So the following holds:

Lemma 8.9 (Gödel Condensation Lemma). For every limit ordinal δ, if
M ≺ Lδ then the transitive collapse of M is Lγ for some γ ≤ δ.

Proof. If M ≺ Lδ in particular it satisfies both what is needed to “under-
stand” constructibility and V = L, so the lemma holds.

Theorem 8.10. If M is well-ordered, then also the closure of M under Gödel
operations is well-ordered. With this one can build a definable well-ordering
of L, therefore L � AC.

Proof. We are going to skip the details of this highly technical proof. The
idea is that any element in the closure under Gödel operations of M is the
application of a certain operation Gi to some elements, that are applications
of certain operations to other elements, and so on. Therefore for any element
in the closure we can build a labeled finite tree that defines it, with the leaves
labeled with members of M (that are well-ordered) and each node labeled
with a Gödel operation. We can order such trees in a lexicographical way,
so that there is a linear order in the set of this trees, and this will induce a
well-order in the closure of M .

This can propagate by induction to all L. ∅ is trivially well-ordered, and
if Lα is well-ordered, then Lα+1 is well-ordered. If γ is a limit ordinal, then if
for any α < γ, Lα is well-ordered, one can build a well-order of Lγ stacking
the wellorders of Lα+1 on Lα+1 \ Lα. This is definable because the hierarchy
of the Lα’s is definable (it is Σ1).

Theorem 8.11. L � ZFC
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Therefore L is minimal model of ZFC, and all models of ZF contains
it. It is a handy way to prove consistency results of the type Con(ZF+...)
implies Con(ZFC+...). Heuristically, in L one can solve all the problems. L
is also very regular, it satisfies many combinatorial properties (GCH, ♦, �,
universal well-ordering...) and it has many absoluteness characteristics, like
the condensation properties, that says that a model “knows” when it is L.

There are also models of relative constructibility. One permits the use
of an “oracle” in the construction of the universe: define defA(M) = {X ⊆
M : X is definable over (M,∈, A ∩M)} and then Lα+1[A] = defA(Lα[A]).
The model L[A] is the smallest model M of ZFC such that A ∩M ∈ M .
The most common models of this kind in the research around AD are those
of the form L[a], with a ∈ ωω. They are useful to prove measurability (and
other large cardinal properties) of cardinals inside the theory of ZF+AD. We
decided not to focus on this in this seminars.

One can also permit the use of “urelements” in the construction of the
universe: define L0(A) = tr({A}) and the rest as before. Then L(A) is the
smallest model of ZF that contains A. It is a model of ZFC only if L(A)
contains a well-ordering of A.

The most important example in this case is L(R). We already know
that there is no definable well-ordering of the reals, so if there is also no
constructible well-ordering of the reals then L(R) will be a model of ZF
without Axiom of Choice. This is actually the case when in the universe
there are enough large cardinals. We will come back to this later.

Lemma 8.12. If M � ZFC, Ord ⊆M and M � κ is inaccessible, then L � κ
is inaccessible. If M � ZFC, Ord ⊆ M and M � κ is Mahlo, then L � κ is
Mahlo.

Proof. Let η, δ < κ, and suppose that L � ηδ ≥ κ. Then, in L, there exists
a surjection from {f ∈ L : f : δ → η} to κ. But then this surjection is in M ,
so it is extendable to ηδ, and ηδ > κ also in M , contradiction.

Therefore {η < κ : M � κ is inaccessible } ⊆ {η < κ : L � κ is
inaccessible }. If C ⊆ κ is a club in L, then it is a club also in M , as the
concept of “unbounded” is absolute. So by Mahlo-ness in M it intersects
{η < κ : M � κ is inaccessible }, so {η < κ : L � κ is inaccessible } is
stationary in L.

Lemma 8.13. If M � ZF, Ord ⊆ M and M � κ is measurable, then L � κ
is inaccessible.

Proof. Since κ is regular in M , then it is regular also in L. Suppose that in
L there is a surjection π from 2λ to κ with λ < κ. Then for any α, let Xα

24



be the only set between {π(f) : f(α) = 0} and {π(f) : f(α) = 1} that is of
measure one. Let X =

⋂
Xα. As before, X = {π(f)}, contradiction because

measures are nonprincipal.

9 Very quickly back at the main topic

Since in ZF+AD ω1 is measurable, then in L ω1 is inaccessible, therefore
Con(ZF+AD) implies Con(ZFC+inaccessible). In fact:

Theorem 9.1. Suppose that every co-analytic set is either countable or con-
tains a perfect set. Then ωV1 is inaccessible in L[x] for any x ∈ ωω.

Maybe we can prove that ω1 can be Mahlo, but we cannot go much far,
because L cannot contain many large cardinals.

Theorem 9.2. Suppose that κ is a measurable cardinal. Then V 6= L.

We remind the ultrapower construction. If U is an ultrafilter on κ, then
we can define two relations on the functions with domain κ: f =U g iff
{α < κ : f(α) = g(α)} ∈ U , and f ∈U g iff {α < κ : f(α) ∈ g(α)} ∈ U . The
first one is an equivalence relation, and the second one induces a relation
between classes of the first equivalence relation. Now, let (Ult(V, U),∈U) be
the class of all [f ]U , with f function with domain κ, and [f ]U ∈U [g]U iff
f ∈U g. When U is σ-complete, then (Ult(V, U),∈U) is well-founded. Define
jU : V → Ult(V, U) as jU(x) = [cx]U , where cx is the function such that
cx(α) = x for any α < κ. Then jU is an elementary embedding from V to
Ult(V, U), and the transitive collapse of Ult(V, U), M , is an inner model of
V that satisfies ZFC.

If α is an ordinal, then jU(α) is an ordinal, and if α < β then jU(α) <
jU(β), thus α ≤ j(α) for any α ordinal. It is immediate to see that j(α+1) =
j(α) + 1, j(n) = n for any n ∈ ω. If U is countably complete, then j(ω) = ω:
If [f ] < ω, then {α < κ : f(α) < ω} ∈ U , and since U is ω1-complete there
must be an n ∈ ω such that {α < κ : f(α) = n} ∈ U , but then [f ] = n. By
the same argument, if U is λ-complete, then j(γ) = γ for all γ < λ.

So if κ is measurable, and U is a measure on κ, then jU(γ) = γ for any
γ < κ. Consider now id : κ → κ, the identity function. Since U is κ-
complete, every bounded set is not in U , therefore {α < κ : id(α) ≥ γ} ∈ U
for any γ < κ, so [id]U > γ for any γ < κ, and therefore [id]U ≥ κ. However,
{α < κ : id(α) < cκ(α)} = κ ∈ U , so [id]U < jU(κ). But then jU(κ) > κ.

Proof. Let κ be the least measurable cardinal, let U be a measure on κ. Let
jU : V → M ⊆ V . If V = L, then also M = L, since L is minimal. In L, κ
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is the least measurable cardinal, therefore by elementarity jU(κ) is the least
measurable cardinal in M = L. Contradiction because jU(κ) > κ.

If only there was an inner model that could contain large cardinals like
measurables...

10 Fifth flashback: HOD

We say that a set X is ordinal-definable if there is a formula ϕ such that
X = {u : ϕ(u, α1, . . . , αn)}. How to express this in the language of set
theory? Gödel approached the problem in this way: we define OD as the
Gödel closure of {Vα : α ∈ Ord}. We want to prove now that the two
definitions coincide.

Lemma 10.1. There exists a definable well-ordering of the class OD. The-
refore every element of OD is ordinal-definable.

Proof. We already noticed that the closure under Gödel operations of so-
mething that is well-orderable is well-orderable. Now, there is an obvious
well-ordering of {Vα : α ∈ Ord}, and therefore there is a well-ordering of
OD. Looking back at the proof, it is also clear that it is definable, therefore
there is a definable injection F : Ord → OD. But then if X ∈ OD there is
an α such that X = F (α), so X = {u : u ∈ F (α)}.

Lemma 10.2. If X is ordinal definable, then X ∈ OD.

Proof. The key is the Reflection Principle, that says that if V � ϕ(a1, . . . , an),
then there is a β such that Vβ � ϕ(a1, . . . , an). So letX = {u : ϕ(u, α1, . . . , αn)},
and let β such that Vβ reflects ϕ. Then X = {u ∈ Vβ : Vβ � ϕ(u, α1, . . . , αn)}.
Now, by Gödel normal form theorem we can find a composition of Gödel ope-
rations G such that X = G(Vβ, a1, . . . , an). Now, every ordinal α can also
be constructed with Gödel operations from Vα, as α = {x ∈ Vα : x is an
ordinal}, so X ∈ OD.

So OD is the class of ordinal-definable sets, and satisfies AC. To satisfy all
ZFC, we would need that every subset X ⊆ OD is included in some Y ∈ OD,
and that it is transitive. This is not true, but it holds true in the next model:

Definition 10.3. The class of hereditarily ordinal-definable sets is defined
as HOD={x : tc({x}) ⊆ OD}.

In other words, HOD is the class of the ordinal-definable sets whose ele-
ments in the transitive closure are all ordinal-definable (and therefore here-
ditarily ordinal-definable). So HOD is transitive and it contains all ordinals.
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Theorem 10.4. HOD is a transitive model of ZFC

Proof. To prove that HOD is a model of ZF, it suffices to show that if X ⊆
HOD, then there is a Y ∈ HOD such that X ⊆ Y . It suffices to show that
Vα ∩HOD ∈ HOD for any α ordinal. But Vα ∩HOD is ordinal-definable,
because Vα ∩HOD = {u : u ∈ Vα ∧ (∀z ∈ tc({u}) ∃β z ∈ cl({Vγ : γ < β})}.
Now, Vα ∩HOD ⊆ HOD therefore it is in HOD.

Since there is a definable well-ordering of OD, its restriction to HOD will
be a well-ordering in OD whose elements are in HOD, and therefore will be
definable in HOD. So HOD satisfies also the Axiom of Choice.

Finally, it is a simple exercise to see that the image of HOD sets under
Gödel operations is HOD, so HOD is closed under Gödel operations.

In conclusion, HOD is another model of ZFC that is inside every model
of ZF. There are some fundamental differences, however, with L:

• L is absolute, HOD is relative: While LM = L for any M that contains
all the ordinals, this does not hold in HOD. In fact it is also consistent
that HODHOD is not HOD.

• L can be vary far from V , while HOD is always somewhat close to
V (see Vopenka’s Theorem). How much close, is a critical branch of
research in set theory.

• L can just have small large cardinals, those in the first group, while
HOD can have very large cardinals. How many, it is still a critical open
question.

As an example of the last point:

Proposition 10.5 (ZF). Let κ be a cardinal, U ∈ OD a measure on κ. Then
HOD � κ is measurable.

Proof. The key point is that U ∩HOD ∈ HOD, because it is in OD and all
its elements are in HOD, and that U ∩HOD is still a measure:

• ∅ /∈ U , so ∅ /∈ U ∩HOD;

• κ ∈ U , κ ∈ HOD, so κ ∈ U ∩HOD;

• let (Aα : α < η), with η < κ and Aα ∈ U ∩ HOD; then
⋂
α∈η is in U

because U is κ-complete, and is in HOD because HOD is a model of
ZFC, so

⋂
α∈η ∈ U ∩HOD;

• let A ∈ U ∩HOD, A ⊆ B ⊆ κ, B ∈ HOD. Since U is a filter, B ∈ U ;
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• suppose A ∈ HOD, A ⊆ κ, A /∈ U ∩HOD; then A /∈ U , so κ \A ∈ U ;
but also κ \ A is definable from A and κ, so it is in HOD;

• suppose there exists A0 ⊆ κ, A0 ∈ HOD such that U ∩HOD = {A ⊆
X : A ∈ HOD, A0 ⊆ A}; as we have seen before, A0 = {δ} for some
δ < κ; consider now {X ⊆ κ : δ ∈ X}: on one hand, if δ ∈ X, then
X ∈ U , because {δ} ∈ U∩HOD, so {X ⊆ κ : δ ∈ X} ⊆ U ; on the other
hand, {X ⊆ κ : δ ∈ X} is an ultrafilter, so U = {X ⊆ κ : A0 ⊆ X},
contradiction because U is not principal.

Here some theorems that reflect this, without proofs:

Lemma 10.6. If P is homogeneous and G is V -generic, then HODV [G] ⊆ V .
Actually, HOD is a generic extension of HODV [G].

Theorem 10.7 (McAloon). It is consistent that HODHOD 6= HOD.

Sketch of proof. Start with L, add a Cohen real x. In L[x] force so that in
L[x,G] 2ℵn > ℵn+1 iff x(n) = 0. Then x is OD in L[x,G], so HODL[x,G] =
L[x]. By homogeneity of Cohen forcing, HODL[x] = (HODHOD)L[x,G] = L 6=
HODL[x,G].

Theorem 10.8 (Vopenka). There is a forcing P ∈ HOD such that for any
set of ordinals A, there is a G P-generic in HOD such that A ∈ HOD[G].

Theorem 10.9 (Cheng, Friedman, Hamkins). It is consistent that there
are supercompact cardinals in V , but not in HOD. In fact, that all the
supercompact cardinals in V are not even weakly compact in HOD.

Theorem 10.10 (Woodin). Assume that δ is an extendible cardinal. Then
either

• For every singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD =
γ+ or

• every regular cardinal greater than δ is measurable in HOD.

Even for OD and HOD there are relative constructions. In this case,
though, they are less codified, and their definition and notation are not stan-
dard. In this paper we are going to indicate ODx as the class of sets that
are definable using as parameters ordinals and x, that is the Gödel closure
of {Vα : α ∈ Ord} ∪ {x}. There exists therefore a definable well-ordering of
the class ODx.
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11 Back at the main topic

So we are trying to pull down to HOD the measurability of ω1 that AD
assures. Let U be the cone measure. It is not clear whether U ∩ HOD ∈
HOD, therefore the answer is not immediate. It is better to change approach,
and find another measure on ω1 that is ordinal-definable.

Theorem 11.1 (ZF+AD). The club filter on ω1 is an ω1-complete ultrafilter.

Proof. The proof will have a lot of coding, so it is worth to understand better
what we are coding. We start with a different game.

Let X ⊆ ω1, and consider the game:
I α0 α1

. . .
II β0 β1

where α0 < β0 < α1 < · · · < ω1. The first player that fails to follow the
rules loses, otherwise I wins iff supn∈ω αn ∈ X. We want to prove that I has
a winning strategy iff X is in the club filter.

Suppose then that X contains a club C. The winning strategy for I will
be just to play every time an element of C: since C is unbounded I can always
have a legal move, and since C is closed then I will win, so this strategy is
winning for I. Suppose now that I has a winning strategy σ. Fix γ0 < ω1,
and let γ1 = supσ′′γ<ω0 . Since ω1 is regular, we have that γ1 < ω1. Define
by induction γn+1 = supσ′′γ<ωn , and then γω = supn∈ω γn. We have that γω
is closed under σ, i.e., s ∈ γ<ωω , σ(s) < γω. Let C therefore be the set of
limit points closed under σ. Since for any γ < ω1, γ < γω ∈ C, then C is
unbounded, and it is obviously closed, therefore C is a club. Let γ be a limit
point of C, and let (γi : i < ω) be a a cofinal sequence in γ of elements of
C. This sequence is a legal play for II. Then X contains all the limit points
of C, that is still a club. So we’re done, we proved that I has a winning
strategy iff X is in the club filter. If this game was determined, then we
would have proved the theorem, but this game is not included in the Axiom
of Determinacy, so we need to find another game that is determined and that
is similar to this one.

We have seen that each countable ordinal can be coded by a real. Also,
ω reals can be coded by one real. Then I is going to play x(0), x(1), . . . such
that (x(0), x(1), . . . ) codes (α0, α1, . . . ). Given x ∈ ωω, we call (x)i the i-th
real of the decomposition of x into ω reals. We consider now the following
game:

I x(0) x(1)
. . .

II y(0) y(1)
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where the rules are:

• (x)i, (y)i ∈ WO for any i ∈ ω. If this rule is violated, let i be the
least such that (x)i /∈ WO or (y)i /∈ WO. If (x)i ∈ WO, then I wins,
otherwise II wins.

• ‖(x)0‖ < ‖(y)0‖ < ‖(x)1‖ < . . . . The first failure of this rule determines
who wins.

• If both rules are satisfied, then I wins iff supn∈ω ‖(x)n‖ ∈ X.

We want to prove that if I has a winning strategy then X contains a
club. Let σ be a winning strategy for I. For any α < ω1, let Xα = {(((σ ∗
y)I)n : n ∈ ω, y ∈ ωω, ∀i < n (y)i ∈ WO<α}. Note that if for all i < n,
(y)i ∈ WO, then it must be that ((σ ∗ y)I)n ∈ WO, otherwise I would
lose, so Xα ⊆ WO. We have seen that WO<α is Σ1

1, and so Xα is Σ1
1.

By the Boundedness Lemma, there is an α′ such that Xα ⊆ WO<α′ . Let
f : ω1 → ω1 be the function that associates for any α < ω1 the least α′ such
that Xα ⊆ WO<α′ . Let C be the set of closure points of f , i.e., all the limit
points γ such that if ξ < γ then f(ξ) < γ. If C ′ is the set of limit points
of C, then C ′ is a club, because ω1 is regular. Let γ ∈ C ′ and (γi : i < ω)
a sequence of elements in C cofinal in γ. Using ACω(R), let y ∈ ωω such
that ‖(y)i‖ = γi. We want to prove that y satisfies the first two rules for
II, so that supn∈ω ‖((σ ∗ y)I)n‖ = supn∈ω ‖(y)n‖ = supn∈ω γn = γ ∈ X and
C ′ ⊆ X. We chose y so that (y)n ∈ WO, so the first rule is satisfied. Consider
‖((σ ∗ y)I)0‖. Trivially ((σ ∗ y)I)0 ∈ X0, and as X0 ⊆ WOf(0) ⊆ WO<γ0 ,
then ‖((σ ∗ y)I)0‖ < γ0 = ‖(y)0‖, and the same is true for any n ∈ ω.

The same argument shows that if II has a winning strategy then ω1 \X
contains a club. This means that the club filter on ω1 is an ultrafilter.

We need to prove now that it is ω1-complete. With AC it was immediate:
given Xn in the club filter, each of which had a Cn ⊆ Xn club inside, and
the intersection of ω club is still a club. This last statement is still true, the
problem is that without choice we cannot choose one Cn for each Xn, so we
need to use again the same game and ACω(R) will be enough. We are going
to prove that if (Xn : n ∈ ω) are all sets for which I has a winning strategy,
then I has a winning strategy for

⋂
n∈ωXn. For any Xn, choose a σn, winning

strategy for I. Assume toward a contradiction that I has no winning strategy
for

⋂
n∈ωXn, so let σ be a winning strategy for I for ω1 \

⋂
n∈ωXn. We want

to build a play y for II that is legal against all the σn’s and against σ, and
then we will have that supi∈ω ‖(y)i‖ ∈ Xn for every n ∈ ω, but it is not in⋂
n∈ωXn, contradiction.

We build (y)n by recursion. Let X(σ, 0) = {((σ ∗ y)I)0 : y ∈ ωω}, and de-
fine X(0) =

⋂
n∈ωX(σn, 0)∩X(σ, 0). Then X(0) is Σ1

1 (we code all strategies
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as just one real), so any X(0) ⊆ WO<β0 for some β0, by the Boundedness
Lemma. By induction X(σ, n) = {(σ ∗ y)n : y ∈ ωω ∧ ∀i < n (y)i = zi}, and
X(n) =

⋃
i<ωX(σi, n+1)∩X(σ, n+1). Again this is Σ1

1, therefore by boun-
dedness there is a βn such that X(n) ⊆ WOβ , and choose (y)n ∈ WOβ1 . We
can suppose βn+1 > βn. Then yωω is a move for II that satisfies the first two
rules: surely all (y)n ∈ WO; we have ‖((σn ∗ y)I)0‖ < (y)0 < ‖((σn ∗ y)I)1‖ <
. . . , the odd inequalities because for any i ∈ ω, ((σn ∗y)I)i ∈ X(i) ⊆ WO<βi ,
and therefore ‖((σn ∗ y)I)i‖ < βi = ‖(yi)‖, the even inequalities because σn
is a winning strategy for I. The same holds for σ, therefore y is a legal move
for II, and this is a contradiction.

Now, the club filter is OD. So we proved the following:

Theorem 11.2 (ZF+AD). HOD� ω1 is measurable.

In particular, Con(ZF+AD) implies Con(ZFC+there exists a measurable
cardinal).

We would like to prove now that there are even more measurable cardinal.
Fortunately, the proof above is fairly flexible: to prove that the club filter in
δ is a measure, we just (heh...) need:

• δ to be regular (for the sup game);

• a way to map cofinally reals into δ (to code the sup game in ωω);

• this way should be so that a boundedness lemma holds;

• there should be a way to “choose” strategies from winning payoff sets
(for completeness).

Our best bet is to find a cardinal that is “similar” to ω1. Very vaguely, the
fact that WO is Σ1

1 seems to indicate that there is an “analytic” connection
between the reals and ω1. This is also reinforced by the following observation:

Proposition 11.3. ω1 = sup{α : there exists a ∆1
1 surjection π : ωω → α}.

The idea is to lift everything we have done in the second order to the
third order, therefore admitting some cautious quantification on subsets of
the reals.

Definition 11.4. A set X ⊆ ωω is Σ2
1 iff there exists a formula ϕ that is in

the language of Vω+1 plus a unary predicate A, and can be written as a series
of quantifiers on the reals and a part that is recursive in A, and such that
X = {x ∈ ωω : ∃A ⊆ ωω(Vω+1,∈, A) � ϕ(x)}.

A set X ⊆ ωω is Σ2
1 iff as before, but recursive in some real.

A set is Π2
1 and Π2

1 if it is the complement of a Σ2
1 and Σ2

1 set.
A set is ∆2

1 if it is both Σ2
1 and Π2

1.
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This will have the role that previously Σ2
1 had. Even ω1 is solidly tied to

the second order theory:

Proposition 11.5. ω1 = sup{α : there exists a ∆1
1 surjection π : ωω → α}.

The problem of the third order theory of arithmetic is that it can be very
wild, subsets of reals can be very pathological. So, from now on, we will
work in L(R). The reason is that in this case the third order theory can
not be much distant from the second order theory, all the subsets of R are
constructible from R, so everything will be very regular and results on the
second order theory will carry on nicely.

12 L(R)
From now on, the basic theory will be ZF+ACω(R)+V = L(R), so we are
working inside L(R). We should therefore getting acquainted with it. We can
actually borrow much of what we have already done for L. So, for example,
L(R) � ZF .

This new structure forces us to think about definability in a different way.
We call LR the language of set theory with an additional 1-ary relation Ṙ,
and it is intended that Ṙ will always be interpreted as R. We can redefine
the Levy hierarchy in this way: Σ1(R) formulas, for example, are Σ1 formulas
in the language LR. The following, then, is proved in the same way as in L:

Theorem 12.1. 1. L(R) � ZF ;

2. The function α 7→ Lα is definable with a Σ1(R) formula;

3. The property “x is constructible relative to R” is absolute for inner
models of ZF with the same R;

4. There exists a Π2(R) formula, “V = L(R)”, such that if M is an inner
model of ZF and M � V = L(R), then M = L(RM);

5. If M is a transitive set, then if M � ZF−P+V = L then M = Lα(RM)
for some ordinal α;

6. If M is an inner model of ZF, then L(RM) ⊆M ;

7. L(R) is well-ordered iff there exists a well-order of ωω in L(R);

Note that if we are looking for consistency results from ZF+AD, we can
assume V = L(R), as:
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Remark 12.2 (ZF+AD). L(R) � AD.

Proof. We can think of AD as “for any subset X of R there exists a strategy
σ(X) that is winning for I or there exists a strategy τ(X) that is winning
for II”. If X ∈ L(R), then there exist σ(X) or τ(X), but since σ and τ can
be coded by a real, those are strategies in L(R. Being a winning strategy is
absolute, so AD holds also in L(R).

Corollary 12.3. Con(ZF+AD)↔Con(ZF+AD+V = L(R)).

Lemma 12.4. There exists Φ : Ord×R� L(R) Σ1(R)-definable surjection
in L(R) in the language LR; in fact, for any α limit ordinal there exists
Φα : α× R� Lα(R) that is LR-definable in Lα(R).

Proof. The proof is the same as before: this time, every element of L(R) can
be coded by a finite tree labeled with ordinals in the nodes, and reals in the
leaves. Code every finite sequence of reals with one reals, code every such
tree with an ordinal, et voilà, you have your definable surjection.

This lemma is used to build partial Skolem functions and substructures
in L(R): in a sort of Lowenheim-Skolem way:

Suppose that L(R) � ∃ϕ(x, a), where ϕ is ∆0 in the language LR and
a ∈ R. Then there exists a b ∈ L(R) such that L(R) � ϕ(b, a). Since Φ
is a surjection, there exists a c ∈ R and an ordinal α such that L(R) �
ϕ(Φ(c, α), a), so if we fix c, we can minimize α and choose a witness for
∃xϕ(x, a).

Definition 12.5. For any ϕ(x, a) ∆0 formula in the language LR with one
free variable, c, a ∈ R, we define h(〈ϕ, a, c〉) as Φ(c, α), if L(R) � ϕ(Φ(c, β), a)

for some β, where α is the least, otherwise h is not defined. We call H
L(R)
1 (∅) =

H
L(R)
1 = h′′R.

Suppose that L(R) � ∃x ϕ(x, a), where ϕ is ∆0 in the language LR and

a ∈ R. Then there is a c such that L(R) � ϕ(h(〈ϕ, a, c〉), a), and R ⊆ H
L(R)
1 ,

therefore H
L(R)
1 � ∃ϕ(x, a), so formulas of this kind are reflected by H

L(R)
1 .

In these cases, we write H
L(R)
1 ≺R∪{R}

1 L(R). Now, V = L(R) is a Π2(R)

statement, therefore it is also reflected and H
L(R)
1 � V = L(R). But then,

the collapse of H
L(R)
1 , that we identify with H

L(R)
1 , is a transitive set that

satisfy V = L(R), therefore there is a δ such that H
L(R)
1 = Lδ(R).

Definition 12.6. We call δR the least δ such that Lδ(R) ≺R∪{R}
1 L(R).
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Therefore H
L(R)
1 = LδR(R), and h is a surjection from a subset of R and

LδR(R). What is its definability rank? Its domain is the set of ϕ, a, c such
that there is a α such that ϕ(Φ(c, α), a) holds, so it is Σ1(R). The calculation
of h(〈ϕ, a, c〉) is similarly Σ1(R), so the whole h is Σ1(R). We proved the
following:

Lemma 12.7 (ZF+V = L(R)). There is a Σ1(R)-definable partial surjection
h : R� LδR(R).

We introduce two variants for this construction.
Let X ∈ L(R). For any ϕ(x, a, d) ∆0 formula in the language LR with

one free variable, c, a ∈ R, d,∈ tc({X}), we define hX(〈ϕ, a, c, d〉) as Φ(c, α),
if L(R) � ϕ(Φ(c, β), a, d) for some β, where α is the least, otherwise hX is

not defined. We call H
L(R)
1 (X) = h′′XR.

Again, H
L(R)
1 (X) ≺R∪{R}

1 L(R). If we identify H
L(R)
1 (X) with its collapse,

we have that H
L(R)
1 (X) = Lδ(R). Since the whole transitive closure of X

and X itself are in H
L(R)
1 (X), we have that X is not collapsed, therefore

X ∈ Lδ(R). Now, hX is a partial surjection from ωω× tc({X}) to Lδ(R). We
have proved the following:

Lemma 12.8 (ZF+V = L(R)). For any X ∈ L(R), there exist a δ such

that X ∈ Lδ(R) ≺R∪{R}
1 and a hX : ωω × tc({X}) � Lδ(R) Σ1(R)-definable

partial surjection.

Let λ limit ordinal. For any ϕ(x, a) formula in the language LR with
one free variable, c, a ∈ R, we define hLλ(R)(〈ϕ, a, c〉) as Φλ(c, α), if Lλ(R) �
ϕ(Φλ(c, β), a) for some β, where α is the least, otherwise h is not defined.

We call H
Lλ(R)
c the closure of R under hLλ(R).

Now, since we are using all possible formulas and we are closing under
hLλ(R), it is possible to prove by induction that H

Lλ(R)
c ≺ Lλ(R), i.e., that

every formula with parameters in H
Lλ(R)
c that holds in Lλ(R) holds also in

H
Lλ(R)
c . Again, we can identify H

Lλ(R)
c with its collapse, so there is a δ ≤ λ

such that H
Lλ(R)
c = Lδ(R).

If x ∈ HLλ(R)
c , then there exists a finite sequence of applications of hLλ(R)

that defines it, and since hLλ(R) is definable in Lλ(R) using R as parameter,
we have that x is definable in Lλ(R) with parameters in R ∪ {R}. Also, this

constructions will give a partial surjection from ωω to H
Lλ(R)
c . On the other

hand, if x is definable in Lλ(R) with parameters in R ∪ {R}, then it is of

course in H
Lλ(R)
c . We proved the following:

Lemma 12.9 (ZF+V = L(R)). For any λ limit ordinal, H
Lλ(R)
c = {x ∈

L(R) : x is definable in Lλ(R) with parameters in R ∪ {R}} ≺ Lλ(R), and

there exists a surjection from ωω to H
Lλ(R)
c definable in Lλ(R)
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In L, we have that all the subsets of ωω were in Lℵ2 . Here it is more
complicated. We are trying now to see where the subsets of R in L(R) live,
and whether knowing that they are definable gives us more information to
pinpoint their location.

As we have already noted, in L(R) the Axiom of Choice could not hold.
It does not make sense, therefore, to ask for the cardinality of R. There is a
way, though, to gauge its largeness, through surjections:

Definition 12.10. Θ = sup{α : ∃π : ωω � α, π ∈ L(R)}

This ordinal is key in the descriptive set theory L(R), because it is the
ordinal that encompasses the whole third-order theory on the reals (i.e., the
theory of the sets of reals). We explain better what does this mean:

Lemma 12.11. LΘ(R) = {x ∈ L(R) : ∃π : ωω � tc(x)}. Therefore P(R) ⊆
LΘ(R).

Proof. Suppose x ∈ LΘ(R). Then there is a limit ordinal λ < Θ such that
x ∈ Lλ(R). In particular tc(x) ⊆ Lλ(R). But there is a surjection π1 : ωω →
λ, and a surjection Φλ : λ × ωω → Lλ(R), so combining the two there is a
surjection from ωω to Lλ(R), and therefore also to tc(x).

Suppose x ∈ L(R) and that there exists π : ωω � tc(x). Let λ be a

limit ordinal such that x ∈ Lλ(R). Let X = H
L(R)
1 (x). But then there is a γ

such that the transitive collapse of X is Lγ(R), and x ∈ tc(x) ⊆ Lγ(R). The

surjection hx to H
L(R)
1 (x) proves that γ < Θ.

So in particular δR < Θ. There is also a sort of viceversa of P(R) ⊆
LΘ(R):

Lemma 12.12 (ZF+V = L(R)). Let X ∈ LΘ(R). Then there exist E,E ′ ⊆
R such that M = (R, E, E ′) ≡1 (X,=,∈) and the transitive collapse of RM

is R.

Proof. Since X ∈ LΘ(R), there exists π : ωω � tc(X). Just define (a, b) ∈ E
iff π(a) = π(b) and (a, b) ∈ E ′ iff π(a) ∈ π(b).

So, we can think of LΘ(R) as the set of subsets of R. What about Σ2
1

sets?

Lemma 12.13 (ZF+V = L(R)). For any A ⊆ R, A is Σ2
1 iff it is Σ1

definable over LδR(R).
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Proof. Let A be Σ2
1. So there is a formula ϕ with quantifiers bounded by R,

and a ∈ R such that x ∈ A iff ∃X ⊆ Rϕ(x,X, a). But if x ∈ A then there
should be a witness X for it in LδR(R), so x ∈ A iff ∃X ∈ LδR(R), X ⊆
Rϕ(x,X, a).

Viceversa, if A is Σ1 definable over LδR(R), there is a ∆0 formula ϕ and
a ∈ LδR(R) such that x ∈ A iff LδR(R) � ∃Xϕ(x, a,X). Since a ∈ LδR(R),
there is a c ∈ R such that h(c) = a, and this formula is Σ1(R), so we can
suppose that a ∈ R. Now, if X witnesses that x ∈ A, then X ∈ LδR(R),
so there exists an E ⊆ R such that M = (R, E) ≡1 X and the transitive
collapse of RM is R

We can then write x ∈ A iff ∃E ⊆ R M = (R, E) is a well-founded
extensional model of V = L(R), RM collapses to R and M � ϕ(xM , aM , XM).

Remark 12.14. Let ϕ(x,X, a) be a ∆0(R)-formula with one first-order and
one second-order parameter. Then ∀x ∈ R ∃X ⊆ R ϕ(x,X, a)} is equivalent
to a Σ1(R formula with real parameters.

Proof. For any x ∈ R, X ⊆ R, define x ⊕ X = {〈x, y〉 : y ∈ X}. Let
A = {x⊕X : ϕ(x,X, a)}, and suppose that ∀x ∈ R ∃X ⊆ R ϕ(x,X, a)}. So
∀x ∈ R ∃Y ∈ Axϕ(x, Y, a). In other words, ∃A∀x ∈ R ∃Y ∈ Axϕ(x, Y, a),
and this is Σ1(R). The other direction is immediate.

Lemma 12.15 (ZF+V = L(R)). For any A ⊆ R, A is ∆2
1 iff it is in LδR(R).

Proof. Suppose that A ∈ LδR(R). Then, almost vacuously, A is Σ1 definable
over LδR(R), therefore it is Σ2

1. But also ωω \A is in LδR(R), and so it is Σ2
1.

Therefore A is ∆2
1.

On the other hand, let A be ∆2
1. So there are ϕ(x,X) and ψ(x,X)

∆0(R) formulas, possibly with parameters in R, such that for any x ∈ R,
x ∈ A iff ∃X ⊆ Rϕ(x,X) and x /∈ A iff ∃X ⊆ Rψ(x,X). So L(R) � ∀x ∈
R ∃X ϕ(x,X) ∨ ∃Y ψ(x, Y ). By the remark above, this is equivalent to a
Σ1(R) formula with real parameters, therefore also LδR(R) satisfies it. Since
it is Σ1(R), there is a witness for it. Let γ < δR such that the witness for this
sentence is in Lγ(R). Then Lγ(R) � ∀x ∈ R ∃X, Y ⊆ Rϕ(x,X) ∨ ψ(x, Y ).
Consider A′ = {x ∈ R : Lγ(R) � ∃Xϕ(x,X)} ∈ Lγ+1(R), A′ ⊆ A. If x /∈ A′,
then Lγ(R) � ∃Y ⊆ R ψ(x, Y ), so x /∈ A. But then A = A′ ∈ LδR(R).

We have seen that every set in LΘ(R) can be pulled down as a structure
in R that is very similar. When we do this with an ordinal, we have a very
interesting structure: the prewellorder.

Let α < Θ and let π : ωω � α. Then define the relation on the reals
x 4π y iff π(x) ≤ π(y). Which properties does this relation have? It is
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reflexive and transitive. It is linear. It is well-founded, as a descending
sequence of 4 will induce a descending sequence of ≤ in α. The only property
that is missing for it to be a well-order is anti-simmetry: if x 6= y but
π(x) = π(y), then x 4π y, y 4π x, but they are different. This is what is
called a prewellorder, pwo for short. So now Aπ = {〈x, y〉 : x 4π y} is a set
of reals that codes α.

We can now introduce the cardinal we want to be measurable:

Definition 12.16. δ1
2 = sup{α < Θ : ∃π : ωω � α, Aπ is ∆2

1}.

It is easy to see that δ2
1 ≤ δR:

Lemma 12.17 (ZF+V = L(R)). δ2
1 ≤ δR.

Proof. Let α < δ2
1, π : ωω � α with Aπ ∆2

1. Then Aπ ∈ LδR(R). The
sentence “ot(Aπ) = δ” is “there is an morphism from (

⋃
Aπ, Aπ) to (δ,≤),

so it is a Σ1(R) sentence. Since L(R) � ∃α ot(Aπ) = α, then this is true also
in LδR(R), so α < δR.

Lemma 12.18 (ZF+V = L(R)). Let ϕ(a) be a formula, a ∈ R. Let λ be
the least such that Lλ(R) � ϕ(a). Then HLλ

c (R) = Lλ(R), and there exists
π : ωω � Lλ(R), π ∈ Lλ+1(R).

Proof. Well, HLλ
c (R) ≺ Lλ(R), so there exists a λ̄ such that the collapse of

HLλ
c (R) is Lλ̄(R). But then Lλ̄(R) � ϕ(a), and since λ was the least we

have that λ̄ = λ. We have already seen, then, that there is a surjection to
HLλ
c (R) = Lλ(R) that is definable over Lλ(R), and therefore in Lλ+1(R).

Lemma 12.19 (ZF+V = L(R)). {λ : HLλ
c (R) = Lλ(R)} is cofinal in δR.

Proof. We are going to prove that the set of λ’s such that λ is the least that
satisfies a Σ1(R) formula with real parameters is cofinal in δR, and the lemma
will follow.

Suppose not. Then there exists an α < δR such that for any δ0(R) formula
ϕ(x, a), with x free variable and a ∈ R, either for all λ < δR Lλ(R) 2
∃x ϕ(x, a), or there exists λ < α such that Lλ(R) � ∃x ϕ(x, a). In the

first case, since LδR(R) ≺R∪{R}
1 L(R), simply L(R) 2 ∃x ϕ(x, a). But then

if L(R) � ∃x ϕ(x, a), there must be a λ < α such that Lλ(R) � ∃x ϕ(x, a).

This means that Lα(R) ≺R∪{R}
1 L(R), contradiction.

Lemma 12.20 (ZF+V = L(R)). δ2
1 = δR.

Proof. Suppose by contradiction that δ2
1 < δR. Then there is an ordinal α

between δ2
1 and δR such that there is a π : ωω � Lα(R) with π ∈ Lα+1(R).

Since α > δ2
1, we can restrict π to π′ : ωω � δ2

1, again with π′ ∈ Lα+1(R).
But then Aπ′ ∈ LδR(R), and so it is a ∆2

1 pwo of length δ2
1; contradiction.
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Now we are going to define a partial map from ωω to δ2
1, so that its domain

is Σ2
1 and all the counterimages of singletons are ∆2

1, with the objective to
prove that δ2

1 is measurable.

Definition 12.21. We say that Γ is a pointclass iff it is a collection of
subsets of perfect product spaces which is closed under continuous inverse
image.

A pointclass is non-selfdual if there exists an A ∈ Γ such that its comple-
ment is not in Γ.

Lemma 12.22 (ZF+AD). Let Γ be a non-selfdual pointclass of sets of reals.
Then there is a set that is ωω-universal for Γ.

Proof. We have already noticed that any f̄ : ω<ω → ω<ω uniquely defines a
continuous function f : ωω → ωω, and that every continuous function f is
defined by some f̄ as above. But we can code ω<ω as ω, and therefore every
f̄ can be considered a real. Therefore, every real y ∈ ωω defines a continuous
function fy : ωω → ωω, and every continuous function f : ωω → ωω is defined
by (at least) a real.

Consider the function F : ωω×ωω → ωω defined as F (y, x) = fy(x). This
is actually a continuous function: if fy(x) ∈ Ns for some s ∈ ω<ω, then by
continuity of fy there is a t ∈ ω<ω such that f ′′yNt ⊆ Ns. By the definition
of fy, there exists a u ∈ ω<ω such that for any y ∈ Nu f

′′
yNt ⊆ Ns, therefore

F ′′Nu ×Nt ⊆ Ns.
We use Wadge’s Lemma, that says that if Γ is a class of sets of reals that

are determined (so, in our case, any class), then for any A,B ∈ Γ either
B ≤W A or A ≤W B̃. Let A ∈ Γ \ Γ̃. For any y ∈ ωω, let fy be the
continuous function coded by y. Define U = {(y, x) ∈ ωω × ωω : fy(x) ∈ A}.
Then U ∈ Γ, because it is the inverse image of A under the continuous
function F . Let B ∈ Γ. By Wadge’s Lemma, either B ≤W A or A ≤W B̃,
but in the second case we would have that A ∈ Γ̃, contradiction, so B ≤W A.
This means that there is a continuous function f : ωω → ωω such that x ∈ B
iff f(x) ∈ A. Let y ∈ ωω that codes f . Then x ∈ B iff fy(x) ∈ A iff x ∈ Uy,
so B = Uy and U is ωω-universal.

The class Σ2
1 is closed under counterimages of continuous functions, so

under AD there is a ωω-universal set for it. Let us call it U ′. Now consider
U = {〈x, y〉 : (x, y) ∈ U ′}. Since U ′ is a Σ2

1 set, then also U is a Σ2
1 set, so

there is a formula ∃X ⊆ ωωψU(x,X) such that ψU is δ0(R) and x ∈ U iff
∃X ⊆ ωωψU(x,X). For any α < δ2

1, define Uα = {x ∈ U : Lα(R) � ∃X ⊆
ωω ψU(x,X)}. If x ∈ U then there exists an X ⊆ ωω such that ψU(x,X)
holds, but then there exists α < δ2

1 such that X ∈ Lα(R), and so x ∈ Uα.
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In other words, U =
⋃
α<δ21

Uα, and it is an increasing union. Moreover,

Uα ∈ LδR(R), therefore it is ∆2
1.

Define π : U → δ2
1 as: π(x) is the smallest such that x ∈ Uα. Now, U

is Σ2
1, and Uα = {x ∈ U : π(x) ≤ α} is ∆2

1. Also, π is Σ1(R)-definable:
π(x) = α iff x ∈ U and there exists X ∈ Lα(R) ϕU(x,X) and for any
β < α ∀X ∈ Lβ(R) ¬ϕU(x,X). For x ∈ U , the proposition π(x) = α is
actually ∆1(R)-definable, as π is linear. So, once we have x, y ∈ U , the
proposition “π(x) ≤ π(y)” is ∆1(R).

We want to prove that δ2
1 is measurable with the same proof as ω1, so we

need:

• δ2
1 regular;

• π is bounded on every ∆2
1 subset of U ;

• some way to choose strategies out of a collection of < δ2
1 sets.

Actually, the answer for the third problem will provide the answer for the
other two.

13 Side plot: Coding Lemmata in L(R)
We are now trying to understand what kind of choice we need to prove that
δ2

1 is regular. We first see why ACω(R) suffices to prove that cof(δ2
1) > ω,

and then try to see how to generalize this proof.

Lemma 13.1. cof(δ2
1) > ω

Proof. Suppose (αn)n∈ω is a cofinal sequence in δ2
1. Then for any n ∈ ω,

there is at least a ∆2
1 pwo of ordertype αn. Consider {A ⊆ R : A is a ∆2

1

pwo of ordertype αn}. If we had the full ACω, we could choose one for
each n ∈ ω. But since they are all ∆2

1 sets, they are all in LδR(R) sets, so
they are image of some real under h. So now consider the collection of sets
{x ∈ R : h(x) is a pwo of length αn}. Choose one each, and call it xn. Then
define 〈n, t〉 ≺ 〈n′, t′〉 iff n < n′ or n = n′ and (t, t′) ∈ h(xn).

This is a Σ2
1 pwo of ordertype δ2

1, because it is defined by a Σ1(R) formula.
Now, each h(xn) is ∆2

1, so there is a y such that h(y) = ωω \h(xn). Consider
the collection of sets {y ∈ R : h(y) = ωω \ h(xn)}, and choose one yn each.
then ¬(〈n, t〉 ≺ 〈n′, t′〉) iff n′ > n or n = n and (y, y′) ∈ h(yn), that is again
a Σ1 formula, so ≺ is actually a ∆2

1 pwo of ordertype δ2
1, contradiction.
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How to generalize this? Suppose that we have (αη)η<γ a cofinal sequence
in δ2

1, with γ < δ2
1. Then there is a pwo Aπ of ordertype γ. If we could choose

one xη for any η < γ so that h(xη) is a ∆2
1 pwo of ordertype αη, then we could

define 〈x, t〉 ≺ 〈x′, t′〉 iff x ≺π x′ or (x, x′) ∈ Aπ and (t, t′) ∈ h(xπ(x)). This
would be a pwo of length δ2

1, but it would be Σ2
1 only if (xη)η<γ ∈ LδR(R).

So we do not want just to choose the pwos, we want to choose them in a
“simple” way.

But why asking for just one pwo for every η? Suppose that for any η < γ
there is a Zη ⊆ R, ∆2

1, such that for any x ∈ Zη h(x) is a pwo of ordertype
αη. Also, suppose that for any α, {Zη : η < α} is ∆1(R). Now define
〈a, x, t〉 ≺ 〈a′, x′, t′〉 iff π(a) < π(a′) or π(a) = π(a′), x, x′ ∈ Zπ(a) and the
rank of t in the pwo h(x) is less than the rank of t′ in the pwo h(x′). If we
couls prove that comparing the two ranks is ∆2

1, then ≺ would also be ∆2
1,

and we could reach a contradiction. So the full choice is not needed, we just
need to find, for avery collection of sets of length < δ, a collection of subsets
whose initial segments are ∆1(R).

We are going first to prove the Coding Lemma for WO, so that we get
familiar with the proof and we can generalize it to the third order.

Lemma 13.2 (ZF+AD). Suppose Z ⊆ WO × ωω. Then there exists a Σ1
2

set Z∗ such that Z∗ ⊆ Z and for all α < ω1, Z∗ ∩ (WOα × ωω) 6= ∅ iff
Z ∩ (WOα × ωω).

As a basic example, consider a set Z inside WO (any set, any complexity).
Then we can imagine it sliced in a partition, where every set in the partition
has elements of the same norm. Then we can find a Z∗ that is a subset of
Z, it is Σ1

2 (and therefore “simple”), and yet it touches all the sets in the
partition.

Proof. Consider the game
I x(0) x(1)

. . .
II y(0) y(1)

where II wins iff whenever x ∈ WO then y codes a countable set Y such
that Y ⊆ Z and for all α ≤ ‖x‖, Y ∩(WOα×ωω) 6= ∅ iff Z∩(WOα×ωω) 6= ∅.
The idea is that I challenges II playing a countable ordinal, ‖x‖, and II meets
this challenge providing a selector Y up until ‖x‖.

The claim is that there can be no winning strategy for player I in this
game. Assume by contradiction that σ is a winning strategy for I. The set
X = {(σ ∗ y)I : y ∈ ωω} is Σ1

1(σ) and, since σ is winning for I, X ⊆ WO.
But then by Σ1

1-boundedness there is a β < ω1 such that X ⊆ WO<β. Using
ACω(R), choose for any Z ∩ (WOα × ωω), with α < β, an element, and let

40



Y be this selector. Let y code Y and play y against σ. Then the resulting
play is a win for II, contradiction.

Then II has a winning strategy τ . For x ∈ WO, let Y x be the countable
subset of Z that emerges from the play x ∗ τ . Let Z∗ =

⋃
{Y x : x ∈ WO}.

Then Z∗ is Σ1
2(τ), Z∗ ⊆ Z, and for any α < ω1 Z

∗ ∩ (WOα × ωω) 6= ∅ iff
Z ∩ (WOα × ωω) 6= ∅.

In fact, it is possible to slightly improve this result, and find a Z∗ that is of
the form X∩(WO×ωω), where X ⊆ ωω×ωω is Σ1

1. With this generalization,
it is possible to prove in ZF+AD that the club filter on ω1 is normal. The
details are in Koellner’s paper.

To bring this result to the third order, we need to introduce some notation.
Given P ⊆ ωω, the notion of Σ1

1(P ) is defined exactly as that of a Σ1
1, but

allowing reference to P and to ωω \P . This notation is flexible: we can allow
for example P, P ′ ⊆ ωω, or P ⊆ (ωω)n.

This does not change anything for the construction of a universal set:
every Σ1

1 set is the projection of the body of a tree recursive in P , and
therefore we can code all the trees recursive in P with one tree recursive
in P , whose projection will be universal. We want also universal sets for
n-uples, with the following property:

Theorem 13.3 (s-m-n Theorem, or the Good Parametrization Lemma).
Let U universal set for Σ1

1(P ) sets in ωω. Then for any n there is a U (n) ⊆
(ωω)n+1 universal for Σ1

1(P ) sets in (ωω)n such that for any n < m ∈ ω there
is a continuous function smn : (ωω)n+1 → ωω such that (y, x1, . . . , xm) ∈ U (m)

iff (smn (y, x1, . . . , xn), xn+1, . . . , xm) ∈ U (m−n).

Proof. Fix U the ωω-universal set for Σ1
1(P ) sets in ωω. Note that the formula

“x ∈ U” is Σ1
1(P ). Now define

U (n) = {(y, x1, . . . , xn) ∈ (ωω)n+1 : (y0, 〈y1, x1, . . . , xn〉) ∈ U}, with 〈y0, y1〉 = y.

So fix m > n. Consider

A = {〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉 : (y0, 〈y1, x1, . . . , xn〉) ∈ U , with y = 〈y0, y1〉}.

Then A is Σ1
1(P ), therefore there exists an ε ∈ ωω such that A = Uε. Fix

it. Now define smn (y, x1, . . . , xn) = 〈ε, 〈y, x1, . . . , xn〉〉.
But now (y, x1, . . . , xm) ∈ U (m) iff (y0, 〈y1, x1, . . . , xm〉) ∈ U iff

〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉 ∈ A = Uε

iff (ε, 〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉) ∈ U . On the other hand,

(smn (y, x1, . . . , xn), xn+1, . . . , xm) ∈ U (m−n)
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iff (〈ε, 〈y, x1, . . . , xn〉〉, xn+1, . . . , xm) ∈ U (m−n) iff (ε, 〈〈y, x1, . . . , xn〉, xn+1, . . . , xm〉) ∈
U .

We write U (n)(P ) to indicate the (good) universal set for Σ1
1(P ) subsets

of (ωω)n. For e ∈ ωω, we indicate U
(n)
e (P ) for the projection of U (n)(P ) on

the branch e (therefore it is a Σ1
1(P ) set, and for every Σ1

1(P ) set A there is

a e ∈ ωω such that A = U
(n)
e (P ).

The s-m-n Theorem is helpful to choose indexes for Σ1
1(P ) defined in a

uniform way. For example if Ue1 an Ue2 are two Σ1
1(P ) sets, Ue1 ∩ Ue2 is also

a Σ1
1(P ) set, that can have many indexes. With the theorem above, we can

find a continuous function that associates to e1 and e2 an index for Ue1 ∩Ue2 :

Theorem 13.4 (Uniform Closure Theorem). If the class Σ1
1(P ) is closed

under an operation, then there exists a continuous function on the indexes of
the universal sets that witnesses it. For example:

• there exists a continuous function h : ωω × ωω → ωω such that for any
e1, e2 ∈ ωω, Uh(e1,e2) = Ue1 ∩ Ue2;

• let ψ(x, a, Ue) be a formula that defines a Σ1
1(P ) set, Aa,e.; then there

exists a continuous f : ωω → ωω such that Uf(a.e) = Aa,e;

• let ψ(x, a, Ue) and Aa,e as above; then there is a continuous h : ωω → ωω

such that Uh(e) =
⋃
a∈ωω Aa,e.

Proof. We prove only the first example, and from such proof the general
method will be clear. Note also that we are going to prove it for U , but it is
easy to generalize it for any U (n).

Let ψU(e, x) be the Σ1
1(P ) formula that defines U . Then for any e1, e2 ∈

ωω, x ∈ Ue1 ∩ Ue2 iff x ∈ Ue1 and x ∈ Ue2 iff ψU(e1, x) ∧ ψU(e2, x) holds.
Let A = {(e1, e2, x) ∈ (ωω)3 : ψU(e1, x) ∧ ψU(e2, x)}. Then A is Σ1

1(P ). We

choose an ε ∈ ωω such that A = U
(3)
ε . Now consider s3

1. Then x ∈ Ue1 ∩ Ue2
iff (e1, e2, x) ∈ U

(3)
ε iff (ε, e1, e2, x) ∈ U (3) iff (s3

1(ε, e1, e2), x) ∈ U iff x ∈
Us31(ε,e1,e2). So define h(e1, e2) = s2

1(ε, e1, e2).

Note that the continuous functions that witnesses can be many (one for
every choice of ε), but we can choose just one.

Theorem 13.5 (Kleene’s Recursion Theorem). Suppose f : ωω → ωω is

Σ1
1(P ). Then there is an e ∈ ωω such that U

(2)
e (P ) = U

(2)
f(e)(P ).

Proof. For a ∈ ωω, let Ta = {〈b, c〉 : (a, a, b, c) ∈ U (3)(P )}. Consider d : ωω →
ωω defined as d(a) = s3

1(a, a), so (a, a, b, c) ∈ U (3)(P ) iff (d(a), b, c) ∈ U (2)(P ),
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in other words Ta = U
(2)
d(a)(P ). Let Y = {(a, b, c) : (b, c) ∈ U (2)

f(d(a))(P )}; this

is a Σ1
1(P ) set on (ωω)3, so there is a a0 ∈ ωω such that Y = U

(3)
a0 (P ). But

then (b, c) ∈ U (2)
d(a0)(P ) iff (d(a0), b, c) ∈ U (2)(P ) iff (a0, a0, b, c) ∈ U (3)(P ) iff

(a0, b, c) ∈ U (3)
a0 (P ) = Y iff (b, c) ∈ U (2)

f(d(a0))(P ), so d(a0) is as desired.

Theorem 13.6 (Moschovakis’ Coding Lemma). Assume ZF+AD. Suppose
X ⊆ ωω and π : X → Ord. Suppose Z ⊆ X × ωω. Let Q = {〈a, b〉 :
π(a) ≤ π(b)} and Qa = {b : π(b) = π(a)}. Then there is an e ∈ ωω such that

U
(2)
e (Q) ⊆ Z and for all a ∈ X, U

(2)
e (Q)∩(Qa×ωω) 6= ∅ iff Z∩(Qa×ωω) 6= ∅.

Proof. Assume toward a contradiction that there is no such e. Consider G =
{e ∈ ωω : U

(2)
e (Q) ⊆ Z}. So for each e ∈ G, there should be an a ∈ X such

that U
(2)
e (Q) “misses” Z∩(Qa×ωω). Let αe be the least section “missed”, i.e.,

αe = min{α : ∃a ∈ X π(a) = α∧U (2)
e (Q)∩(Qa×ωω) = ∅∧Z∩(Qa×ωω) 6= ∅}.

Now play the game
I x(0) x(1)

. . .
II y(0) y(1)

where I wins if x ∈ G and either y /∈ G or αx ≥ αy. By our initial

assumption, αx always exists for x ∈ G, and U
(2)
e (Q) ∩ (Q<αx × ωω) is a

selector for Z ∩ (Q<αx × ωω).
We claim that I does not have a winning strategy. Suppose that σ is a

winning strategy for I. Since σ is winning, then for any y ∈ ωω, U
(2)
(σ∗y)I

(Q) ⊆
Z. Note that

⋃
y∈ωω U

(2)
(σ∗y)I

(Q) is a Σ1
1(Q) set, so it is U

(2)
eσ (Q) for some

eσ ∈ ωω. But then αeσ ≥ α(σ∗y)I for any y ∈ ωω. Choose a ∈ X such that

π(a) = αeσ , and pick (x1, x2) ∈ Z ∩ (Qa × ωω). Now still U
(2)
eσ ∪ {(x1, x2)}

is Σ1
1(Q), so let e∗ index that. Then e∗ ∈ G, and αeσ < αe∗ . Let II play e∗.

Then α(σ∗e∗)I ≤ αeσ < αe∗ , so II wins, contradiction.
Now we claim that also II does not have a winning strategy. This will

lead to a contradiction under AD. Assume then that τ is a winning strategy
for II.

Given e ∈ ωω and a ∈ X, then U
(2)
e (Q) ∩ (Q<a × ωω) is Σ1

1(Q), so
let h0 : ωω × X → ωω be a function that associate to e, a as before the
index for that set (from the Uniform Closure Theorem), so U

(2)
h0(e,a)(Q) =

U
(2)
e (Q) ∩ (Q<a × ωω). Such h0 is Σ1

1(Q). So the set coded by h0(e, a) is the
first π(a) slices of the set coded by e, that therefore cannot select anything
in the π(a)-th slice.

For any e ∈ ωω, also this set is Σ1
1(Q):

⋃
a∈X(U

(2)
(h0(e,a)∗τ)II

(Q)∩(Qa×ωω)),
so let h1 : ωω → ωω be a function that associate to e the code of this set
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(from the Uniform Closure Theorem). In other words, for any a ∈ X, we

let I play the first π(a) slices of the set U
(2)
e (Q) against the strategy τ , and

since τ is winning it will be that either the set played by I is not contained
in Z, or II plays something that select the π(a)-th slice. For any a ∈ X
we consider the intersection of what II played with the π(a)-th slice, and we
unite everything.

By the Recursion Theorem there is a fixed point for h1, so an e∗ such that
U

(2)
e∗ (Q) = U

(2)
h1(e∗)(Q). So if I plays an initial segment of U

(2)
e∗ (Q), then II will

play something whose next slice is the same. It would be great if e∗ ∈ G...
Suppose for contradiction that U

(2)
e∗ (Q) \ Z 6= ∅. Choose (x1, x2) ∈

U
(2)
e∗ (Q) \ Z with π(x1) minimal. so (x1, x2) ∈ U

(2)
e∗ (Q) = U

(2)
h1(e∗)(Q) =⋃

a∈X(U
(2)
(h0(e∗,a)∗τ)II

(Q) ∩ (Qa × ωω)). So let a ∈ X such that (x1, x2) ∈
(U

(2)
(h0(e∗,a)∗τ)II

(Q) ∩ (Qa × ωω)). Now, π(x1) = π(a) was minimal, so the

initial segment of U
(2)
e∗ (Q), coded by h0(e∗, a), is contained in Z, but then

h0(e∗, a) ∈ G. Since τ is a winning strategy, (h0(e∗, a) ∗ τ)II ∈ G, and so
(x1, x2) ∈ Z, contradiction.

Suppose now, for contradiction, that αe∗ exists. Let a ∈ X such that
π(a) = αe∗ . Thus h0(e∗, a) ∈ G and αh0(e∗,a) = αe∗ . Since τ is winning,

α(h0(e∗,a)∗τ)II > αh0(e∗,a) = αe∗ , which is impossible, because U
(2)
(h0(e∗,a)∗τ)II

(Q) ⊆
U

(2)
e∗ (Q).

But then e∗ codes a selector, and we assumed that there was no selector,
so II cannot have a winning strategy. So both I and II do not have a winning
strategy, contradiction with AD.

We are also remarking that there exists a Uniform version of the Coding
Lemma, but we are not providing the proof, that is in Koellner-Woodin
paper:

Theorem 13.7 (Uniform Coding Lemma). Assume ZF+AD. Suppose X ⊆
ωω and π : X → Ord. Suppose Z ⊆ X × ωω. For any a ∈ X, let A<a =
{b ∈ X : π(b) < π(a)} and Aa = {b ∈ X : π(b) = π(a)}. Then there

exists an e ∈ ωω such that for all a ∈ X U
(2)
e (A<a, Aa) ⊆ Z ∩ (Aa × ωω, and

U
(2)
e (A<a, Aa) 6= ∅ iff Z ∩ (Aa × ωω) 6= ∅.

In other words, the Coding Lemma proves that if we have a Z partitioned
via a π function to the ordinals, there is a selector for Z that has the same
complexity as π (or it is Σ1

1 if Z is less complex than that). So we can
extrapolate the following corollary:

Corollary 13.8 (ZF+AD). Let X ⊆ ωω, π : X → Ord such that Aπ is ∆2
1
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(therefore also X must be ∆2
1), Z ⊆ X×ωω. Then there is a selector Z∗ ⊆ Z

that is ∆2
1.

The Uniform Coding Lemma permits a bit more:

Corollary 13.9 (ZF+AD). Let X ⊆ ωω, π : X → Ord such that for any
a ∈ X A<a and Aa are ∆2

1 (therefore Aπ and X are Σ2
1), Z ⊆ X × ωω.

Then there is a selector Z∗ ⊆ Z such that for any a ∈ X Z∗ ∩ (A<a × ωω)
is uniformly ∆2

1, that is, there is a single ∆2
1 formula with parameter a that

defines Z∗ ∩ (A<a × ωω) (and therefore Z∗ is Σ2
1).

14 For the last time, back at the main plot

The Coding Lemma now is the choice principle that we need to prove for δ2
1

what we proved for ω1, for example that δ2
1 is regular and that the club filter

on δ2
1 is δ2

1-complete. The idea is that ACω(R) gives already some result up
to ω1, and the Coding Lemma will push the result ro δ2

1. See for example
this:

Lemma 14.1 (ZF+AD+V=L(R)). δ2
1 is regular.

Proof. This is an example of how the Coding Lemma works as a choice
principle. It is also one of those proof that have an easy idea, but that need
tons of formulas to implement it. Therefore we look first at the idea, then
we go through the details, but not all the way down the end.

So let λ < δ2
1, and suppose that there exists g : λ → δ2

1 cofinal. Then
there is a ∆2

1 pwo π of ordertype λ, and for any α < λ there is a ∆2
1 pwo

of ordertype g(α). If we could choose one pwo πα of ordertype g(α) for any
α we will be done, as we could put all this ordertype together to find a ∆2

1

pwo of ordertype δ2
1, i.e., π′(〈x, y〉) = ππ(x)(y), contradiction. But we cannot

choose just one. We are therefore going to select a bunch of them in a ∆2
1

way, and put them together in a ∆2
1 way, so that the contradiction is reached

all the same.
Let U be the universal set for Σ2

1 sets in ωω×ωω. Let π0 : ωω � λ. Then
consider the set Z = {(〈x, y〉, z) : U(x) = ωω × ωω \ U(y), U(x) is a pwo of
length g(π0(z))}. Let π : U → Ord, π(〈x, y〉) being the ordertype of U(x).
Then π satisfies the hypotheses for the Uniform Coding Lemma. Let Z∗ be
the selector of Z, π via the Uniform Coding Lemma. So if there are x, y, z
such that 〈x, y〉 code a pwo of length g(π0(z)), there are x′, y′, z′ ∈ Z∗ that
satisfies the same, and for any x ∈ U , Z∗ ∩ (A≤π(x) × ωω) is ∆2

1. Now for
any 〈x, y〉 that defines a ∆2

1 pwo, define ξx,y the ordertype of the pwo, and
ρ(x, y, t) as the rank of t in the pwo defined by 〈x, y〉.
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We can now define the pwo of rank δ2
1. Let 〈u, x, y, t〉 <∗ (u′, x′, y′, t′) iff

π0(u) < π0(u′) or there are v, v′ such that π0(u) = π0(v) = π0(u′) = π0(v′),
(〈x, y〉, v) ∈ Z∗ ∩ (A≤π(x) × ωω), (〈x′, y′〉, v′) ∈ Z∗ ∩ (A<≤π(x′) × ωω), and
ρ(x, y, t) ≤ ρ(x′, y′, t′) (in all the other cases they are all related to each other
at the bottom, for example). We want to calculate the ordertype of <∗. Let
us fix the first coordinate. Then π0(u) ∈ λ and g(π0(u)) ∈ δ2

1, therefore
there are 〈x, y〉 that code a ∆2

1 of length g(π0(u)), so (〈x, y〉, u) ∈ Z. Pick
(〈x′, y′〉, u′) ∈ Z∗ that satisfies the same. Then 〈u′, x′, y′, t〉 <∗ 〈u′, x′, y′, t′〉
iff the rank of t in U(x′) is less or equal than the rank of t′ in U(x′), so we
recreated exactly U(x′) in <∗, that is of length g(π0(u). Therefore the pwo
<∗ is a pwo with length g(0) + g(1) + · · ·+ g(β) + . . . for β ∈ λ, and as g is
cofinal <∗ has length δ2

1.
To reach a contradiction, we have to prove that <∗ is ∆2

1. The equations
via π are ∆2

1, as Aπ is ∆2
1, Z∗ ∩ (A≤π(x) × ωω) is again ∆2

1, so it remains to
prove that ρ(x, y, t) ≤ ρ(x′, y′, t′) is expressible in a ∆2

1 way.
This is “there is a set A ⊆ ξx,y × ξx′,y′ which is an order-preserving map

of the initial segment of U(x) up to t onto the initial segment of U(x′) up to
t′. This is still not ∆2

1, but we can choose the set A in a ∆2
1 way again with

the Coding Lemma. The details are left to the reader, at this point.

Theorem 14.2 ((ZF+AD+V = L(R)) Moschovakis’ Boundedness Lemma).
For any X ⊆ U , if X is ∆2

1 then there is a γ < δ2
1 such that X ⊆ ULγ(R).

Proof. Consider π : U → δ2
1, the function that associates to x the least α

such that x ∈ Uα. Now define π′(x) as π(x) is x ∈ X, and as 0 if x /∈ X.
Suppose that π[X] is unbounded in δ2

1. Then also π′[X] is unbounded in δ2
1.

Now consider A = {(x, y) ∈ ωω × ωω : π′(x) ≤ π′(y)}. This is a pwo,
with length the ordertype of π[X]. Since δ2

1 is regular, it must be that A has
length δ2

1.
But we can write A like this: we say that (x, y) ∈ A iff x /∈ X, or x ∈ X,

y /∈ X and π(x) = 0, or x, y ∈ X and π(x) ≤ π(y). SInce π is defined with a
∆1(R) formula, A is ∆2

1. Contradiction.

Theorem 14.3 (ZF+AD+V = L(R)). The club filter on δ2
1 is a δ2

1-complete
ultrafilter.

Proof. The structure of the proof is the same as in the proof that the club
filter on ω1 is a measure, so we are only going to pinpoint the problematic
passages.

The game is the same, with U instead of WO and π instead of ‖‖.
Consider Xα = {(((σ ∗ y)I)n : n ∈ ω, y ∈ ωω, ∀i < n (y)i ∈ Uα}, with

σ winning strategy for I. Since Uα is ∆2
1, then Xα is also ∆2

1. Since σ is
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a winning strategy, Xα ⊆ U . By Moschovakis Boundedness Lemma, then,
there is an α′ such that Xα ⊆ Uα′ . The rest follows in the same way, and
the club filter on δ2

1 is an ultrafilter.
Now, let Xη, with η < γ < δ2

1, be a < δ2
1-collection of subsets of ωω such

that I has a winning strategy for the game GXη . Instead of choosing one
strategy for any Xη, we are going to find a ∆2

1 set of strategies for it.
So let π0 : ωω � γ, and let Aπ0 be the relative ∆2

1 pwo. Let Z = {(x, σ) ∈
ωω × ωω : σ is a winning strategy for I for the game GXπ0(x)

}. Since Aπ0 is

∆2
1, by the (normal) Coding Lemma there is a Z∗ ⊆ Z selector for Z that is

∆2
1. So for any η < γ there is a (x, σ) ∈ Z∗ such that σ is a winning strategy

for I in GXη .
Let Y = {σ ∈ ωω : ∃x ∈ ωω (x, σ) ∈ Z∗}. Then Y is still ∆2

1. Now,
fix a winning strategy σ′ for I for the game G⋂

η<γ Xη
. For any σ, define

X(σ, 0) = {((σ ∗ y)I)0 : y ∈ ωω} and let X(0) =
⋃
σ∈Y X(σ, 0) ∪ X(σ, 0).

Then X(0) is ∆2
1, so it is bounded by π, and the rest follows.

Corollary 14.4 (ZF+AD+V = L(R)). HOD� δ2
1 is measurable

Corollary 14.5. Con(ZF+AD)→Con(ZFC+there exist 2 measurable cardi-
nals).

We can actually do something more, using the Coding Lemma. We focus
now on Θ:

Lemma 14.6 (ZF+V = L(R)). If α < Θ, then there is an OD surjection
π : ωω → α.

Proof. If there exists a surjection π : ωω � α, then there exist β ∈ Ord and
c ∈ ωω such that π = Φ(β, c). For each c ∈ ωω, let β be the smallest such
that Φ(β, c) is a surjection from ωω to α, and let πc = Φ(β, c).

Now define π : ωω → α:

π(〈c, x〉) =

{
πc(x) if πc is defined

0 otherwise.

This is an OD surjection.

Lemma 14.7 (ZF+V = L(R)). Θ is regular.

Proof. For any α < Θ, let πα be an OD surjection from ωω to α. Assume
for contradiction that Θ is singular, and let f : α → Θ be a cofinal map
witnessing this. Let g : ωω → α be a surjection. Then the map π(〈x, y〉) =
πf(g(x))(y) is a surjection from ωω to Θ, contradiction.
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Since Θ is regular in L(R), it is regular in HODL(R)

Theorem 14.8 (ZF+AD+V = L(R)). HOD � Θ is inaccessible.

Proof. We just need to prove that Θ is strong limit in HOD, i.e., that for
any η < Θ, |P(η)|HOD < Θ. We start by proving that there is a surjection
π : ωω � P(η)HOD.

Consider πη : ωω � η that is ∆2
1. For any α < η, let Aα = {x ∈ ωω :

πη(x) = α}. For any S ∈ P(η)HOD, define ZS =
⋃
α∈S(Aα × ωω). Then we

can use the Coding Lemma, and there exists an e such that U
(2)
e (Aπη) is a

selector for Z. Now consider {β < η : U
(2)
e (Aπη) ∩ (Aβ × ωω) 6= ∅}. We have

that U
(2)
e (Aπη)∩ (Aβ ×ωω) 6= ∅ iff Z ∩ (Aβ ×ωω) 6= ∅ iff β ∈ S, therefore this

is exactly S.
For any e ∈ ωω, let f(e) = {β < η : U

(2)
e (Aπη) ∩ (Aβ × ωω) 6= ∅}. Then

we just proved that for any S ∈ P(η)HOD, there is an e such that f(e) = S,
so f is a surjection from ωω to P(η)HOD.

Suppose now that |P(η)|HOD ≥ Θ. Then there would be in HOD sur-
jection ρ : P(η)� Θ, and ρ◦f : ωω � Θ would be in L(R, contradiction.

So for now we have the consistency of two measurable cardinals and an
inaccessible above. But with a trick we can do much better. Instead of
considering Σ2

1 pwos, we can consider Σ2
1(P ) pwos, with P ⊆ ωω, and doing

everything again. So we define δ2
1(P ) has the supremum of the lengths of

pwos that are ∆2
1(P ), δR,P the least such that LδR,P (R) ≺P,R∪{R}1 L(R), they

are the same, there is a universal set U(P ), and a map from it to δ2
1(P ).

We prove ∆2
1(P ) boundedness, and actually the old Uniform Coding Lemma

is enough is enough to prove everything we need. So also the club filter in
δ2

1(P ) is a measure in HOD.
But let α < Θ and Aα a pwo of length α. Then Aα is surely ∆2

1(Aα),
therefore δ2

1(P ) ≥ α. But then the δ2
1(P )’s are cofinal in Θ. So we proved

this:

Theorem 14.9. Con(ZF+AD+V = L(R)) implies Con(ZFC+exists an in-
accessible limit of measurable cardinals).

Where do we go from here? The first step would be to weaken ZF+AD+V =
L(R), but in fact the proof of the consistency of ZF+AD gives that the con-
sistency of the former is a consequence of the consistency of the latter. Fyi:

Theorem 14.10 (ZFC). Suppose that there are ω Woodin cardinals and a
measurable cardinal above them. Then L(R) � AD. Also, Con(ZFC+there
are ω Woodin cardinals) implies Con(ZF+AD).
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On the other hand, there is a long proof, that passes from the fact that
δ2

1 is λ-strong for any λ < Θ and that Θ is Woodin in HOD, that:

Theorem 14.11. Con(ZF+AD) implies Con(ZFC+there are ω Woodin car-
dinals).

This is all. Thanks for reading.

15 Epilogue

We can prove some small partial results about the consistency of ZF+AD. We
need first to highlight a combinatorial property of the measurable cardinals.

Theorem 15.1. Let κ be a measurable cardinal, let D be a normal measure
on κ, and let Fn : [κ]n → I, with n ∈ ω and |I| < κ. Then there exists a set
H ∈ D such that |F ′′nH| = 1.

Proof. We prove this by induction on n. We have already seen the case n = 1.
Suppose it is true for n. Let F : [κ]n+1 → I, where |I| < κ. For each α < κ,
we define Fα on [κ \ {α}]n as Fα(x) = F ({α} ∪ x). By induction hypothesis,
there exists for each α < κ a set Xα ∈ D such that Fα is constant on [Xα]n.
Let iα be such constant. Let X = 4α<κXα. Since D is normal, X ∈ D. If
γ < α1 < · · · < αn are in X, then {α1, . . . , αn} then {α1, . . . , αn} ∈ [Xγ]

n

and so F ({γ, α1, . . . , αn}) = Fγ({α1, . . . , αn}) = iγ. Now, there exist i ∈ I
and H ∈ D such that iγ = i for all γ ∈ H. It follows that F (x) = i for all
x ∈ [H]n+1.

Theorem 15.2 (Martin). If κ is a measurable cardinal, then all Σ1
1 sets of

reals are determined.

Proof. Let A be Σ1
1, and let T be a tree such that x ∈ A iff T (x) is ill-

founded. Let 4 be a linear ordering in ω<ω that extends ⊃ (it can be done
in many ways: for example, s 4 t iff s ⊃ t, or s and t are incompatible and
s(n) < t(n), where n is the least n such that s(n) 6= t(n)). Then x ∈ A iff
T (x) is not well-ordered by 4.

For any s ∈ ω<ω, we define Ts = {t : (u, t) ∈ T, u v s}. We also fix an
enumeration of ω<ω t0, t1, . . . , and we define Ks = {t0, . . . , tn−1} ∩ Ts, where
lh(s) = 2n, and ks = |Ks|.

We define an auxiliary game G∗:
I a0 a1

. . .
II (b0, h0) (b1, h1)

where the a’s and b’s are natural numbers, and the hn is an order-preserving
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mapping from (Ks,4) into κ, where s = (a0, b0, a1, b1, . . . , an, bn) and are
such that h0 ⊆ h1 ⊆ . . . . If the rules are always followed, II wins, otherwise
I wins. So the game is open, and therefore determined.

If II wins, she has constructed an order-preserving mapping h =
⋃
n∈ω hn

of (T (x),4) into κ, with x = (a0, b0, a1, . . . ), so that T (x) is well-founded
and x /∈ A. In a certain sense, the game G∗ is more difficult for II: not only
must II play so that X /∈ A, but she has also to build a map that witnesses
it. So if II has a winning strategy for G∗, then she has a winning strategy
for the original game. It remains to prove that if I has a winning strategy
for G∗, it has a winning strategy for the original game.

Let σ∗ be a winning strategy for I in G∗. Suppose we are at the point of a
play where the two players have produced s = 〈a0, b0, . . . , an, bn〉 and II has
constructed h0 ⊆ · · · ⊆ hn order-preserving. Then hn is an order-preserving
mapping from (Ks,4) into κ. Let E be the range of hn: then |E| = ks.
Notice that if we fix E, then hn is unique, it is the only order-preserving map
from two finite sets, so σ∗ for the next move depends only on s and E.

For each s ∈ ω<ω, let Fs : [κ]ks → ω, Fs(E) = σ∗(s, E). Since κ is
measurable, there is a set H ⊆ κ such that |F ′′sH| = 1 for any s. Let σ(s) be
such value.We want to prove that this is a winning strategy for I.

Let x = (a0, b0, a1, . . . ) be a play following the strategy σ. Assume to-
wards a contradiction that x /∈ A. Then (T (x),4) is well-ordered, with
order-type less than ω1. Since H is uncountable (much more than that),
there exists an embedding h of (T (x),4) into H. Now consider the play of
the game G∗ where they both play x, and each time II plays hn as the re-
striction of h to Ks. Actually this is a play where I follows σ∗: a0 is the first
step for both σ and σ∗. Now, a1 = σ((a0, b0)), and σ((a0, b0)) is σ∗(s, E) for
any E ∈ [H]ks , in particular for E = h(K(a0,b0)). And so on. But if x /∈ A,
then II has won a play of G∗ where I was playing the winning strategy σ∗,
contradiction. Therefore σ is a winning strategy for I.
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